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Abstract. In the present paper, by Haagerup theorem, we show that if
A ∈ Mn is a non scalar strictly positive matrix and 0 < ν < 1 be a real
number such that ν 6= 1

2 , then there exists X ∈ Mn such that

‖AνXA1−ν‖ > ‖νAX + (1− ν)XA‖.

1. Introduction and preliminaries

Let Mn be the algebra of all n × n complex matrices. A norm |||.||| on Mn is
said to be unitarily invariant if |||UAV ||| = |||A||| for all A ∈ Mn and all unitary
U, V ∈ Mn. For A ∈ Mn, the numerical radius of A is defined and denoted by

ω(A) = max{|x∗Ax| : x ∈ Cn, x∗x = 1}.
It is known that ω(.) is a vector norm on Mn, but is not unitarily invariant.

Throughout the paper we use the term positive for a positive semidefinite
matrix, and strictly positive for a positive definite matrix. Also we use the
notation A ≥ 0 to mean that A is positive, A > 0 to mean it is strictly positive.
In Mn, beside the usual matrix product, the entrywise product is quite important
and interesting. The entry wise product of two matrices A and B is called their
Schur (or Hadamard) product and denoted by A ◦ B. With this multiplication
Mn becomes a commutative algebra, for which the matrix with all entries equal
to one is the unit and we denote that by ”J”. The linear operator SA on Mn, is
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called the Schur multiplier operator and defined by SA(X) := A◦X. The induced
norm of SA with respect to all unitarily invariant norm will be denoted by

|||SA||| = sup
X 6=0

|||SA(X)|||
|||X|||

= sup
X 6=0

|||A ◦X|||
|||X|||

,

and the induced norm of SA with respect to numerical radius norm will be denoted
by

‖SA‖ω = sup
X 6=0

ω(SA(X))

ω(X)
= sup

X 6=0

ω(A ◦X)

ω(X)
.

For positive real numbers a, b, the classical Young inequality says that if p, q > 1
such that 1/p + 1/q = 1, then

ab ≤ ap

p
+

bq

q
, (1.1)

the another form of the inequality for positive real numbers a, b is in the
following form:

aνb1−ν ≤ νa + (1− ν)b, 0 ≤ ν ≤ 1. (1.2)

For more details about these inequalities, their refinements and associated norm
inequalities with their history of origin, the reader may refer to [2, 5, 6, 8, 9].
In [9] we showed that, if A, B ≥ 0, and X ∈ Mn. Then the inequality

ω(AXB) ≤ ω(
Ap

p
X + X

Bq

q
) does not holds in general as follows:

Theorem 1.1. [9, Theorem 2.3], Let p > q > 1 such that 1/p + 1/q = 1 and let
A ∈ Mn be a non scalar strictly positive matrix such that 1 ∈ σ(A), then there
exists X ∈ Mn such that

ω(AXA) > ω(
Ap

p
X + X

Aq

q
). (1.3)

Also, in [10] we showed the following inequaliy for the numerical radius:

Theorem 1.2. Let A ∈ Mn be a positive matrix. Then for all X ∈ Mn, we have

ω(AXA) ≤ 1

2
ω(A2X + XA2). (1.4)

2. Main results

Bhatia and Kittaneh in 1990 [7] established a matrix mean inequality as follows:

|||A∗B||| ≤ 1

2
|||A∗A + B∗B||| , (2.1)

for matrices A, B ∈ Mn.
In [5] a generalization of (2.1) was proved, for all X ∈ Mn,

|||A∗XB||| ≤ 1

2
|||AA∗X + XBB∗||| . (2.2)
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Ando in 1995 [2] obtained a matrix Young inequality:

|||AB||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣Ap

p
+

Bq

q

∣∣∣∣∣∣∣∣∣∣∣∣ , (2.3)

for p, q > 1 with 1/p + 1/q = 1 and positive matrices A, B.
Also, in [1], the author pointed out that the matrix Young inequality
|||AXB||| ≤ |||1

p
ApX + 1

q
XBq||| is not valid for the spectral norm ‖.‖.

Here, we clarify it. Ando and Okubo in 1991, [4], proved the following
theorem[4, Theorom 1 and Corollary 3]:

Theorem 2.1. (Haagerup theorem) For A ∈ Mn the following assertions are
equivalent:
(i) ‖SA‖ ≤ 1.
(ii) There is 0 ≤ R1, R2 ∈ Mn such that[

R1 A
A∗ R2

]
≥ 0, R1 ◦ I ≤ I and R2 ◦ I ≤ I.

Moreover, if A is Hermitian, then ‖SA‖ = ‖SA‖ω.

Lemma 2.2. Let 0 < ν < 1 be a real number such that ν 6= 1

2
and a > 0. Then

aν

νa + (1− ν)
=

a1−ν

ν + (1− ν)a

holds if and only if a = 1.

Proof. Assume if possible there exists a > 0 and a 6= 1, such that

aν

νa + (1− ν)
=

a1−ν

ν + (1− ν)a
. (2.4)

Then (2.4) is equivalent to

(1− ν)a1+ν + νaν − νa2−ν − (1− ν)a1−ν = 0. (2.5)

Now let ν =
1

p
, where p > 1, p 6= 2 and let

f(x) =
1

p

(
(p− 1)x

p+1
p + x

1
p − x

2p−1
p − (p− 1)x

p−1
p

)
.

Now replace x with xp we have

k(x) =
1

p

(
(p− 1)xp+1 + x− x2p−1 − (p− 1)xp−1

)
=

xk1(x)

p
.

By the assumption and by the Rolle’s theorem, the (2.5) is equivalent to

k1(x) = (p− 1)xp − x2p−2 − (p− 1)xp−2 + 1

has at least one positive root r1 6= 1. Now, apply the Rolle’s theorem for

k2(x) = k′
1(x) = (p− 1)xp−3

(
px2 − 2xp − (p− 2)

)
= (p− 1)xp−3k3(x),

we can say that the function

k′
3(x) = 2px(1− xp−2)
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has at least one positive root r2 6= 1. That is a contradiction. �

Now, in the following theorem, we will show that if A, B ≥ 0, and X ∈ Mn,
then |||AνXB1−ν ||| ≤ |||νAX + (1− ν)XB||| does not holds in general.

Theorem 2.3. Let 0 < ν < 1 be a real number such that ν 6= 1

2
and A ∈ Mn be

a non scalar strictly positive matrix. Then there exists X ∈ Mn such that

‖AνXA1−ν‖ > ‖νAX + (1− ν)XA‖. (2.6)

Proof. Without loss of generality we assume that A = diag(a1, a2, a3, . . . , an)
where a1 = 1 and a2 6= 1. By Lemma 2.2, it is readily seen that

aν
2

νa2 + (1− ν)
6= a1−ν

2

ν + (1− ν)a2

. (2.7)

Assume if possible for all X ∈ Mn,

‖AνXA1−ν‖ ≤ ‖νAX + (1− ν)XA‖. (2.8)

Now, let C = (cij) and E = (eij) be n× n matrices, where
cij = νai + (1 − ν)aj, and eij = aν

i a
1−ν
j . Then we rewrite (2.8) in the following

form
‖E ◦X‖ ≤ ‖C ◦X‖, (X ∈ Mn). (2.9)

Let D be the entrywise inverse of C(C ◦ D = J). We replace X by (D ◦ X) in
(2.9), then

‖(E ◦D) ◦X‖ ≤ ‖X‖, (X ∈ Mn). (2.10)

Let F := (E ◦D) = (fij). Then ‖F ◦X‖ ≤ ‖X‖ for all X ∈ Mn and hence,

‖SF‖ ≤ 1. (2.11)

Now by Haagerup theorem , there exist n×n matrices X = (xij), Y = (yij) ≥ 0
with 0 ≤ xii, yii ≤ 1, (1 ≤ i ≤ n), such that[

X F
F ∗ Y

]
≥ 0.

By considering X̃ := (x̃ij) such that x̃ij = xij if i 6= j and x̃ii = 1, and Ỹ := (ỹij)
such that ỹij = yij if i 6= j and ỹii = 1, we obtain that[

X̃ F

F ∗ Ỹ

]
≥

[
X F
F ∗ Y

]
≥ 0.

Since, any principal submatrix of the above matrix is positive, we have
1 x 1 f12

x̄ 1 f21 1
1 f21 1 y

f12 1 ȳ 1

 ≥ 0 where x := x̃12 = x12, y := ỹ12 = y12.

By using the Schur complement Theorem [5, Theorem 1.3.3], we obtain that 1 f21 1
f21 1 y
1 ȳ 1

−

 x̄
1

f12

 [
x 1 f12

]
=

 1− |x|2 f21 − x̄ 1− x̄f12

f21 − x 0 y − f12

1− xf12 ȳ − f12 1− f 2
12

 ≥ 0.
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Since the determinant of principle submatrices of the above matrix is positive,
we have f21 − x = y − f12 = 0 and hence

B =


1 f21 1 f12

f21 1 f21 1
1 f21 1 f12

f12 1 f12 1

 ≥ 0.

Let f(λ) be the characteristic polynomial of B as follows

f(λ) = λ4 − 4λ3 + (4− 2f 2
12 − 2f 2

21)λ
2 + (−4f12f21 + 2f 2

12 + 2f 2
21)λ.

By (2.7) we have f21 6= f12, we obtain that the coefficient of λ is positive and
hence f(λ) has one negative root, which is a contradiction with B ≥ 0. �

Corollary 2.4. Let p > q > 1 such that 1/p + 1/q = 1 and n ∈ N. Then there
exist A, B, X ∈ Mn such that A, B > 0 and

‖AXB‖ >

∥∥∥∥Ap

p
X + X

Bq

q

∥∥∥∥ .

Lemma 2.5. [4] For all A ∈ Mn

‖SA‖ ≤ ‖SA‖ω.

Now, by Lemma 2.5 and Theorem 2.3 we can obtain the following theorem that
shows the another form of the Young inequality for the numerical radius does not
holds.

Theorem 2.6. Let 0 < ν < 1 be a real number such that ν 6= 1

2
and A ∈ Mn be

a non scalar strictly positive matrix. Then there exists X ∈ Mn such that

ω(AνXA1−ν) > ω(νAX + (1− ν)XA).

Proof. Without loss of generality we assume that A = diag(a1, a2, a3, . . . , an). We
assume if possible for all A, X ∈ Mn such that A is a non scalar strictly positive
matrix, then

ω(AνXA1−ν) ≤ ω(νAX + (1− ν)XA).

If we define

F :=

[
aν

i a
1−ν
j

νai + (1− ν)aj

]
∈ Mn,

then easy computations show that ‖SF‖ω ≤ 1. Now by Lemma 2.5 we have
‖SF‖ ≤ 1 and hence ‖AνXA1−ν‖ ≤ ‖νAX +(1−ν)XA‖, which is a contradiction
by Theorem 2.3. �

Corollary 2.7. Let p > q > 1 such that 1/p + 1/q = 1 and n ∈ N. Then there
exist A, B, X ∈ Mn such that A, B > 0 and

ω(AXB) > ω(
Ap

p
X + X

Bq

q
).

Remark 2.8. By the inequality (2.2) and Theorem 1.2, the condition ν 6= 1
2

in the
Theorem 2.3 and Theorem 2.6 are essential.



ON REVERSING OF THE MODIFIED YOUNG INEQUALITY 75

Theorem 2.9. Let p > q > 1 such that 1/p + 1/q = 1. Then there is A ∈ Mn

such that A > 0 and for all X ∈ Mn

|||AXA||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣Ap

p
X + X

Aq

q

∣∣∣∣∣∣∣∣∣∣∣∣
if and only if there is

F =

 aiaj

ap
i

p
+

aq
j

q

 ∈ Mn,

such that ai > 0(i = 1, . . . , n) and |||SF ||| ≤ 1.

Moreover, if A is non scalar and 1 ∈ σ(A), then ‖SF‖ω > |||SF |||.

Proof. Without loss of generality, assume that

A = diag(a1, a2, a3, . . . , an), ai > 0, (i = 1, . . . , n)

Now, let C = [cij] and E = [eij] be n× n matrices, where

cij =
ap

i

p
+

aq
j

q
, eij = aiaj.

Then we have the following form

|||E ◦X||| ≤ |||C ◦X||| , (X ∈ Mn). (2.12)

Let D be the entrywise inverse of C(C ◦ D = J). We replace X by (D ◦ X) in
(2.12), then

|||(E ◦D) ◦X||| ≤ |||X||| , (X ∈ Mn).

Let F := (E ◦D) = (fij). Then, we obtain that

|||F ◦X||| ≤ |||X||| , (X ∈ Mn)

and hence, |||SF ||| ≤ 1. It is enough to show that if A is non scalar and 1 ∈ σ(A),
then ‖SF‖ω > 1. Assume if possible ‖SF‖ω ≤ 1. Then we have for all X ∈ Mn,

ω(AXA) ≤ ω(
Ap

p
X + X

Aq

q
).

That is a contradiction by Theorem 1.1. �
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