

Ann. Funct. Anal. 5 (2014), no. 1, 70–76
ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ON REVERSING OF THE MODIFIED YOUNG INEQUALITY

A. SALEMI AND A. SHEIKH HOSSEINI*

This paper is dedicated to Professor Tsuyoshi Ando

Communicated by J. I. Fujii

ABSTRACT. In the present paper, by Haagerup theorem, we show that if $A \in \mathbb{M}_n$ is a non scalar strictly positive matrix and $0 < \nu < 1$ be a real number such that $\nu \neq \frac{1}{2}$, then there exists $X \in \mathbb{M}_n$ such that

 $||A^{\nu}XA^{1-\nu}|| > ||\nu AX + (1-\nu)XA||.$

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{M}_n be the algebra of all $n \times n$ complex matrices. A norm |||.||| on \mathbb{M}_n is said to be unitarily invariant if |||UAV||| = |||A||| for all $A \in \mathbb{M}_n$ and all unitary $U, V \in \mathbb{M}_n$. For $A \in \mathbb{M}_n$, the numerical radius of A is defined and denoted by

$$\omega(A) = \max\{|x^*Ax| : x \in \mathbb{C}^n, x^*x = 1\}.$$

It is known that $\omega(.)$ is a vector norm on \mathbb{M}_n , but is not unitarily invariant.

Throughout the paper we use the term positive for a positive semidefinite matrix, and strictly positive for a positive definite matrix. Also we use the notation $A \ge 0$ to mean that A is positive, A > 0 to mean it is strictly positive. In \mathbb{M}_n , beside the usual matrix product, the entrywise product is quite important and interesting. The entry wise product of two matrices A and B is called their Schur (or Hadamard) product and denoted by $A \circ B$. With this multiplication \mathbb{M}_n becomes a commutative algebra, for which the matrix with all entries equal to one is the unit and we denote that by "J". The linear operator S_A on \mathbb{M}_n , is

Date: Received: 12 June 2013; Revised: 1 August 2013; Accepted: 2 September 2013. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A60; Secondary 15A42, 47A30.

 $Key\ words\ and\ phrases.$ Young inequality, numerical radius, spectral norm, strictly positive matrix.

called the Schur multiplier operator and defined by $S_A(X) := A \circ X$. The induced norm of S_A with respect to all unitarily invariant norm will be denoted by

$$|||S_A||| = \sup_{X \neq 0} \frac{|||S_A(X)|||}{||X|||} = \sup_{X \neq 0} \frac{|||A \circ X|||}{|||X|||},$$

and the induced norm of S_A with respect to numerical radius norm will be denoted by

$$\|S_A\|_{\omega} = \sup_{X \neq 0} \frac{\omega(S_A(X))}{\omega(X)} = \sup_{X \neq 0} \frac{\omega(A \circ X)}{\omega(X)}$$

For positive real numbers a, b, the classical Young inequality says that if p, q > 1 such that 1/p + 1/q = 1, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q},\tag{1.1}$$

the another form of the inequality for positive real numbers a, b is in the following form:

$$a^{\nu}b^{1-\nu} \le \nu a + (1-\nu)b, \ 0 \le \nu \le 1.$$
 (1.2)

For more details about these inequalities, their refinements and associated norm inequalities with their history of origin, the reader may refer to [2, 5, 6, 8, 9]. In [9] we showed that, if $A, B \ge 0$, and $X \in \mathbb{M}_n$. Then the inequality $\omega(AXB) \le \omega(\frac{A^p}{p}X + X\frac{B^q}{q})$ does not holds in general as follows:

Theorem 1.1. [9, Theorem 2.3], Let p > q > 1 such that 1/p + 1/q = 1 and let $A \in \mathbb{M}_n$ be a non scalar strictly positive matrix such that $1 \in \sigma(A)$, then there exists $X \in \mathbb{M}_n$ such that

$$\omega(AXA) > \omega(\frac{A^p}{p}X + X\frac{A^q}{q}). \tag{1.3}$$

Also, in [10] we showed the following inequality for the numerical radius:

Theorem 1.2. Let $A \in \mathbb{M}_n$ be a positive matrix. Then for all $X \in \mathbb{M}_n$, we have

$$\omega(AXA) \le \frac{1}{2}\omega(A^2X + XA^2). \tag{1.4}$$

2. Main results

Bhatia and Kittaneh in 1990 [7] established a matrix mean inequality as follows:

$$|||A^*B||| \le \frac{1}{2} |||A^*A + B^*B|||, \qquad (2.1)$$

for matrices $A, B \in \mathbb{M}_n$.

In [5] a generalization of (2.1) was proved, for all $X \in \mathbb{M}_n$,

$$|||A^*XB||| \le \frac{1}{2} |||AA^*X + XBB^*|||.$$
(2.2)

Ando in 1995 [2] obtained a matrix Young inequality:

$$|||AB||| \le \left| \left| \left| \frac{A^p}{p} + \frac{B^q}{q} \right| \right| \right|, \qquad (2.3)$$

for p, q > 1 with 1/p + 1/q = 1 and positive matrices A, B. Also, in [1], the author pointed out that the matrix Young inequality $|||AXB||| \le |||\frac{1}{p}A^pX + \frac{1}{q}XB^q|||$ is not valid for the spectral norm ||.||.

Here, we clarify it. Ando and Okubo in 1991, [4], proved the following theorem [4, Theorem 1 and Corollary 3]:

Theorem 2.1. (Haagerup theorem) For $A \in \mathbb{M}_n$ the following assertions are equivalent:

(i) $||S_A|| \le 1$. (ii) There is $0 \le R_1, R_2 \in \mathbb{M}_n$ such that $\begin{bmatrix} R_1 & A \\ A^* & R_2 \end{bmatrix} \ge 0, \quad R_1 \circ I \le I \quad and \quad R_2 \circ I \le I$. Moreover, if A is Hermitian, then $||S_A|| = ||S_A||_{\omega}$.

||JA|| = |

Lemma 2.2. Let $0 < \nu < 1$ be a real number such that $\nu \neq \frac{1}{2}$ and a > 0. Then

$$\frac{a^{\nu}}{\nu a + (1 - \nu)} = \frac{a^{1 - \nu}}{\nu + (1 - \nu)a}$$

holds if and only if a = 1.

Proof. Assume if possible there exists a > 0 and $a \neq 1$, such that

$$\frac{a^{\nu}}{\nu a + (1 - \nu)} = \frac{a^{1 - \nu}}{\nu + (1 - \nu)a}.$$
(2.4)

Then (2.4) is equivalent to

$$(1-\nu)a^{1+\nu} + \nu a^{\nu} - \nu a^{2-\nu} - (1-\nu)a^{1-\nu} = 0.$$
(2.5)

Now let $\nu = \frac{1}{p}$, where $p > 1, p \neq 2$ and let

$$f(x) = \frac{1}{p} \left((p-1)x^{\frac{p+1}{p}} + x^{\frac{1}{p}} - x^{\frac{2p-1}{p}} - (p-1)x^{\frac{p-1}{p}} \right).$$

Now replace x with x^p we have

$$k(x) = \frac{1}{p} \left((p-1)x^{p+1} + x - x^{2p-1} - (p-1)x^{p-1} \right) = \frac{xk_1(x)}{p}$$

By the assumption and by the Rolle's theorem, the (2.5) is equivalent to

$$k_1(x) = (p-1)x^p - x^{2p-2} - (p-1)x^{p-2} + 1$$

has at least one positive root $r_1 \neq 1$. Now, apply the Rolle's theorem for

$$k_2(x) = k'_1(x) = (p-1)x^{p-3} \left(px^2 - 2x^p - (p-2) \right) = (p-1)x^{p-3}k_3(x),$$

we can say that the function

$$k'_3(x) = 2px(1 - x^{p-2})$$

has at least one positive root $r_2 \neq 1$. That is a contradiction.

Now, in the following theorem, we will show that if $A, B \ge 0$, and $X \in \mathbb{M}_n$, then $|||A^{\nu}XB^{1-\nu}||| \le |||\nu AX + (1-\nu)XB|||$ does not holds in general.

Theorem 2.3. Let $0 < \nu < 1$ be a real number such that $\nu \neq \frac{1}{2}$ and $A \in \mathbb{M}_n$ be a non scalar strictly positive matrix. Then there exists $X \in \mathbb{M}_n$ such that

$$||A^{\nu}XA^{1-\nu}|| > ||\nu AX + (1-\nu)XA||.$$
(2.6)

Proof. Without loss of generality we assume that $A = \text{diag}(a_1, a_2, a_3, \ldots, a_n)$ where $a_1 = 1$ and $a_2 \neq 1$. By Lemma 2.2, it is readily seen that

$$\frac{a_2^{\nu}}{\nu a_2 + (1-\nu)} \neq \frac{a_2^{1-\nu}}{\nu + (1-\nu)a_2}.$$
(2.7)

Assume if possible for all $X \in \mathbb{M}_n$,

$$\|A^{\nu}XA^{1-\nu}\| \le \|\nu AX + (1-\nu)XA\|.$$
(2.8)

Now, let $C = (c_{ij})$ and $E = (e_{ij})$ be $n \times n$ matrices, where $c_{ij} = \nu a_i + (1 - \nu)a_j$, and $e_{ij} = a_i^{\nu} a_j^{1-\nu}$. Then we rewrite (2.8) in the following form

$$||E \circ X|| \le ||C \circ X||, \quad (X \in \mathbb{M}_n).$$
(2.9)

Let D be the entrywise inverse of $C(C \circ D = J)$. We replace X by $(D \circ X)$ in (2.9), then

$$\|(E \circ D) \circ X\| \le \|X\|, \quad (X \in \mathbb{M}_n).$$

$$(2.10)$$

Let $F := (E \circ D) = (f_{ij})$. Then $||F \circ X|| \le ||X||$ for all $X \in \mathbb{M}_n$ and hence,

$$||S_F|| \le 1.$$
 (2.11)

Now by Haagerup theorem , there exist $n \times n$ matrices $X = (x_{ij}), Y = (y_{ij}) \ge 0$ with $0 \le x_{ii}, y_{ii} \le 1$, $(1 \le i \le n)$, such that

$$\left[\begin{array}{cc} X & F \\ F^* & Y \end{array}\right] \ge 0.$$

By considering $\tilde{X} := (\tilde{x}_{ij})$ such that $\tilde{x}_{ij} = x_{ij}$ if $i \neq j$ and $\tilde{x}_{ii} = 1$, and $\tilde{Y} := (\tilde{y}_{ij})$ such that $\tilde{y}_{ij} = y_{ij}$ if $i \neq j$ and $\tilde{y}_{ii} = 1$, we obtain that

$$\begin{bmatrix} \tilde{X} & F \\ F^* & \tilde{Y} \end{bmatrix} \ge \begin{bmatrix} X & F \\ F^* & Y \end{bmatrix} \ge 0.$$

Since, any principal submatrix of the above matrix is positive, we have

$$\begin{bmatrix} 1 & x & 1 & f_{12} \\ \bar{x} & 1 & f_{21} & 1 \\ 1 & f_{21} & 1 & y \\ f_{12} & 1 & \bar{y} & 1 \end{bmatrix} \ge 0 \quad where \quad x := \tilde{x}_{12} = x_{12}, y := \tilde{y}_{12} = y_{12}.$$

By using the Schur complement Theorem [5, Theorem 1.3.3], we obtain that

$$\begin{bmatrix} 1 & f_{21} & 1 \\ f_{21} & 1 & y \\ 1 & \bar{y} & 1 \end{bmatrix} - \begin{bmatrix} \bar{x} \\ 1 \\ f_{12} \end{bmatrix} \begin{bmatrix} x & 1 & f_{12} \end{bmatrix} = \begin{bmatrix} 1 - |x|^2 & f_{21} - \bar{x} & 1 - \bar{x}f_{12} \\ f_{21} - x & 0 & y - f_{12} \\ 1 - xf_{12} & \bar{y} - f_{12} & 1 - f_{12}^2 \end{bmatrix} \ge 0.$$

Since the determinant of principle submatrices of the above matrix is positive, we have $f_{21} - x = y - f_{12} = 0$ and hence

$$B = \begin{bmatrix} 1 & f_{21} & 1 & f_{12} \\ f_{21} & 1 & f_{21} & 1 \\ 1 & f_{21} & 1 & f_{12} \\ f_{12} & 1 & f_{12} & 1 \end{bmatrix} \ge 0$$

Let $f(\lambda)$ be the characteristic polynomial of B as follows

$$f(\lambda) = \lambda^4 - 4\lambda^3 + (4 - 2f_{12}^2 - 2f_{21}^2)\lambda^2 + (-4f_{12}f_{21} + 2f_{12}^2 + 2f_{21}^2)\lambda.$$

By (2.7) we have $f_{21} \neq f_{12}$, we obtain that the coefficient of λ is positive and hence $f(\lambda)$ has one negative root, which is a contradiction with $B \geq 0$.

Corollary 2.4. Let p > q > 1 such that 1/p + 1/q = 1 and $n \in \mathbb{N}$. Then there exist $A, B, X \in \mathbb{M}_n$ such that A, B > 0 and

$$\|AXB\| > \left\|\frac{A^p}{p}X + X\frac{B^q}{q}\right\|.$$

Lemma 2.5. [4] For all $A \in \mathbb{M}_n$

$$\|S_A\| \le \|S_A\|_{\omega}$$

Now, by Lemma 2.5 and Theorem 2.3 we can obtain the following theorem that shows the another form of the Young inequality for the numerical radius does not holds.

Theorem 2.6. Let $0 < \nu < 1$ be a real number such that $\nu \neq \frac{1}{2}$ and $A \in \mathbb{M}_n$ be a non scalar strictly positive matrix. Then there exists $X \in \mathbb{M}_n$ such that

$$\omega(A^{\nu}XA^{1-\nu}) > \omega(\nu AX + (1-\nu)XA).$$

Proof. Without loss of generality we assume that $A = \text{diag}(a_1, a_2, a_3, \ldots, a_n)$. We assume if possible for all $A, X \in \mathbb{M}_n$ such that A is a non-scalar strictly positive matrix, then

$$\omega(A^{\nu}XA^{1-\nu}) \le \omega(\nu AX + (1-\nu)XA).$$

If we define

$$F := \left[\frac{a_i^{\nu} a_j^{1-\nu}}{\nu a_i + (1-\nu)a_j}\right] \in \mathbb{M}_n,$$

then easy computations show that $||S_F||_{\omega} \leq 1$. Now by Lemma 2.5 we have $||S_F|| \leq 1$ and hence $||A^{\nu}XA^{1-\nu}|| \leq ||\nu AX + (1-\nu)XA||$, which is a contradiction by Theorem 2.3.

Corollary 2.7. Let p > q > 1 such that 1/p + 1/q = 1 and $n \in \mathbb{N}$. Then there exist $A, B, X \in \mathbb{M}_n$ such that A, B > 0 and

$$\omega(AXB) > \omega(\frac{A^p}{p}X + X\frac{B^q}{q}).$$

Remark 2.8. By the inequality (2.2) and Theorem 1.2, the condition $\nu \neq \frac{1}{2}$ in the Theorem 2.3 and Theorem 2.6 are essential.

Theorem 2.9. Let p > q > 1 such that 1/p + 1/q = 1. Then there is $A \in \mathbb{M}_n$ such that A > 0 and for all $X \in \mathbb{M}_n$

$$|||AXA||| \le \left|\left|\left|\frac{A^p}{p}X + X\frac{A^q}{q}\right|\right|\right|$$

if and only if there is

$$F = \begin{bmatrix} a_i a_j \\ \frac{a_i^p}{p} + \frac{a_j^q}{q} \end{bmatrix} \in \mathbb{M}_n,$$

$$and |||S_F||| \le 1$$

such that $a_i > 0(i = 1, ..., n)$ and $|||S_F||| \le 1$.

Moreover, if A is non scalar and $1 \in \sigma(A)$, then $||S_F||_{\omega} > |||S_F|||$.

Proof. Without loss of generality, assume that

$$A = \text{diag}(a_1, a_2, a_3, \dots, a_n), \quad a_i > 0, \ (i = 1, \dots, n)$$

Now, let $C = [c_{ij}]$ and $E = [e_{ij}]$ be $n \times n$ matrices, where

$$c_{ij} = \frac{a_i^p}{p} + \frac{a_j^q}{q}, \quad e_{ij} = a_i a_j.$$

Then we have the following form

$$|||E \circ X||| \le |||C \circ X|||, \qquad (X \in \mathbb{M}_n).$$
(2.12)

Let D be the entrywise inverse of $C(C \circ D = J)$. We replace X by $(D \circ X)$ in (2.12), then

$$|||(E \circ D) \circ X||| \le |||X|||, \qquad (X \in \mathbb{M}_n).$$

Let $F := (E \circ D) = (f_{ij})$. Then, we obtain that

$$|||F \circ X||| \le |||X|||, \qquad (X \in \mathbb{M}_n)$$

and hence, $|||S_F||| \leq 1$. It is enough to show that if A is non-scalar and $1 \in \sigma(A)$, then $||S_F||_{\omega} > 1$. Assume if possible $||S_F||_{\omega} \leq 1$. Then we have for all $X \in \mathbb{M}_n$,

$$\omega(AXA) \le \omega(\frac{A^p}{p}X + X\frac{A^q}{q})$$

That is a contradiction by Theorem 1.1.

References

- T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl. 199 (1994), 17–67.
- 2. T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995), 33-38.
- T. Ando, R.A. Horn and C.R. Johnson, The singular values of a Hadamard product: A basic inequality, Linear Multilinear Algebra 21 (1987), 345–365.
- T. Ando and K. Okubo, *Induced norms of the Schur multiplication operators*, Linear Algebra Appl. 147(1991), 181–199.
- 5. R. Bhatia, *Positive Definite Matrices*, Princeton University Press, 2007.
- R. Bhatia and C. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14(1993), 132–136.
- R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (1990), 272–277.

- C. Conde, Young type inequalities for positive operators, Ann. Funct. Anal. 2 (2013), no. 2, 144–152.
- 9. A. Salemi and A. Sheikh Hosseini, *Matrix Young numerical radius inequalities*, Math. Inequal. Appl. **16** (2013), no. 3, 783–791.
- 10. A. Salemi and A. Sheikh Hosseini, Numerical radius and operator norm inequalities, preprint.
- 11. X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl. 20 (1998) 466–470.
- 12. X. Zhan, Matrix Inequalities (Lecture notes in mathematics), 1790, Springer, 2002.

DEPARTMENT OF MATHEMATICS, SHAHID BAHONAR UNIVERSITY, KERMAN, IRAN. E-mail address: salemi@mail.uk.ac.ir E-mail address: alemehsheikhhoseiny@yahoo.com