Ann. Funct. Anal. 5 (2014), no. 1, 70-76
\mathscr{A} NNALS OF \mathscr{F} UNCTIONAL \mathscr{A} NALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ON REVERSING OF THE MODIFIED YOUNG INEQUALITY

A. SALEMI AND A. SHEIKH HOSSEINI*
This paper is dedicated to Professor Tsuyoshi Ando

Communicated by J. I. Fujii

Abstract

In the present paper, by Haagerup theorem, we show that if $A \in \mathbb{M}_{n}$ is a non scalar strictly positive matrix and $0<\nu<1$ be a real number such that $\nu \neq \frac{1}{2}$, then there exists $X \in \mathbb{M}_{n}$ such that

$$
\left\|A^{\nu} X A^{1-\nu}\right\|>\|\nu A X+(1-\nu) X A\|
$$

1. Introduction and preliminaries

Let \mathbb{M}_{n} be the algebra of all $n \times n$ complex matrices. A norm $\left\|\|\| \mid\right.$. on \mathbb{M}_{n} is said to be unitarily invariant if $\|\|U A V\|\|=\| \| A \|$ for all $A \in \mathbb{M}_{n}$ and all unitary $U, V \in \mathbb{M}_{n}$. For $A \in \mathbb{M}_{n}$, the numerical radius of A is defined and denoted by

$$
\omega(A)=\max \left\{\left|x^{*} A x\right|: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

It is known that $\omega($.$) is a vector norm on \mathbb{M}_{n}$, but is not unitarily invariant.
Throughout the paper we use the term positive for a positive semidefinite matrix, and strictly positive for a positive definite matrix. Also we use the notation $A \geq 0$ to mean that A is positive, $A>0$ to mean it is strictly positive. In \mathbb{M}_{n}, beside the usual matrix product, the entrywise product is quite important and interesting. The entry wise product of two matrices A and B is called their Schur (or Hadamard) product and denoted by $A \circ B$. With this multiplication \mathbb{M}_{n} becomes a commutative algebra, for which the matrix with all entries equal to one is the unit and we denote that by " J ". The linear operator S_{A} on \mathbb{M}_{n}, is

[^0]called the Schur multiplier operator and defined by $S_{A}(X):=A \circ X$. The induced norm of S_{A} with respect to all unitarily invariant norm will be denoted by
$$
\left\|S_{A}\right\| \|=\sup _{X \neq 0} \frac{\left\|S_{A}(X)\right\|}{\|X\| \|}=\sup _{X \neq 0} \frac{\|A \circ X\| \|}{\|X\|},
$$
and the induced norm of S_{A} with respect to numerical radius norm will be denoted by
$$
\left\|S_{A}\right\|_{\omega}=\sup _{X \neq 0} \frac{\omega\left(S_{A}(X)\right)}{\omega(X)}=\sup _{X \neq 0} \frac{\omega(A \circ X)}{\omega(X)} .
$$

For positive real numbers a, b, the classical Young inequality says that if $p, q>1$ such that $1 / p+1 / q=1$, then

$$
\begin{equation*}
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{1.1}
\end{equation*}
$$

the another form of the inequality for positive real numbers a, b is in the following form:

$$
\begin{equation*}
a^{\nu} b^{1-\nu} \leq \nu a+(1-\nu) b, 0 \leq \nu \leq 1 . \tag{1.2}
\end{equation*}
$$

For more details about these inequalities, their refinements and associated norm inequalities with their history of origin, the reader may refer to $[2,5,6,8,9]$. In [9] we showed that, if $A, B \geq 0$, and $X \in \mathbb{M}_{n}$. Then the inequality $\omega(A X B) \leq \omega\left(\frac{A^{p}}{p} X+X \frac{B^{q}}{q}\right)$ does not holds in general as follows:
Theorem 1.1. [9, Theorem 2.3], Let $p>q>1$ such that $1 / p+1 / q=1$ and let $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix such that $1 \in \sigma(A)$, then there exists $X \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
\omega(A X A)>\omega\left(\frac{A^{p}}{p} X+X \frac{A^{q}}{q}\right) \tag{1.3}
\end{equation*}
$$

Also, in [10] we showed the following inequaliy for the numerical radius:
Theorem 1.2. Let $A \in \mathbb{M}_{n}$ be a positive matrix. Then for all $X \in \mathbb{M}_{n}$, we have

$$
\begin{equation*}
\omega(A X A) \leq \frac{1}{2} \omega\left(A^{2} X+X A^{2}\right) \tag{1.4}
\end{equation*}
$$

2. Main Results

Bhatia and Kittaneh in 1990 [7] established a matrix mean inequality as follows:

$$
\begin{equation*}
\left\|A^{*} B\right\| \left\lvert\, \leq \frac{1}{2}\left\|A^{*} A+B^{*} B\right\|\right. \| \tag{2.1}
\end{equation*}
$$

for matrices $A, B \in \mathbb{M}_{n}$.
In [5] a generalization of (2.1) was proved, for all $X \in \mathbb{M}_{n}$,

$$
\begin{equation*}
\left\|\mid A^{*} X B\right\| \leq \frac{1}{2}\left\|A A^{*} X+X B B^{*}\right\| \| \tag{2.2}
\end{equation*}
$$

Ando in 1995 [2] obtained a matrix Young inequality:

$$
\begin{equation*}
\|\|A B\| \mid \leq\|\left\|\frac{A^{p}}{p}+\frac{B^{q}}{q}\right\| \| \tag{2.3}
\end{equation*}
$$

for $p, q>1$ with $1 / p+1 / q=1$ and positive matrices A, B.
Also, in [1], the author pointed out that the matrix Young inequality
$\left|\left|\left|A X B\left\|\|\leq\| \left\lvert\, \frac{1}{p} A^{p} X+\frac{1}{q} X B^{q}\right.\right\| \|\right.\right.\right.$ is not valid for the spectral norm $\|$.$\| .$
Here, we clarify it. Ando and Okubo in 1991, [4], proved the following theorem[4, Theorom 1 and Corollary 3]:
Theorem 2.1. (Haagerup theorem) For $A \in \mathbb{M}_{n}$ the following assertions are equivalent:
(i) $\left\|S_{A}\right\| \leq 1$.
(ii) There is $0 \leq R_{1}, R_{2} \in \mathbb{M}_{n}$ such that

$$
\left[\begin{array}{cc}
R_{1} & A \\
A^{*} & R_{2}
\end{array}\right] \geq 0, \quad R_{1} \circ I \leq I \quad \text { and } \quad R_{2} \circ I \leq I
$$

Moreover, if A is Hermitian, then $\left\|S_{A}\right\|=\left\|S_{A}\right\|_{\omega}$.
Lemma 2.2. Let $0<\nu<1$ be a real number such that $\nu \neq \frac{1}{2}$ and $a>0$. Then

$$
\frac{a^{\nu}}{\nu a+(1-\nu)}=\frac{a^{1-\nu}}{\nu+(1-\nu) a}
$$

holds if and only if $a=1$.
Proof. Assume if possible there exists $a>0$ and $a \neq 1$, such that

$$
\begin{equation*}
\frac{a^{\nu}}{\nu a+(1-\nu)}=\frac{a^{1-\nu}}{\nu+(1-\nu) a} . \tag{2.4}
\end{equation*}
$$

Then (2.4) is equivalent to

$$
\begin{equation*}
(1-\nu) a^{1+\nu}+\nu a^{\nu}-\nu a^{2-\nu}-(1-\nu) a^{1-\nu}=0 . \tag{2.5}
\end{equation*}
$$

Now let $\nu=\frac{1}{p}$, where $p>1, p \neq 2$ and let

$$
f(x)=\frac{1}{p}\left((p-1) x^{\frac{p+1}{p}}+x^{\frac{1}{p}}-x^{\frac{2 p-1}{p}}-(p-1) x^{\frac{p-1}{p}}\right) .
$$

Now replace x with x^{p} we have

$$
k(x)=\frac{1}{p}\left((p-1) x^{p+1}+x-x^{2 p-1}-(p-1) x^{p-1}\right)=\frac{x k_{1}(x)}{p} .
$$

By the assumption and by the Rolle's theorem, the (2.5) is equivalent to

$$
k_{1}(x)=(p-1) x^{p}-x^{2 p-2}-(p-1) x^{p-2}+1
$$

has at least one positive root $r_{1} \neq 1$. Now, apply the Rolle's theorem for

$$
k_{2}(x)=k_{1}^{\prime}(x)=(p-1) x^{p-3}\left(p x^{2}-2 x^{p}-(p-2)\right)=(p-1) x^{p-3} k_{3}(x),
$$

we can say that the function

$$
k_{3}^{\prime}(x)=2 p x\left(1-x^{p-2}\right)
$$

has at least one positive root $r_{2} \neq 1$. That is a contradiction.
Now, in the following theorem, we will show that if $A, B \geq 0$, and $X \in \mathbb{M}_{n}$, then $\left\|\mid A^{\nu} X B^{1-\nu}\right\|\|\leq\|\|\nu A X+(1-\nu) X B\|$ does not holds in general.
Theorem 2.3. Let $0<\nu<1$ be a real number such that $\nu \neq \frac{1}{2}$ and $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix. Then there exists $X \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
\left\|A^{\nu} X A^{1-\nu}\right\|>\|\nu A X+(1-\nu) X A\| . \tag{2.6}
\end{equation*}
$$

Proof. Without loss of generality we assume that $A=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$ where $a_{1}=1$ and $a_{2} \neq 1$. By Lemma 2.2 , it is readily seen that

$$
\begin{equation*}
\frac{a_{2}^{\nu}}{\nu a_{2}+(1-\nu)} \neq \frac{a_{2}^{1-\nu}}{\nu+(1-\nu) a_{2}} . \tag{2.7}
\end{equation*}
$$

Assume if possible for all $X \in \mathbb{M}_{n}$,

$$
\begin{equation*}
\left\|A^{\nu} X A^{1-\nu}\right\| \leq\|\nu A X+(1-\nu) X A\| \tag{2.8}
\end{equation*}
$$

Now, let $C=\left(c_{i j}\right)$ and $E=\left(e_{i j}\right)$ be $n \times n$ matrices, where $c_{i j}=\nu a_{i}+(1-\nu) a_{j}$, and $e_{i j}=a_{i}^{\nu} a_{j}^{1-\nu}$. Then we rewrite (2.8) in the following form

$$
\begin{equation*}
\|E \circ X\| \leq\|C \circ X\|, \quad\left(X \in \mathbb{M}_{n}\right) \tag{2.9}
\end{equation*}
$$

Let D be the entrywise inverse of $C(C \circ D=J)$. We replace X by $(D \circ X)$ in (2.9), then

$$
\begin{equation*}
\|(E \circ D) \circ X\| \leq\|X\|, \quad\left(X \in \mathbb{M}_{n}\right) \tag{2.10}
\end{equation*}
$$

Let $F:=(E \circ D)=\left(f_{i j}\right)$. Then $\|F \circ X\| \leq\|X\|$ for all $X \in \mathbb{M}_{n}$ and hence,

$$
\begin{equation*}
\left\|S_{F}\right\| \leq 1 \tag{2.11}
\end{equation*}
$$

Now by Haagerup theorem, there exist $n \times n$ matrices $X=\left(x_{i j}\right), Y=\left(y_{i j}\right) \geq 0$ with $0 \leq x_{i i}, y_{i i} \leq 1, \quad(1 \leq i \leq n)$, such that

$$
\left[\begin{array}{cc}
X & F \\
F^{*} & Y
\end{array}\right] \geq 0
$$

By considering $\tilde{X}:=\left(\tilde{x}_{i j}\right)$ such that $\tilde{x}_{i j}=x_{i j}$ if $i \neq j$ and $\tilde{x}_{i i}=1$, and $\tilde{Y}:=\left(\tilde{y}_{i j}\right)$ such that $\tilde{y}_{i j}=y_{i j}$ if $i \neq j$ and $\tilde{y}_{i i}=1$, we obtain that

$$
\left[\begin{array}{cc}
\tilde{X} & F \\
F^{*} & \tilde{Y}
\end{array}\right] \geq\left[\begin{array}{cc}
X & F \\
F^{*} & Y
\end{array}\right] \geq 0
$$

Since, any principal submatrix of the above matrix is positive, we have

$$
\left[\begin{array}{cccc}
1 & x & 1 & f_{12} \\
\bar{x} & 1 & f_{21} & 1 \\
1 & f_{21} & 1 & y \\
f_{12} & 1 & \bar{y} & 1
\end{array}\right] \geq 0 \text { where } x:=\tilde{x}_{12}=x_{12}, y:=\tilde{y}_{12}=y_{12}
$$

By using the Schur complement Theorem [5, Theorem 1.3.3], we obtain that

$$
\left[\begin{array}{ccc}
1 & f_{21} & 1 \\
f_{21} & 1 & y \\
1 & \bar{y} & 1
\end{array}\right]-\left[\begin{array}{c}
\bar{x} \\
1 \\
f_{12}
\end{array}\right]\left[\begin{array}{lll}
x & 1 & f_{12}
\end{array}\right]=\left[\begin{array}{ccc}
1-|x|^{2} & f_{21}-\bar{x} & 1-\bar{x} f_{12} \\
f_{21}-x & 0 & y-f_{12} \\
1-x f_{12} & \bar{y}-f_{12} & 1-f_{12}^{2}
\end{array}\right] \geq 0 .
$$

Since the determinant of principle submatrices of the above matrix is positive, we have $f_{21}-x=y-f_{12}=0$ and hence

$$
B=\left[\begin{array}{cccc}
1 & f_{21} & 1 & f_{12} \\
f_{21} & 1 & f_{21} & 1 \\
1 & f_{21} & 1 & f_{12} \\
f_{12} & 1 & f_{12} & 1
\end{array}\right] \geq 0
$$

Let $f(\lambda)$ be the characteristic polynomial of B as follows

$$
f(\lambda)=\lambda^{4}-4 \lambda^{3}+\left(4-2 f_{12}^{2}-2 f_{21}^{2}\right) \lambda^{2}+\left(-4 f_{12} f_{21}+2 f_{12}^{2}+2 f_{21}^{2}\right) \lambda
$$

By (2.7) we have $f_{21} \neq f_{12}$, we obtain that the coefficient of λ is positive and hence $f(\lambda)$ has one negative root, which is a contradiction with $B \geq 0$.

Corollary 2.4. Let $p>q>1$ such that $1 / p+1 / q=1$ and $n \in \mathbb{N}$. Then there exist $A, B, X \in \mathbb{M}_{n}$ such that $A, B>0$ and

$$
\|A X B\|>\left\|\frac{A^{p}}{p} X+X \frac{B^{q}}{q}\right\| .
$$

Lemma 2.5. [4] For all $A \in \mathbb{M}_{n}$

$$
\left\|S_{A}\right\| \leq\left\|S_{A}\right\|_{\omega}
$$

Now, by Lemma 2.5 and Theorem 2.3 we can obtain the following theorem that shows the another form of the Young inequality for the numerical radius does not holds.
Theorem 2.6. Let $0<\nu<1$ be a real number such that $\nu \neq \frac{1}{2}$ and $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix. Then there exists $X \in \mathbb{M}_{n}^{2}$ such that

$$
\omega\left(A^{\nu} X A^{1-\nu}\right)>\omega(\nu A X+(1-\nu) X A)
$$

Proof. Without loss of generality we assume that $A=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$. We assume if possible for all $A, X \in \mathbb{M}_{n}$ such that A is a non scalar strictly positive matrix, then

$$
\omega\left(A^{\nu} X A^{1-\nu}\right) \leq \omega(\nu A X+(1-\nu) X A)
$$

If we define

$$
F:=\left[\frac{a_{i}^{\nu} a_{j}^{1-\nu}}{\nu a_{i}+(1-\nu) a_{j}}\right] \in \mathbb{M}_{n}
$$

then easy computations show that $\left\|S_{F}\right\|_{\omega} \leq 1$. Now by Lemma 2.5 we have $\left\|S_{F}\right\| \leq 1$ and hence $\left\|A^{\nu} X A^{1-\nu}\right\| \leq\|\nu A X+(1-\nu) X A\|$, which is a contradiction by Theorem 2.3.

Corollary 2.7. Let $p>q>1$ such that $1 / p+1 / q=1$ and $n \in \mathbb{N}$. Then there exist $A, B, X \in \mathbb{M}_{n}$ such that $A, B>0$ and

$$
\omega(A X B)>\omega\left(\frac{A^{p}}{p} X+X \frac{B^{q}}{q}\right)
$$

Remark 2.8. By the inequality (2.2) and Theorem 1.2, the condition $\nu \neq \frac{1}{2}$ in the Theorem 2.3 and Theorem 2.6 are essential.

Theorem 2.9. Let $p>q>1$ such that $1 / p+1 / q=1$. Then there is $A \in \mathbb{M}_{n}$ such that $A>0$ and for all $X \in \mathbb{M}_{n}$

$$
\left|\|A X A \mid\| \leq\| \| \frac{A^{p}}{p} X+X \frac{A^{q}}{q}\| \|\right.
$$

if and only if there is

$$
F=\left[\frac{a_{i} a_{j}}{\frac{a_{i}^{p}}{p}+\frac{a_{j}^{q}}{q}}\right] \in \mathbb{M}_{n}
$$

such that $a_{i}>0(i=1, \ldots, n)$ and $\left\|\left\|S_{F}\right\|\right\| \leq 1$.
Moreover, if A is non scalar and $1 \in \sigma(A)$, then $\left\|S_{F}\right\|_{\omega}>\left\|S_{F}\right\|$.
Proof. Without loss of generality, assume that

$$
A=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right), \quad a_{i}>0,(i=1, \ldots, n)
$$

Now, let $C=\left[c_{i j}\right]$ and $E=\left[e_{i j}\right]$ be $n \times n$ matrices, where

$$
c_{i j}=\frac{a_{i}^{p}}{p}+\frac{a_{j}^{q}}{q}, \quad e_{i j}=a_{i} a_{j} .
$$

Then we have the following form

$$
\begin{equation*}
\|\mid E \circ X\|\|\leq\|\|C \circ X\| \|, \quad\left(X \in \mathbb{M}_{n}\right) \tag{2.12}
\end{equation*}
$$

Let D be the entrywise inverse of $C(C \circ D=J)$. We replace X by $(D \circ X)$ in (2.12), then

$$
\mid\|(E \circ D) \circ X\|\|\leq\|\|X\| \|, \quad\left(X \in \mathbb{M}_{n}\right)
$$

Let $F:=(E \circ D)=\left(f_{i j}\right)$. Then, we obtain that

$$
\|\|F \circ X\|\| \leq\|X\| \|, \quad\left(X \in \mathbb{M}_{n}\right)
$$

and hence, $\mid\left\|S_{F}\right\| \| \leq 1$. It is enough to show that if A is non scalar and $1 \in \sigma(A)$, then $\left\|S_{F}\right\|_{\omega}>1$. Assume if possible $\left\|S_{F}\right\|_{\omega} \leq 1$. Then we have for all $X \in \mathbb{M}_{n}$,

$$
\omega(A X A) \leq \omega\left(\frac{A^{p}}{p} X+X \frac{A^{q}}{q}\right)
$$

That is a contradiction by Theorem 1.1.

References

1. T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl. 199 (1994), 17-67.
2. T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995), 33-38.
3. T. Ando, R.A. Horn and C.R. Johnson, The singular values of a Hadamard product: A basic inequality, Linear Multilinear Algebra 21 (1987), 345-365.
4. T. Ando and K. Okubo, Induced norms of the Schur multiplication operators, Linear Algebra Appl. 147(1991), 181-199.
5. R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.
6. R. Bhatia and C. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14(1993), 132-136.
7. R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (1990), 272-277.
8. C. Conde, Young type inequalities for positive operators, Ann. Funct. Anal. 2 (2013), no. 2, 144-152.
9. A. Salemi and A. Sheikh Hosseini, Matrix Young numerical radius inequalities, Math. Inequal. Appl. 16 (2013), no. 3, 783-791.
10. A. Salemi and A. Sheikh Hosseini, Numerical radius and operator norm inequalities, preprint.
11. X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl. 20 (1998) 466-470.
12. X. Zhan, Matrix Inequalities(Lecture notes in mathematics), 1790, Springer, 2002.

Department of Mathematics, Shahid Bahonar University, Kerman, Iran.
E-mail address: salemi@mail.uk.ac.ir
E-mail address: alemehsheikhhoseiny@yahoo.com

[^0]: Date: Received: 12 June 2013; Revised: 1 August 2013; Accepted: 2 September 2013.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 15A60; Secondary 15A42, 47A30.
 Key words and phrases. Young inequality, numerical radius, spectral norm, strictly positive matrix.

