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Abstract. In this paper, by using Mond-Pečarić method we provide some
inequalities for connections of positive definite matrices. Next, we discuss
specifications of the obtained results for some special cases. In doing so, we
use α-arithmetic, α-geometric and α-harmonic operator means.

1. Introduction

Throughout Mn(C) denotes the C∗-algebra of n × n complex matrices. For
matrices X,Y ∈ Mn(C), the notation Y ≤ X (resp., Y < X) means that X−Y is
positive semidefinite (resp., positive definite). A linear map Φ : Mn(C) → Mk(C)
is said to be positive if 0 ≤ Φ(X) for 0 ≤ X ∈ Mn(C). If in addition 0 < Φ(X)
for 0 < X ∈ Mn(C) then Φ is said to be strictly positive.

A real function h : J → R defined on interval J ⊂ R is called an operator
monotone function, if for all Hermitian matrices A and B (of the same order)
with spectra in J ,

A ≤ B implies h(A) ≤ h(B)

(see [4, p. 112]).
For α ∈ [0, 1], the α-arithmetic mean of n× n positive definite matrices A and

B is defined as follows

A∇αB = (1− α)A + αB. (1.1)

For α = 1
2

one obtains the arithmetic mean A∇B = 1
2
(A + B).
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For α ∈ [0, 1], the α-geometric mean of n× n positive definite matrices A and
B is defined by

A]αB = A1/2(A−1/2BA−1/2)αA1/2 (1.2)

(see [9, 15]). In particular, for α = 1
2

equation (1.2) defines the geometric mean
of A and B defined by

A]B = A1/2(A−1/2BA−1/2)1/2A1/2

(see [2, 10, 15]).
For α ∈ [0, 1], the α-harmonic mean of n× n positive definite matrices A and

B is defined by
A !αB = ((1− α)A−1 + αB−1)−1. (1.3)

For α = 1
2

we obtain the harmonic mean of A and B given by

A !B =

(
1

2
A−1 +

1

2
B−1

)−1

(see [11]).
Ando’s inequality [1] asserts that if Φ : Mn(C) → Mk(C) is a positive linear

map and A, B ∈ Mn(C) are positive definite then

Φ(A]αB) ≤ Φ(A)]αΦ(B). (1.4)

Lee [10] established the following reverse of inequality (1.4) with α = 1
2

(see
also [12]).

Theorem A [10, Theorem 4] Let A and B be n× n positive definite matrices.
Assume Φ : Mn(C) → Mk(C) is a positive linear map.

If mA ≤ B ≤ MA with positive scalars m, M then

Φ(A)]Φ(B) ≤
√

M +
√

m

2 4
√

mM
Φ(A]B).

Recently, Seo [15] showed difference and ratio type reverses of Ando’s inequality
(1.4), as follows.

Theorem B [15, Theorem 1] Let A and B be n× n positive definite matrices
such that mA ≤ B ≤ MA for some scalars 0 < m < M and let Φ : Mn(C) →
Mk(C) be a positive linear map.

Then for each α ∈ (0, 1)

Φ(A)]αΦ(B)− Φ(A]αB) ≤ −C(m,M,α)Φ(A),

where the Kantorovich constant for the difference C(m,M,α) is defined by

C(m, M, α) = (α− 1)

(
Mα −mα

α(M −m)

) α
α−1

+
Mmα −mMα

M −m
.

Theorem C [15, Theorem 3] Let A and B be n× n positive definite matrices
such that mA ≤ B ≤ MA for some scalars 0 < m < M and let Φ : Mn(C) →
Mk(C) be a positive linear map.

Then for each α ∈ (0, 1)

Φ(A)]αΦ(B) ≤ K(m, M, α)−1Φ(A]αB),
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where the generalized Kantorovich constant K(m,M,α) is defined by

K(m,M,α) =
mMα −Mmα

(α− 1)(M −m)

(
α− 1

α

Mα −mα

mMα −Mmα

)α

.

Theorem D [8, Theorem 2.1] Let A and B be n× n positive definite matrices
such that 0 < b1 ≤ A ≤ a1 and 0 < b2 ≤ B ≤ a2 for some scalars 0 < bi < ai,
i = 1, 2.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map, then for any operator
mean σ with the representing function f , the following double inequality holds:

ω1−α (Φ(A)]αΦ(B)) ≤ (ωΦ(A))∇αΦ(B) ≤ α

µ
Φ(AσB), (1.5)

where µ =
a1b1(f(b2a−1

1 )−f(a2b−1
1 ))

b1b2−a1a2
, ν =

a1a2f(b2a−1
1 )−b1b2f(a2b−1

1 )

a1a2−b1b2
, ω = αν

(1−α)µ
and α ∈

(0, 1).
The purpose of this paper is to demonstrate a unified framework including

Theorems A, B, C and D as special cases. Following the idea of Mond-Pečarić
method [5, 11], in our approach we use a connection σf induced by a contin-
uous function f : J → R. We focus on double inequalities as in (1.5) (cf. [6,
Theorem 3.1]).

In Section 2, we formulate conditions for four functions f1, f2, g1, g2, under
which the following double inequality holds (see Theorem 2.3):

cg2 Φ(A)σf2Φ(B) ≤ Φ(Aσg2B) ≤ Φ(Aσg2g−1
1

(Aσf1B)), (1.6)

with suitable constant cg2 (see (2.8)). Here the crucial key is the behaviour of the
superposition g2g

−1
1 . By substituting αt+1−α, tα and (αt−1 +1−α)−1 in place

of g2g
−1
1 (t), we get variants of the above double inequality (1.6) for α-arithmetic,

α-geometric and α-harmonic operator means, respectively. Also, some further
substitutions for f1, f2, g2 are possible. Thus we can obtain some old and new
results as special cases of (1.6) (see Theorem 2.9 and Corollaries 2.6-2.18).

2. Results

Let f : J → R be a continuous function on an interval J ⊂ R. The f -connection
of an n×n positive definite matrix A and an n×n hermitian matrix B such that
the spectrum Sp (A−1/2BA−1/2) ⊂ J , is defined by

AσfB = A1/2f(A−1/2BA−1/2)A1/2 (2.1)

(cf. [7, p. 637], [9]).
Note that the operator means (1.1), (1.2) and (1.3) are of the form (2.1) with

the functions αt + 1− α, tα and (αt−1 + 1− α)−1, respectively.
For a function f : J → R+ defined on an interval J = [m,M ] with m < M , we

define

af = f(M)−f(m)
M−m

, bf = Mf(m)−mf(M)
M−m

and cf = min
t∈J

af t+bf

f(t)
(2.2)

(see [11]).
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Lemma 2.1. (See [7, Theorem 1], cf. also [11, Corollary 3.4].) Let A and B be
n× n positive definite matrices such that mA ≤ B ≤ MA with 0 < m < M .

If σf is a connection with operator monotone concave function f > 0 and Φ is
a strictly positive linear map, then

cf Φ(A)σfΦ(B) ≤ Φ(AσfB), (2.3)

where cf is defined by (2.2).

Remark 2.2. (i): For all positive linear maps Φ, the equality

Φ(A)σfΦ(B) = Φ(AσfB) (2.4)

holds for the arithmetic operator mean σf = ∇α, α ∈ [0, 1].
(ii): In general, for other connections σf , (2.4) can hold for some specific Φ.

For example, taking σf = ]α, α ∈ [0, 1], and Φ(·) = U∗(·)U with unitary
U , we have

U∗(A]αB)U = (U∗AU)]α(U∗BU),

which is of form (2.4).
(iii): Clearly, if the equality (2.4) is met (e.g., if f is affine), then (2.3) holds

with cf = 1 (see (2.20), (2.30)-(2.31)).

Our first result is motivated by [8, Theorem 2.1] (see Theorem D in Section 1).

Theorem 2.3. Let f1, f2, g1, g2 be continuous real functions defined on an interval
J = [m,M ] ⊂ R. Assume that g2 > 0 and g2g

−1
1 are operator monotone on

intervals J and J ′ = g1(J), respectively, with invertible g1 and concave g2. Let
A and B be n × n positive definite matrices such that mA ≤ B ≤ MA with
0 < m < M .

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and

g1(t) ≤ f1(t) and f2(t) ≤ g2(t) for t ∈ J , (2.5)

max
t∈J

g1(t) = max
t∈J

f1(t), (2.6)

then
cg2 Φ(A)σf2Φ(B) ≤ Φ(Aσg2B) ≤ Φ(Aσg2g−1

1
(Aσf1B)), (2.7)

where cg2 is defined by

ag2 = g2(M)−g2(m)
M−m

, bg2 = Mg2(m)−mg2(M)
M−m

and cg2 = min
t∈J

ag2 t+bg2

g2(t)
. (2.8)

Proof. Since mA ≤ B ≤ MA, we obtain mΦ(A) ≤ Φ(B) ≤ MΦ(A) by the
positivity of Φ. In consequence, by the strict positivity of Φ, we get m ≤ W ≤ M
and Sp (W ) ⊂ [m, M ] for W = Φ(A)−1/2Φ(B)Φ(A)−1/2.

It follows from the second inequality of (2.5) that

f2((Φ(A))−1/2Φ(B)(Φ(A))−1/2) ≤ g2((Φ(A))−1/2Φ(B)(Φ(A))−1/2),

and further
Φ(A)σf2Φ(B) ≤ Φ(A)σg2Φ(B). (2.9)

According to Lemma 2.1 applied to operator monotone function g2, we have

cg2 Φ(A)σg2Φ(B) ≤ Φ(Aσg2B).
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This and (2.9) imply

cg2 Φ(A)σf2Φ(B) ≤ Φ(Aσg2B), (2.10)

proving the left-hand side inequality of (2.7).
It follows that for h = g2 ◦ g−1

1 ,

Aσg2B = Aσh◦g1B = Aσh(Aσg1B), (2.11)

where ◦ means superposition. In fact, we have

Aσh◦g1B = A1/2(h ◦ g1)(A
−1/2BA−1/2)A1/2 = A1/2h(g1(A

−1/2BA−1/2))A1/2

= A1/2h(A−1/2A1/2g1(A
−1/2BA−1/2)A1/2A−1/2)A1/2

= A1/2h(A−1/2(Aσg1B)A−1/2)A1/2 = Aσh(Aσg1B).

On the other hand, it follows from the first inequality of (2.5) that

g1(A
−1/2BA−1/2) ≤ f1(A

−1/2BA−1/2)

and next
Aσg1B ≤ Aσf1B. (2.12)

It is seen from (2.5) that

min
t∈J

g1(t) ≤ min
t∈J

f1(t),

which together with (2.6) gives

f1(J) ⊂ g1(J). (2.13)

Denote
Z0 = A−1/2(Aσg1B)A−1/2 = g1(A

−1/2BA−1/2)

and
W0 = A−1/2(Aσf1B)A−1/2 = f1(A

−1/2BA−1/2).

Then Sp (Z0) ⊂ g1(J) and Sp (W0) ⊂ f1(J), because Sp (A−1/2BA−1/2) ⊂ J .
Since h = g2 ◦ g−1

1 is operator monotone on J ′ = g1(J), from (2.12) and (2.13)
we obtain

h(A−1/2(Aσg1B)A−1/2) ≤ h(A−1/2(Aσf1B)A−1/2)

and next
Aσh(Aσg1B) ≤ Aσh(Aσf1B). (2.14)

Therefore, by (2.11) and (2.14), we deduce that

Φ(Aσg2B) ≤ Φ(Aσg2g−1
1

(Aσf1B)). (2.15)

Now, by combining (2.10) and (2.15), we conclude that (2.7) holds true. �

Remark 2.4. In Theorem 2.3, if in addition f1 and g1 are nondecreasing on [m, M ],
then condition (2.6) simplifies to

g1(M) = f1(M).

Likewise, if f1 and g1 are nonincreasing on [m, M ], then (2.6) means

g1(m) = f1(m).

Corollary 2.5. Under the assumptions of Theorem 2.3.
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(i): If g2g
−1
1 is an affine function, i.e., g2g

−1
1 (s) = as + b for s ∈ g1(J),

a > 0, then (2.7) reduces to

cg2 Φ(A)σf2Φ(B) ≤ Φ(Aσg2B) ≤ a Φ(Aσf1B) + b Φ(A). (2.16)

(ii): If g2g
−1
1 is a power function, i.e., g2g

−1
1 (s) = sα for s ∈ g1(J), α ∈

[0, 1], then (2.7) reduces to

cg2 Φ(A)σf2Φ(B) ≤ Φ(Aσg2B) ≤ Φ(Aσ]α(Aσf1B)). (2.17)

(iii): If g2g
−1
1 is an inverse function of the form g2g

−1
1 (s) = (αs−1 +1−α)−1

for s ∈ g1(J), α ∈ [0, 1], then (2.7) reduces to

cg2 Φ(A)σf2Φ(B) ≤ Φ(Aσg2B) ≤ Φ([(1− α)A−1 + α(Aσf1B)−1]−1). (2.18)

Proof. (i). To show (2.16), observe that a > 0 implies the operator monotonicity
of g2g

−1
1 (s) = as + b (see [4, p. 113]).

It is not hard to verify that

Aσg2g−1
1

(Aσf1B) = a Aσf1B + b A.

Hence
Φ(Aσg2g−1

1
(Aσf1B)) = a Φ(Aσf1B) + b Φ(A).

Now, it is sufficient to apply (2.7).
(ii). To see (2.17), it is enough to use (2.7) together with the operator mono-

tonicity of g2g
−1
1 (s) = sα with α ∈ [0, 1] (see [4, p. 115]).

(iii). Finally, (2.18) is an easy consequence (2.7) for the operator monotone
function g2g

−1
1 (s) = (αs−1 + 1− α)−1 with α ∈ [0, 1] (see [4, p. 114]). �

The next result develops some ideas in [12, 14].

Corollary 2.6. Let f1, f2, g be continuous real functions defined on an interval
J = [m,M ] with invertible operator monotone concave g > 0 on J . Let A and B
be n× n positive definite matrices such that mA ≤ B ≤ MA.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and

f2(t) ≤ g(t) ≤ f1(t) for t ∈ J ,

max
t∈J

g(t) = max
t∈J

f1(t),

then
cg Φ(A)σf2Φ(B) ≤ Φ(AσgB) ≤ Φ(Aσf1B), (2.19)

where cg is defined by (2.8) for g2 = g.
In particular, if g is an affine function, i.e., g(t) = at + b for t ∈ J , a > 0,

then (2.19) reduces to

Φ(A)σf2Φ(B) ≤ bΦ(A) + aΦ(B) ≤ Φ(Aσf1B). (2.20)

Proof. It is enough to apply Theorem 2.3 with g1 = g2 = g. Then the super-
position g2 ◦ g−1

1 is the identity function s → s, s ∈ g(J). So, (2.16) reads as
(2.19).

To see (2.20), use (2.19) with cg = 1 (see Remark 2.2). �

Remark 2.7. The right-hand inequality in (2.20) can be used to obtain Diaz-
Metcalf type inequalities [8, 14].
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Remark 2.8. A specialization of Corollary 2.6 leads to [8, Theorem 2.1] (see
Theorem D in Section 1).

Namely, it is easy to verify that the spectrum Sp (Z) ⊂ J , where Z = A−1/2BA−1/2

and J = [m, M ] with m = b2
a1

and M = a2

b1
.

By weighted arithmetic-geometric inequality (see [8])

tαω1−α ≤ αt + (1− α)ω for α ∈ [0, 1] and t > 0, ω > 0. (2.21)

Since σ = σf with operator monotone function f on [0,∞), f must be strictly
increasing and concave. Hence

µt + ν ≤ f(t) for t ∈ J .

As a consequence,

αt + (1− α)ω ≤ α

µ
f(t) for t ∈ J . (2.22)

By setting

f1(t) =
α

µ
f(t), f2(t) = tαω1−α, g(t) = (1− α)ω + αt, t ∈ J ,

we see that conditions (2.5)-(2.6) are satisfied (cf. (2.21)-(2.22) and Remark 2.4).
Moreover,

σf2 = ]α and σg = ∇α.

Now, it is not hard to check that inequalities (2.20) in Corollary 2.6 applied to
the matrices ωA and B yield (1.5), as required.

The special case of Theorem 2.3 for f1 = f2 = f gives the following result.

Theorem 2.9. Let f, g1, g2 be continuous real functions defined on an interval
J = [m, M ]. Assume g2 > 0 and g2g

−1
1 are operator monotone on J and J ′ =

g1(J), respectively, with invertible g1 and concave g2. Let A and B be n × n
positive definite matrices such that mA ≤ B ≤ MA.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and

g1(t) ≤ f(t) ≤ g2(t) for t ∈ J ,

max
t∈J

g1(t) = max
t∈J

f(t),

then
cg2 Φ(A)σfΦ(B) ≤ Φ(Aσg2B) ≤ Φ(Aσg2g−1

1
(AσfB)), (2.23)

where cg2 > 0 is given by (2.8).

Proof. Apply Theorem 2.3 for f1 = f2 = f . �

Corollary 2.10. Under the assumptions of Theorem 2.9.

(i): If g2g
−1
1 is an affine function, i.e., g2g

−1
1 (s) = as + b for s ∈ g1(J),

a > 0, then (2.23) reduces to

cg2 Φ(A)σfΦ(B) ≤ Φ(Aσg2B) ≤ a Φ(AσfB) + b Φ(A). (2.24)

(ii): If g2g
−1
1 is a power function, i.e., g2g

−1
1 (s) = sα for s ∈ g1(J), α ∈

[0, 1], then (2.23) reduces to

cg2 Φ(A)σfΦ(B) ≤ Φ(Aσg2B) ≤ Φ(Aσ]α(AσfB)). (2.25)
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(iii): If g2g
−1
1 is an inverse function of the form g2g

−1
1 (s) = (αs−1 +1−α)−1

for s ∈ g1(J), α ∈ [0, 1], then (2.23) reduces to

cg2 Φ(A)σfΦ(B) ≤ Φ(Aσg2B) ≤ Φ([(1− α)A−1 + α(Aσf1B)−1]−1). (2.26)

Proof. Apply Theorem 2.9. �

Remark 2.11. (i): It is worth emphasing that the above inequality (2.24)
can be viewed as a reverse inequality of Aujla and Vasudeva [3]:

Φ(AσfB) ≤ Φ(A)σfΦ(B)

for an operator monotone function f : (0,∞) → (0,∞).
(ii): In the case f(t) = t1/2 inequality (2.24) is similar to that in [11, Corol-

lary 3.7].

By employing the second part of Theorem 2.9 for some special functions g1 and
g2 we obtain the following.

Corollary 2.12. Let f : J → R and g : J → R be continuous real functions with
interval J = [m, M ] and invertible operator monotone concave g on J . Let A and
B be n× n positive definite matrices such that mA ≤ B ≤ MA.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and

a1g(t) + b1 ≤ f(t) ≤ a2g(t) + b2 for t ∈ J , a1 > 0, a2 > 0,

max
t∈J

(a1g(t) + b1) = max
t∈J

f(t),

then

cg2 Φ(A)σfΦ(B) ≤ a2Φ(AσgB) + b2Φ(A) ≤ a2

a1

Φ(AσfB) +

(
b2 −

a2

a1

b1

)
Φ(A),

(2.27)
where cg2 > 0 is given by (2.8) with g2 = a2g + b2 > 0.

If in addition det

(
a1 b1

a2 b2

)
= 0 then (2.27) becomes

cg2 Φ(A)σfΦ(B) ≤ a2Φ(AσgB) + b2Φ(A) ≤ a2

a1

Φ(AσfB). (2.28)

Proof. By putting g1(t) = a1g(t) + b1 and g2(t) = a2g(t) + b2 for t ∈ J , we find
that g2g

−1
1 : g1(J) → R is an affine function, i.e.,

g2g
−1
1 (s) =

a2

a1

s + b2 −
a2

a1

b1 for s ∈ g1(J). (2.29)

Making use of (2.29) and Theorem 2.9, eq. (2.24), with a = a2

a1
and b = b2− a2

a1
b1

yields (2.27).
Inequality (2.28) is an easy consequence of (2.27). �

The special case of Corollary 2.12 for g(t) = t, t ∈ J , leads to some results of
Kaur et al. [7, Theorems 1 and 2].
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Corollary 2.13 (Cf. Kaur et al. [7, Theorems 1 and 2]). Let f : J → R be a
continuous real function with interval J = [m, M ]. Let A and B be n×n positive
definite matrices such that mA ≤ B ≤ MA.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map, and

a1t + b1 ≤ f(t) ≤ a2t + b2 for t ∈ J , a1 > 0, a2 > 0,

a1M + b1 = max
t∈J

f(t),

then

Φ(A)σfΦ(B) ≤ a2Φ(B) + b2Φ(A) ≤ a2

a1

Φ(AσfB) +

(
b2 −

a2

a1

b1

)
Φ(A). (2.30)

If in addition det

(
a1 b1

a2 b2

)
= 0 then

Φ(A)σfΦ(B) ≤ a2Φ(B) + b2Φ(A) ≤ a2

a1

Φ(AσfB). (2.31)

Proof. Use Corollary 2.12, eq. (2.27) and (2.28) with cg2 = 1 (see Remark 2.2). �

Remark 2.14. (i): With a1 = a2, inequality (2.31) can be restated as

Φ(A)σfΦ(B) ≤ a2Φ(B) + b2Φ(A) ≤ Φ(AσfB).

This can be obtained for an operator monotone (concave) function f as
in the Mond–Pečarić method [5, 11].

(ii): Inequality (2.30) with a1 = a2 and f(t) = tα, σf = ]α, 0 ≤ α ≤ 1, is of
type as in Theorem B (see Section 1).

(iii): When a1 6= a2 and f(t) = tα, σf = ]α, 0 ≤ α ≤ 1, then (2.31) leads to
Theorem C.

(iv): With suitable choosen a1 6= a2 and σf = ]1/2, f(t) = t1/2, inequality
(2.31) can be used to derive Cassels, Kantorovich, Greub-Rheinbold type
inequalities, etc. (cf. Theorem A, see also [12, 13, 14] and references
therein).

We now consider consequences of Theorem 2.9 for case of geometric mean.

Corollary 2.15. Let f : J → R and g : J → (0, 1] be continuous real functions
with interval J = [m, M ] and invertible operator monotone g. Let A and B be
n× n positive definite matrices such that mA ≤ B ≤ MA.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and, 0 < α ≤ β < 1,

gβ(t) ≤ f(t) ≤ gα(t) for t ∈ J ,

max
t∈J

gβ(t) = max
t∈J

f(t),

then

cg2 Φ(A)σfΦ(B) ≤ Φ(AσgαB) ≤ Φ(A]α
β
(AσfB)), (2.32)

where cg2 > 0 is given by (2.8) with concave g2 = gα.
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Proof. By substituting g1(t) = gβ(t) and g2(t) = gα(t) for t ∈ J , we have

g2g
−1
1 = (·)α ◦ g ◦ g−1 ◦ (·)

1
β = (·)

α
β ,

where the symbol ◦ stands for superposition. Thus g2g
−1
1 (s) = s

α
β , s ∈ g1(J), is

an operator monotone function. For this reason, Theorem 2.9, eq. (2.25), forces
(2.32). �

Corollary 2.16. Let f : J → R be a continuous real function with interval J =
[m, M ]. Let A and B be n×n positive definite matrices such that mA ≤ B ≤ MA,
0 < m < M ≤ 1.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and, 0 < α ≤ β < 1,

tβ ≤ f(t) ≤ tα for t ∈ J ,

Mβ = max
t∈J

f(t),

then

cg2 Φ(A)σfΦ(B) ≤ Φ(A]αB) ≤ Φ(A]α
β
(AσfB)),

where cg2 > 0 is given by (2.8) with g2(t) = tα.

Proof. Employ Corollary 2.15 with g(t) = t. �

We now apply Theorem 2.9 in the context of harmonic mean (cf. [6, Lemma 3.3]).

Corollary 2.17. Let f : J → R and g : J → R+ be continuous real functions
with intervals J = [m, M ] and invertible operator monotone g on J . Let A and
B be n× n positive definite matrices such that mA ≤ B ≤ MA.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and 0 < α ≤ β < 1,

(β(g(t))−1 + 1− β)−1 ≤ f(t) ≤ (α(g(t))−1 + 1− α)−1 for t ∈ J ,

max
t∈J

(β(g(t))−1 + 1− β)−1 = max
t∈J

f(t),

then

cg2 Φ(A)σfΦ(B) ≤ Φ(Aσ(α(1/g)+1−α)−1B) ≤ Φ(A !γ(AσfB)), (2.33)

where γ = α
β

and cg2 > 0 is given by (2.8) with concave g2(t) = (α(g(t))−1 + 1−
α)−1.

Proof. By setting g1(t) =
(

β
g(t)

+ 1− β
)−1

and g2(t) =
(

α
g(t)

+ 1− α
)−1

for t ∈ J ,

we derive

g2g
−1
1 (s) =

[
α

β
s−1 +

(
(1− α)− (1− β)

α

β

)]−1

for s ∈ g1(J),

with α
β

+ (1 − α − (1 − β)α
β
) = 1, 0 < α

β
≤ 1 and 0 ≤ 1 − α − (1 − β)α

β
< 1.

Therefore g2g
−1
1 (s) = (γs−1 + 1− γ)−1 is an operator monotone function. So, in

accordance with Theorem 2.9, inequality (2.26) implies (2.33). �
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Corollary 2.18. Let f : J → R be a continuous real function with interval J =
[m, M ]. Let A and B be n×n positive definite matrices such that mA ≤ B ≤ MA,
0 < m < M .

If Φ : Mn(C) → Mk(C) is a strictly positive linear map and, for 0 < α ≤ β < 1,

(βt−1 + 1− β)−1 ≤ f(t) ≤ (αt−1 + 1− α)−1 for t ∈ J ,

(βM−1 + 1− β)−1 = max
t∈J

f(t),

then
cg2 Φ(A)σfΦ(B) ≤ Φ(A !αB) ≤ Φ(A !γ(AσfB)),

where γ = α
β

and cg2 > 0 is given by (2.8) with g2(t) = (αt−1 + 1− α)−1.

Proof. Utilising Corollary 2.17 with g(t) = t we get the desired result. �
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