Higher dimensional polarized varieties with non-integral nefvalue

Mauro C. Beltrametti and Susanna Di Termini
(Communicated by A. Sommese)

Abstract

Let X be an n-dimensional normal projective variety with terminal, Gorenstein, \mathbb{Q} factorial singularities. Let L be an ample line bundle on X. Let τ be the nefvalue of (X, L). Then we classify (X, L), describing the structure of the nefvalue morphism of (X, L), when τ satisfies $n-k<\tau<n-k+1$ and $n \geqslant 2 k-3, k \geqslant 4$. In the smooth case, we discuss the case $n=2 k-4, k \geqslant 5$, as well.

Key words. Complex polarized n-fold, ample line bundle, nefvalue, nefvalue morphism, Gorenstein, terminal, \mathbb{Q}-factorial singularities, adjunction theory, special varieties.

2000 Mathematics Subject Classification. Primary 14N30, 14J40; Secondary 14J45, 14C20

Introduction

Let X be an n-dimensional projective variety with terminal, Gorenstein, \mathbb{Q}-factorial singularities and let L be an ample line bundle on X. If the canonical bundle K_{X} is not nef, the Kawamata rationality theorem and the Kawamata-Shokurov basepoint free theorem imply that there is a fraction $\tau=u / v$, with u, v positive coprime integers, and a morphism $\phi: X \rightarrow W$ with connected fibers onto a normal projective variety W such that $v K_{X}+u L \approx \phi^{*} H$ for an ample line bundle H on W and $u \leqslant$ $\max _{w \in W}\left\{\operatorname{dim} \phi^{-1}(w)\right\}+1$. We call τ the nefvalue and ϕ the nefvalue morphism of (X, L) respectively.

Thus $\tau \leqslant n+1$ and by the Kobayashi-Ochiai theorem $\tau=n+1$ if and only if $(X, L) \cong\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)\right)$.

It is a natural question to classify polarized pairs (X, L) in terms of the numerical values of τ and the structure of the morphism ϕ. The range $n-3 \leqslant \tau<n+1$ has been extensively studied by several authors. We refer to [4, Chapter 7] for the case $n-3<\tau<n+1$ with $n \geqslant 5$, to [7] for the $n=4$ case, to [11], [12] for the case $\tau=n-3$, and to [1] for a refinement in a more general context when ϕ is birational with $\tau=n-1, n-2$. Recently, the case where τ is not integer satisfying the condition $n-4<\tau<n-3$, with $n \geqslant 5$ (as well as the case when τ satisfies $n-3<\tau<$ $n-2$), has been studied in [13].

In this paper we consider the more general situation when $\tau=u / v$ is not integer and satisfies $n-k<\tau<n-k+1$, with $n \geqslant 2 k-3, k \geqslant 4$, which includes the results of [13]. If X is smooth, we study also the case $n=2 k-4, k \geqslant 5$. Following [3], we use a new polarization A on X such that the nefvalue of (X, A) is u. Whenever $n \geqslant 2 k-3$ we fall in the range up to the second reduction in the adjunction theoretic sense, i.e., $u \geqslant n-2$. If $n=2 k-4$, then $u=n-3$ and we need the third adjunction results [11], as well as the classification [2] of some codimension 2 small contractions which occur.

1 Background material

We work over the complex field \mathbb{C}. Throughout the paper we deal with projective varieties V (i.e., irreducible and reduced projective schemes), and we follow the usual notation in algebraic geometry. We denote by \approx (respectively \sim) the linear (respectively numerical) equivalence of line bundles.

The book [4] is a good reference for standard results and notation of adjunction theory. We also refer to [8] for some facts from Mori theory we use.

The paper is based on the following special case of a major theorem of Kawamata [8].

Theorem 1.1 (Kawamata rationality theorem). Let V be a normal projective variety of dimension n with terminal Gorenstein singularities. Let $\pi: V \rightarrow Y$ be a projective morphism onto a variety Y. Let L be a π-ample Cartier divisor of V. If K_{V} is not π-nef then

$$
\tau=\min \left\{t \in \mathbb{R} \mid K_{V}+t L \text { is } \pi-n e f\right\}
$$

is a rational number. Furthermore expressing $\tau=u / v$ with u, v coprime positive integers, we have $u \leqslant b+1$ where $b=\max _{y \in Y}\left\{\operatorname{dim}_{\mathbb{C}(y)} \pi^{-1}(y)\right\}$.

Definition 1.2. Let V be a normal variety of dimension n with terminal Gorenstein singularities. Let $\pi: V \rightarrow Y$ be a projective morphism onto a variety Y. Let \mathscr{L} be a π-ample Cartier divisor of V. Assume that K_{V} is not π-nef. Let τ be the positive rational number given by the Kawamata rationality theorem (1.1).

We say that the rational number τ is the π-nefvalue of (V, \mathscr{L}). If Y is a point, τ is called the nefvalue of (V, \mathscr{L}). Note also that, if Y is a point, then $K_{V}+\tau \mathscr{L}$ is nef and hence by Theorem 1.1 we have that $\tau=u / v$ for two coprime positive integers, u and v. Thus by the Kawamata-Shokurov basepoint free theorem we know that $\left|m\left(v K_{V}+u \mathscr{L}\right)\right|$ is basepoint free for all $m \gg 0$. Therefore for such $m,\left|m\left(K_{V}+\tau \mathscr{L}\right)\right|$ defines a morphism $f: V \rightarrow \mathbb{P}_{\mathbb{C}}$. Let $f=s \circ \phi$ be the Remmert-Stein factorization of f where $\phi: V \rightarrow W$ is a morphism with connected fibers onto a normal projective variety, W, and $s: W \rightarrow \mathbb{P}_{\mathbb{C}}$ is a finite-to-one morphism. By [4, (1.1.3)] we know that the morphism, ϕ, is the same for any $m>0$ such that $\left|m\left(v K_{V}+u \mathscr{L}\right)\right|$ is basepoint free, and thus only depends on (V, \mathscr{L}). Note that, by $[4,(1.1 .3)], s$ is an embedding for $m \gg 0$ and therefore $f=\phi$ for $m \gg 0$. We call $\phi: V \rightarrow W$ the nefvalue morphism of (V, \mathscr{L}). We also know by $[4,(1.1 .3)]$ that there is an ample line bundle H on W such that $v K_{V}+u \mathscr{L} \cong \phi^{*} H$.

Remark 1.3. Let V be as in Theorem 1.1 and \mathscr{L} an ample line bundle on V. Let τ be the nefvalue of (V, \mathscr{L}) and ϕ the nefvalue morphism of (V, \mathscr{L}). Then \mathscr{L} is ϕ-ample and

$$
\tau=\min \left\{\tau \in \mathbb{R} \mid K_{V}+t \mathscr{L} \text { is nef }\right\}=\min \left\{t \in \mathbb{R} \mid K_{V}+t \mathscr{L} \text { is } \phi \text {-nef }\right\}
$$

That is τ coincides with the ϕ-nefvalue of (V, \mathscr{L}).
Lemma $1.4([4,(1.5 .5)])$. Let (V, \mathscr{L}) be as in Theorem 1.1. A real number τ is the nefvalue of (V, \mathscr{L}) if and only if $K_{V}+\tau \mathscr{L}$ is nef but not ample.

Let us recall a few results from adjunction theory.
Lemma 1.5 ([4, (3.3.2)]). Let \mathscr{L} be a nef and big line bundle on a normal projective variety, V, of dimension n with only terminal Gorenstein singularities. Then if $t\left(a K_{V}+b \mathscr{L}\right) \approx \mathcal{O}_{V}$ for some integers $a>0, b>0, t>0$ one has $a K_{V}+b \mathscr{L} \approx \mathcal{O}_{V}$, and $b / a \leqslant n+1$. If a, b are coprime, there exists a nef and big line bundle M on V such that $K_{V} \approx-b M, \mathscr{L} \approx a M$. If \mathscr{L} is ample, then so is M.
1.6 Special varieties. Let V be a normal Gorenstein variety of dimension n, and let L be an ample line bundle on V. We say that V is a Gorenstein-Fano variety (or simply that V is Fano) if $-K_{V}$ is ample. We say that (V, L) is a Del Pezzo variety (respectively a Mukai variety) if $K_{V} \approx-(n-1) L$ (respectively $K_{V} \approx-(n-2) L$).

We also say that (V, L) is a scroll (respectively a quadric fibration; respectively a Del Pezzo fibration; respectively a Mukai fibration) over a normal variety Y of dimension m if there exists a surjective morphism with connected fibers $p: V \rightarrow Y$, such that $K_{V}+(n-m+1) L \approx p^{*} \mathscr{L}$ (respectively $K_{V}+(n-m) L \approx p^{*} \mathscr{L}$; respectively $K_{V}+(n-m-1) L \approx p^{*} \mathscr{L}$; respectively $\left.K_{V}+(n-m-2) L \approx p^{*} \mathscr{L}\right)$ for some ample line bundle \mathscr{L} on Y.

We say that a normal Gorenstein n-dimensional variety V is a Fano variety of index i, if i is the largest positive integer such that $K_{V} \approx-i H$ for some ample line bundle H on V. Note that $i \leqslant n+1$ (see Lemma 1.5 below) and $n-i+1$ is referred to as the co-index of V.

We refer to Fujita [5] and [6] for classification results on Del Pezzo varieties. Note that Del Pezzo manifolds are completely described by Fujita [5, I, §8]. We refer to Mukai [9] and [10] for results on Mukai varieties.

We also refer e.g. to [4, (3.1.6)] for a generalized version of Kobayashi-Ochiai theorem (characterizing projective spaces and quadrics) which we systematically use in the sequel.

The following useful fact was noted in [13, (1.1)]. It is an easy consequence of the Kawamata rationality theorem (1.1), and the assumption that τ is not integer.

Lemma 1.7 (Zhao). Let V be an n-dimensional normal projective variety with Gorenstein, terminal, \mathbb{Q}-factorial singularities. Let \mathscr{L} be an ample line bundle on V. Let τ be the nefvalue of (V, \mathscr{L}). By the Kawamata rationality theorem, $\tau=u / v$, with u, v
positive coprime integers. Assume $n-k<\tau<n-k+1$ for positive $k<n$. Then $2 \leqslant$ $v \leqslant \frac{n}{n-k}$ and $\tau=n-k+\frac{i}{v}$ for some positive integer $i<v$ and i, v are coprime.

Finally, let us recall for reader's convenience the main results from [3].
Lemma 1.8 ([3, (1.1), (1.2)]). Let X be a normal projective variety with terminal Gorenstein singularities. Let L be an ample line bundle on X. Let $\varphi: X \rightarrow W$ be a surjective morphism onto a normal variety W. Assume that φ has at least one positive dimensional fiber and that $v K_{X}+u L \approx \varphi^{*} H$, for some ample line bundle H on W and coprime integers u, v.

1. There exist positive integers a, b such that $a v-b u=1$;
2. Let $A:=b K_{X}+a L$. Then A is ample, $K_{X}+u A \approx \varphi^{*}(a H)$ and u is the nefvalue of (X, A).

Theorem 1.9 ([3, (1.4)]). Let X be a projective variety of dimension n with Gorenstein rational singularities. Assume K_{X} not nef. Let L be an ample line bundle on X. Let $\tau=u / v$ be the nefvalue of $(X, L), u, v$ coprime positive integers. Let $\phi: X \rightarrow W$ be the nefvalue morphism of (X, L). Let $A:=b K_{X}+a L$ be an ample line bundle on X given by Lemma 1.8.

1. Assume that $u=\max _{w \in W}\left\{\operatorname{dim} \phi^{-1}(w)\right\}+1$. Then (X, A) is a scroll over W under ϕ. If X is smooth, or more generally if $\operatorname{cod}_{X} \operatorname{Sing}(X)>\operatorname{dim} W$, then (X, A) is in fact a \mathbb{P}^{u-1}-bundle over W under ϕ. Furthermore ϕ is a fiber type contraction of an extremal ray.
2. Assume that $u=\max _{w \in W}\left\{\operatorname{dim} \phi^{-1}(w)\right\}$. If ϕ is not birational, then either
(a) (X, A) is a scroll over W under ϕ; or
(b) (X, A) is a quadric fibration over W under ϕ, and all fibers are equidimensional.
If ϕ is birational, X is smooth, and $u \geqslant(n+1) / 2$, then
(c) ϕ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(\mathscr{B})$ where \mathscr{B} is an algebraic subset of W which is the disjoint union of irreducible components of dimension $n-u-1$. Let B be an irreducible component of \mathscr{B} and let $E=\phi^{-1}(B)$. The general fiber, Δ, of the restriction, ϕ_{E} of ϕ to E is a linear $\mathbb{P}^{u},\left(\Delta, A_{\Delta}\right) \cong\left(\mathbb{P}^{u}, \mathcal{O}_{\mathbb{P}^{u}}(1)\right), \mathscr{N}_{E / X \mid \Delta} \cong$ $\mathcal{O}_{\mathbb{P}^{u}}(-1)$ and W is factorial with terminal singularities.

Note that if X has terminal singularities, then X has rational singularities and it is a general fact that $\operatorname{cod}_{X} \operatorname{Sing}(X) \geqslant 3$, so that the above condition $\operatorname{cod}_{X} \operatorname{Sing}(X)>$ $\operatorname{dim} W$ is always true if $\operatorname{dim} W \leqslant 2$.

2 The case of dimension $n \geqslant 2 k-3$

The following theorem includes the results of [13], which correspond to the cases $k=3,4$.

Theorem 2.1. Let X be a normal projective variety of dimension $n \geqslant 2 k-3, k \geqslant 4$, with terminal, Gorenstein, \mathbb{Q}-factorial singularities. Let L be an ample line bundle on X. Let τ be the nefvalue of (X, L) and let $\phi: X \rightarrow W$ be the nefvalue morphism of (X, L). Assume $n-k<\tau<n-k+1$. Then (X, L) is described as follows:

1. $n=2 k, \tau=\frac{n+1}{2},(X, L) \cong\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(2)\right)$;
2. $n=2 k-1, \tau=\frac{n}{2}, A:=K_{X}+k L$ is ample and either:
(a) $(X, L) \cong\left(\mathscr{2}, \mathcal{O}_{2}(2)\right)$, 2 a hyperquadric in \mathbb{P}^{n+1}; or
(b) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{n-1}-bundle over a smooth curve, and ϕ is a fiber type contraction of an extremal ray;
3. $n=2 k-2, \tau=\frac{n-1}{2}, A:=K_{X}+(k-1) L$ is ample and either:
(a) (X, A) is a Del Pezzo variety, $L \approx 2 A$; or
(b) $(X, A), \phi: X \rightarrow W$, is a quadric fibration over a smooth curve and all fibers are equidimensional, or
(c) $(X, A), \phi: X \rightarrow W$, is a scroll over a normal surface; or
(d) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{n-2}-bundle over a normal surface; furthermore ϕ is a fiber type contraction of an extremal ray; or
(e) $\phi: X \rightarrow W$ is the simultaneous contraction to distinct smooth points of disjoint divisors $E_{i} \cong \mathbb{P}^{n-1}$ such that $E_{i} \subset \operatorname{Reg}(X), \mathcal{O}_{E_{i}}\left(E_{i}\right) \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-1)$ and $A_{E_{i}} \cong$ $\mathcal{O}_{\mathbb{P}^{n-1}}(1)$ for $i=1, \ldots$, . Furthermore $A_{W}:=\left(\phi_{*} A\right)^{* *}$ and $K_{W}+(n-1) A_{W}$ are ample and $K_{X}+(n-1) A \approx \phi^{*}\left(K_{W}+(n-1) A_{W}\right)$;
4. $n=2 k-3, \tau=\frac{n-2}{2}, A:=K_{X}+(k-2) L$ is ample and either:
(a) (X, A) is a Mukai variety, $L \approx 2 A$; or
(b) $(X, A), \phi: X \rightarrow W$, is a Del Pezzo fibration over a smooth curve; or
(c) $(X, A), \phi: X \rightarrow W$, is a quadric fibration over a normal surface; or
(d) $(X, A), \phi: X \rightarrow W$, is a scroll over a normal threefold; or
(e) $\phi: X \rightarrow W$ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(Z)$, where Z is an algebraic subset of W such that $\operatorname{dim} Z \leqslant 1$. Moreover ϕ is the blowing up of W along Z and the following cases can occur:
i. The 1-dimensional component Z_{1} of Z is the disjoint union of locally complete intersection curves and it is contained in the regular set of W; or
ii. If z is a 0 -dimensional component of Z, then $\phi^{-1}(z)$ is an irreducible reduced divisor and either $\left(E, A_{E}\right) \cong\left(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}(1)\right)$ with $\mathscr{N}_{E / X} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-2)$, or $\left(E, A_{E}\right) \cong\left(\mathscr{Q}, \mathcal{O}_{2}(1)\right)$, 2 a (possibly singular) hyperquadric in \mathbb{P}^{n}, with $\mathscr{N}_{E / X} \cong \mathcal{O}_{2}(-1) ;$
5. $n=6, \tau=\frac{7}{3},(X, L) \cong\left(\mathbb{P}^{6}, \mathcal{O}_{\mathbb{P}^{6}}(3)\right)$;
6. $n=9, \tau=\frac{10}{3},(X, L) \cong\left(\mathbb{P}^{9}, \mathcal{O}_{\mathbb{P}^{9}}(3)\right)$;
7. $n=7, \tau=\frac{8}{3},(X, L) \cong\left(\mathbb{P}^{7}, \mathcal{O}_{\mathbb{P}^{7}}(3)\right)$;
8. $n=7, \tau=\frac{7}{3}$ and either:
(a) $(X, L) \cong\left(\mathscr{2}, \mathcal{O}_{2}(3)\right)$, 2 hyperquadric in \mathbb{P}^{8}; or
(b) $A:=2 K_{X}+5 L$ is ample, $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{6}-bundle over a smooth curve; moreover ϕ is a fiber type contraction of an extremal ray;
9. $n=5, \tau=\frac{4}{3}, \frac{5}{3}, \frac{5}{4}, \frac{6}{5}$ and (X, L) is described as in $[13,(1.2)$, (iv)].

Proof. Throughout the proof we use over and over all the results from $\S 1$ without always explicitly referring to them. Let $\tau=\frac{u}{v}$, where $v \geqslant 2$ since τ is not integer. By Lemma 1.8 there exist positive integers a, b such that $a v-b u=1$ and the line bundle $A:=b K_{X}+a L$ is ample. Thus

$$
\begin{equation*}
K_{X}+u A=a\left(v K_{X}+u L\right) \tag{1}
\end{equation*}
$$

and hence $K_{X}+u A \approx \phi^{*}(\mathscr{H})$ for some ample line bundle \mathscr{H} on W and u is the nefvalue of (X, A).

We put $m(\phi):=\max _{w \in W}\left\{\operatorname{dim} \phi^{-1}(w)\right\}$ and, if ϕ is not birational, we denote by $f(\phi)$ the dimension of the general fiber F. Note that in this case $K_{F}+u A_{F} \approx \mathcal{O}_{F}$ and hence

$$
\begin{equation*}
u \leqslant f(\phi)+1 \leqslant m(\phi)+1 \leqslant n+1 \tag{2}
\end{equation*}
$$

Let us first consider the case $v=2$. Then, by Lemma 1.7,

$$
\tau=n-k+\frac{1}{2}=\frac{2 n-2 k+1}{2}
$$

and hence, recalling the assumption on n, one has $n+1 \geqslant u=2 n-2 k+1 \geqslant n-2$.
If $u=n+1$, then $n=2 k, A=K_{X}+(k+1) L,(X, A) \cong\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)\right)$ and we are in Case 1.

If $u=n$, or $n=2 k-1$, we have $\tau=\frac{n}{2}$ and $A=K_{X}+k L$. Then $K_{X}+n A=$ $k\left(2 K_{X}+n L\right)$ by (1). Since $K_{X}+n A$ nef and big implies $K_{X}+n A$ ample by [4, (7.2.3)], we conclude that ϕ is not birational. Hence we have $u=n \leqslant m(\phi)+1 \leqslant n+1$. Then either $m(\phi)=n$ and ϕ contracts X to a point, or $u=n=m(\phi)+1$. In the first case $2 K_{X}+n L \approx \mathcal{O}_{X}$, so that $-K_{X} \approx n M, L \approx 2 M$ for some ample line bundle M on X (and hence $A \approx(-n+2 k) M=M)$, and therefore $(X, L) \cong\left(\mathscr{Q}, \mathcal{O}_{2}(2)\right)$ as in Case 2 (a). In the latter case, by Theorem $1.9,(X, A)$ is a \mathbb{P}^{n-1}-bundle over W as in Case 2 (b).

If $u=n-1$, or $n=2 k-2$, then $\tau=\frac{n-1}{2}$ and $A=K_{X}+(k-1) L$. If ϕ is not birational, we have $u=n-1 \leqslant m(\phi)+1$, and therefore $n-2 \leqslant m(\phi) \leqslant n$. If $m(\phi)=n$, then ϕ contracts X to a point, and hence $2 K_{X}+(n-1) L \approx \mathfrak{0}_{X}$. Thus, since $n-1$ is odd, there exists an ample line bundle M on X such that $K_{X} \approx-(n-1) M, L \approx 2 M$ (and hence $A \approx(1-n+2(k-1)) M=M)$ and therefore (X, A) is a Del Pezzo variety as in Case 3 (a). Let $m(\phi)=n-1$. Thus (2) yields $n-1 \leqslant f(\phi)+1 \leqslant n$ and hence either $f(\phi)=n-1$ or $f(\phi)=n-2$. Since $u=m(\phi)$, and recalling that $K_{X}+$ $(n-1) A \approx \phi^{*}(\mathscr{H})$, we conclude from Theorem 1.9 that $(X, A), \phi: X \rightarrow W$, is either
a quadric fibration over a smooth curve, or a scroll over a normal surface as in Cases 3 (b), 3 (c). If $m(\phi)=n-2$, Inequality (2) gives $u=n-1=m(\phi)+1, f(\phi)=n-2$ and $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{n-2}-bundle as in Case $3(\mathrm{~d})$.

If ϕ is birational, since $u=n-1$ is the nefvalue of (X, A), the structure theorem [4, (7.3.2)] applies to give Case 3 (e).

Next, assume $u=n-2$, or $n=2 k-3$. Then $\tau=\frac{n-2}{2}$ and $A=K_{X}+(k-2) L$. Assume ϕ is not birational. We have $u=n-2 \leqslant m(\phi)+1$, so that $n-3 \leqslant$ $m(\phi) \leqslant n$. If $m(\phi)=n$, then ϕ contracts X to a point, and hence $2 K_{X}+(n-2) L \approx$ \mathcal{O}_{X}. Thus, since $n-2$ is odd, there exists an ample line bundle M on X such that $K_{X} \approx-(n-2) M, L \approx 2 M$ (so that $\left.A \approx(2-n+2(k-2)) M=M\right)$ and therefore (X, A) is a Mukai variety as in Case 4 (a). Let $m(\phi)=n-1$. Then (2) yields $n-2 \leqslant$ $f(\phi)+1 \leqslant n$ and hence $n-3 \leqslant f(\phi) \leqslant n-1$. Let $f(\phi)=n-1$ (respectively $f(\phi)=$ $n-2$; respectively $f(\phi)=n-3)$. Thus, since $K_{X}+(n-2) A \approx \phi^{*}(\mathscr{H})$, we see that $(X, A), \phi: X \rightarrow W$, is a Del Pezzo fibration over W as in Case 4 (b) (respectively $(X, A), \phi: X \rightarrow W$, is a quadric fibration over W as in Case 4 (c); respectively $(X, A), \phi: X \rightarrow W$, is a scroll over W as in Case $4(\mathrm{~d})$). Assume now $m(\phi)=n-2$. Then $n-2 \leqslant f(\phi)+1 \leqslant n-1$, and hence either $f(\phi)=n-2$, or $f(\phi)=n-3$. Since $u=m(\phi)$, we conclude from Theorem 1.9 that $(X, A), \phi: X \rightarrow W$, is either a quadric fibration over a normal surface (and all fibers are equidimensional in this case) as in 4 (c), or a scroll over a normal threefold as in $4(\mathrm{~d})$. Finally, let $m(\phi)=$ $n-3$. Then we find $f(\phi)=n-3$ and, since $u=m(\phi)+1,(X, A), \phi: X \rightarrow W$, is again a scroll over a normal threefold as in Case 4 (d) (and in fact a linear \mathbb{P}^{n-3} bundle if X is smooth by Theorem 1.9).

If ϕ is birational, since $u=n-2$ is the nefvalue of (X, A), the structure theorem [1, Theorem 3] (see also [4, (7.5.3)] in the smooth case) applies to give Case 4 (e).

From now on, we may assume $v \geqslant 3$. Lemma 1.7 yields the inequality

$$
\begin{equation*}
3 \leqslant v \leqslant \frac{n}{n-k} \tag{3}
\end{equation*}
$$

If $n \geqslant 2 k-1$, we find $3 k \geqslant 2 n \geqslant 2(2 k-1)$, or $k \leqslant 2$, contradicting our assumption on k.

Let $n=2 k-2$. Then $3 k \geqslant 2 n \geqslant 4 k-4$, or $k \leqslant 4$. Hence $k=4, n=6$ and $v=3$. Therefore Lemma 1.7 yields $\tau=2+\frac{i}{3}$, with $i=1,2$. If $i=2$ one has $\tau=\frac{8}{3}, u=8$, which contradicts the bound $u \leqslant 7$ from the Kawamata rationality theorem (1.1). Thus $i=1, \tau=\frac{7}{3}$, and hence $u=7=m(\phi)+1$. Then $m(\phi)=6$, so that ϕ contracts X to a point. In this case $3 K_{X}+7 L \approx \mathcal{O}_{X}$, and we are in Case 5 .

Assume now $n=2 k-3$. Inequality (3) gives now $n \leqslant 9$, so that $n=9,7,5$ by parity.

Let $n=9$. Then $k=6$ and $v=3$. Therefore $\tau=3+\frac{i}{3}$ with $i=1,2$. If $i=2$, then $\tau=\frac{11}{3}, u=11$, contradicting the bound $u \leqslant 10$ from Theorem 1.1. Thus $i=1, \tau=\frac{10}{3}$ and hence $u=10=m(\phi)+1$, so that $m(\phi)=9$ and ϕ contracts X to a point. In this case $3 K_{X}+10 L \approx \mathcal{O}_{X}$, and we are in Case 6 .

Let $n=7$. Then $k=5$ and again $v=3$ by (3). Therefore $\tau=2+\frac{i}{3}$ with $i=1,2$. If $i=2$ we have $\tau=\frac{8}{3}$, and $u=8=m(\phi)+1$. Thus $m(\phi)=7$, so that ϕ contracts X
to a point. In this case $3 K_{X}+8 L \approx \mathcal{O}_{X}$, and we are in Case 7. If $i=1$, then $\tau=\frac{7}{3}$ and $u=7 \leqslant m(\phi)+1 \leqslant 8$, so that either $u=m(\phi)=7$, or $u=7=m(\phi)+1$. If $u=$ $m(\phi)=7, \phi$ contracts X to a point and therefore $3 K_{X}+7 L \approx \hat{0}_{X}$, so we are in Case 8 (a). Let $u=7=m(\phi)+1$. Note that $A=2 K_{X}+5 L$ in this case. If ϕ is not birational, Theorem 1.9 applies to say that (X, A) is a \mathbb{P}^{6}-bundle over W under ϕ as in Case $8(\mathrm{~b})$. We claim that ϕ is not birational. Indeed, otherwise, we conclude from Lemma 1.8 that $K_{X}+7 A\left(=5\left(3 K_{X}+7 L\right)\right)$ is nef and big and not ample. Since $n=7$, this contradicts [4, (7.2.3)].

Let $n=5$. Then $k=4$ and $3 \leqslant v \leqslant 5$ by (3). The relations $\tau=\frac{u}{v}=1+\frac{i}{v},(i, v)=1$, $i<v$, and $u \leqslant n+1=6$ yield for τ the values $\frac{4}{3}, \frac{5}{3}, \frac{5}{4}, \frac{3}{2}, \frac{6}{5}$. If $\tau=\frac{3}{2}$ we are in the previous Case 4 of the statement. The remaining cases are described in [13, (1.2), (iv)], to which we refer for details.

Remark 2.2. Note that, if X is smooth, in the scroll Cases 3 (c) and 4 (d) of Theorem $2.1, \phi$ is a contraction of an extremal ray by $[4,(14.1 .1)]$. Furthermore, if A is very ample, then ϕ is a linear $\mathbb{P}^{n-\operatorname{dim}(W)}$-bundle by [4, (14.1.3)].

3 The case of dimension $n=2 k-4$

In this section we deal with the case of a manifold of dimension $n=2 k-4$. The smoothness assumption is needed to use the Ionescu-Wis̀niewski inequality (see e.g. [4, (6.3.6)]).

Theorem 3.1. Let X be a smooth projective variety of dimension $n=2 k-4, k \geqslant 5$. Let L be an ample line bundle on X. Let τ be the nefvalue of (X, L) and let $\phi: X \rightarrow W$ be the nefvalue morphism of (X, L). Assume $n-k<\tau<n-k+1$. Then (X, L) is described as follows:

1. $\tau=\frac{n-3}{2}, A:=K_{X}+(k-3) L$ is ample, and either:
(a) (X, A) is a Fano variety of co-index 4 , i.e., $K_{X} \approx-(n-3) A, L \approx 2 A$; or
(b) $(X, A), \phi: X \rightarrow W$, is a Mukai fibration over a smooth curve; or
(c) $(X, A), \phi: X \rightarrow W$, is a Del Pezzo fibration over a normal surface; or
(d) $(X, A), \phi: X \rightarrow W$, is a quadric fibration over a normal threefold; or
(e) $(X, A), \phi: X \rightarrow W$, is a scroll over a normal fourfold; or
(f) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{n-4}-bundle over a normal fourfold; furthermore ϕ is a fiber type contraction of an extremal ray; or
(g) $n \geqslant 8, \phi$ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(\mathscr{B})$ where \mathscr{B} is an algebraic subset of W which is the disjoint union of irreducible components of dimension 2. Let B be an irreducible component of \mathscr{B} and let $E=\phi^{-1}(B)$. The general fiber, Δ, of the restriction, ϕ_{E} of ϕ to E is a linear $\mathbb{P}^{n-3},\left(\Delta, A_{\Delta}\right) \cong\left(\mathbb{P}^{n-3}, \mathcal{O}_{\mathbb{P}^{n-3}}(1)\right)$, $\mathscr{N}_{E / X \mid \Delta} \cong \mathcal{O}_{\mathbb{P}^{n-3}}(-1)$ and W is factorial with terminal singularities; or
(h) $n=6$. Let R be an extremal ray subordinated to ϕ, i.e., $\left(K_{X}+3 A\right) \cdot R=0$. Let E be an irreducible component of the exceptional locus of the contraction $\rho: X \rightarrow Y$ of R. Let Δ be any irreducible component of any fiber of the
restriction, ρ_{E}, of ρ to E. Thus ρ is a birational third adjoint contraction with supporting divisor $K_{X}+3 A$, and either:
i. ρ is of divisorial type, E is a prime divisor and E, Δ are described as in [11, Theorem 1.3]; or
ii. $E=\Delta, E \cong \mathbb{P}^{4}$ and $\mathscr{N}_{E / X} \cong \mathcal{O}_{\mathbb{P}^{4}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{4}}(-1)$.
2. $n=12, \tau=\frac{13}{3},(X, L) \cong\left(\mathbb{P}^{12}, \mathcal{O}_{\mathbb{P}^{12}}(3)\right)$;
3. $n=10$ and either:
(a) $\tau=\frac{11}{3},(X, L) \cong\left(\mathbb{P}^{10}, \mathcal{O}_{\mathbb{P}^{10}}(3)\right)$; or
(b) $\tau=\frac{10}{3},(X, L) \cong\left(\mathscr{2}, \mathcal{O}_{2}(3)\right)$, 2 a hyperquadric in \mathbb{P}^{11}; or
(c) $\tau=\frac{10}{3}, A:=2 K_{X}+7 L$ is ample, $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{9}-bundle over a smooth curve, and ϕ is a fiber type contraction of an extremal ray;
4. $n=8, \tau=\frac{7}{3}, A:=2 K_{X}+5 L$ is ample and either:
(a) (X, A) is a Del Pezzo variety, $L \approx 3 A$; or
(b) $(X, A), \phi: X \rightarrow W$, is a quadric fibration over a nonsingular curve, and all fibers are equidimensional; or
(c) $(X, A), \phi: X \rightarrow W$, is a scroll over a normal surface; or
(d) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{6}-bundle over a normal surface, and ϕ is a fiber type contraction of an extremal ray; or
(e) $\phi: X \rightarrow W$ is the simultaneous contraction to distinct smooth points of disjoint divisors $E_{i} \cong \mathbb{P}^{7}$ such that $\mathcal{O}_{E_{i}}\left(E_{i}\right) \cong \mathcal{O}_{\mathbb{P}^{7}}(-1)$ and $A_{E_{i}} \cong \mathcal{O}_{\mathbb{P}^{7}}(1)$ for $i=$ $1, \ldots, t$. Furthermore $A_{W}:=\left(\phi_{*} A\right)^{* *}$ and $K_{W}+7 A_{W}$ are ample and $K_{X}+7 A \approx$ $\phi^{*}\left(K_{W}+7 A_{W}\right)$;
5. $n=8, \tau=\frac{8}{3}, A:=K_{X}+3 L$ is ample and either:
(a) $(X, L) \cong\left(\mathscr{2}, \mathcal{O}_{2}(3)\right)$, 2 a hyperquadric in \mathbb{P}^{9}; or
(b) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{7}-bundle over a nonsingular curve, and ϕ is a fiber type contraction of an extremal ray;
6. $n=8, \tau=\frac{9}{4},(X, L) \cong\left(\mathbb{P}^{8}, \mathcal{O}_{\mathbb{P}^{8}}(4)\right)$;
7. $n=6, \tau=\frac{4}{3}, A:=2 K_{X}+3 L$ is ample and either:
(a) (X, A) is a Mukai variety, $L \approx 3 A$; or
(b) $(X, A), \phi: X \rightarrow W$, is a Del Pezzo fibration over a smooth curve; or
(c) $(X, A), \phi: X \rightarrow W$, is a quadric fibration over a normal surface; or
(d) $(X, A), \phi: X \rightarrow W$, is a scroll over a normal threefold; or
(e) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{3}-bundle over a normal threefold, and ϕ is the contraction of an extremal ray; or
(f) ϕ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(\mathscr{B})$ where \mathscr{B} is an algebraic subset of W which is the disjoint union of irreducible components of dimension 1. Let B be an irreducible component of \mathscr{B} and let $E=\phi^{-1}(B)$. The general fiber, Δ, of the restriction, ϕ_{E}, of ϕ to E is a linear $\mathbb{P}^{4},\left(\Delta, A_{\Delta}\right) \cong\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(1)\right), \mathscr{N}_{E / X \mid \Delta} \cong$ $\mathcal{O}_{\mathbb{P}^{4}}(-1)$ and W is factorial with terminal singularities;
8. $n=6, \tau=\frac{5}{3}, A:=K_{X}+2 L$ is ample and either:
(a) (X, A) is a Del Pezzo variety, $L \approx 3 A$; or
(b) $(X, A), \phi: X \rightarrow W$, is a quadric fibration over a smooth curve, and all fibers are equidimensional; or
(c) $(X, A), \phi: X \rightarrow W$, is a scroll over a normal surface; or
(d) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{4}-bundle over a normal surface, and ϕ is the contraction of an extremal ray; or
(e) ϕ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(\mathscr{B})$ where \mathscr{B} is the union of a finite set of points. For each point $b \in \mathscr{B}$ let $E=\phi^{-1}(b)$. Then $\left(E, A_{E}\right) \cong\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{5}}(1)\right), \mathcal{O}_{E}(E) \cong$ $\mathcal{O}_{\mathbb{P}^{5}}(-1)$ and W is factorial with terminal singularities;
9. $n=6, \tau=\frac{5}{4}, A:=3 K_{X}+4 L$ is ample and either:
(a) (X, A) is a Del Pezzo variety, $L \approx 4 A$; or
(b) $(X, A), \phi: X \rightarrow W$, is as in one of cases 8 (b), 8 (c), 8 (d), 8 (e) respectively;
10. $n=6, \tau=\frac{7}{4},(X, L) \cong\left(\mathbb{P}^{6}, \mathcal{O}_{\mathbb{P}^{6}}(4)\right)$;
11. $n=6, \tau=\frac{6}{5}, A:=4 K_{X}+5 L$ is ample and either:
(a) $(X, L) \cong\left(2, \mathcal{O}_{2}(5)\right)$, 2 a hyperquadric in \mathbb{P}^{7}; or
(b) $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{5}-bundle over a nonsingular curve; furthermore ϕ is a contraction of an extremal ray;
12. $n=6, \tau=\frac{7}{5},(X, L) \cong\left(\mathbb{P}^{6}, \mathcal{O}_{\mathbb{P}^{6}}(5)\right)$;
13. $n=6, \tau=\frac{7}{6},(X, L) \cong\left(\mathbb{P}^{6}, \mathcal{O}_{\mathbb{P}^{6}}(6)\right)$.

Proof. Throughout the proof we use over and over all the results from $\S 1$ without always explicitly referring to them. Let $\tau=\frac{u}{v}$, where $v \geqslant 2$ since τ is not integer. By Lemma 1.8 there exist positive integers a, b such that $a v-b u=1$ and the line bundle $A:=b K_{X}+a L$ is ample. Thus $K_{X}+u A=a\left(v K_{X}+u L\right)$ and hence $K_{X}+u A \approx$ $\phi^{*}(\mathscr{H})$ for some ample line bundle \mathscr{H} on W and u is the nefvalue of (X, A).

We put $m(\phi):=\max _{w \in W}\left\{\operatorname{dim} \phi^{-1}(w)\right\}$ and, if ϕ is not birational, we denote by $f(\phi)$ the dimension of the general fiber F. Note that in this case $K_{F}+u A_{F} \approx \mathcal{O}_{F}$ and hence Inequality (2) holds true.

Step I: Let us first consider case $v=2$. From Lemma 1.7 we have

$$
\tau=n-k+\frac{1}{2}=\frac{2 k-7}{2}=\frac{n-3}{2} .
$$

Therefore $u=n-3$ and hence $A=K_{X}+(k-3) L$.
If ϕ is not birational, then the same arguments as in the proof of Theorem 2.1 lead to Cases (a) to (f) in 1.

Thus we can assume ϕ birational. If $n \geqslant 8$, we are in the range $u \geqslant \frac{n+1}{2}$ and therefore we are in Case 1 (f) by using Theorem 1.9, (c).

Then we can assume $n=6$. Hence $u=3$ is the nefvalue of (X, A) and $K_{X}+3 A \approx$ $\phi^{*}(\mathscr{H})$. Let R be an extremal ray subordinated to $K_{X}+3 A$ (i.e., $\left(K_{X}+3 A\right) \cdot R=0$) and let E be an irreducible component of the exceptional locus of the contraction $\rho=$
$\operatorname{cont}_{R}: X \rightarrow Y$ of R. Let Δ be any irreducible component of any fiber of the restriction, ρ_{E}, of ρ to E. Then, since X is smooth, the Ionescu-Wis̀niewski inequality (see e.g. $[4,(6.3 .6)])$ yields $\operatorname{dim} E+\operatorname{dim} \Delta \geqslant \operatorname{dim} X+\ell(R)-1$, where $\ell(R)$ denotes the length of R. In our case $\ell(R)=3$ (cf. [4, (4.2.15)]), so that the above inequality gives

$$
\begin{equation*}
\operatorname{dim} E+\operatorname{dim} \Delta \geqslant 8 \tag{4}
\end{equation*}
$$

Thus $2 \operatorname{dim} E \geqslant 8$, or $\operatorname{dim} E \geqslant 4$. Note that since $K_{X}+3 A$ is the supporting divisor of ρ, ρ is a 6 -dimensional third reduction in the sense of [11]. If $\operatorname{dim} E=5$, i.e., if ρ is of divisorial type, then E, Δ are completely described in [11, Theorem 1.3]. We are in Case 1 (h), i. If $\operatorname{dim} E=4$, Inequality (4) yields $\operatorname{dim} \Delta \geqslant 4$, which implies $\Delta=E$ and hence ρ contracts E to a point. Thus [2, (5.8.1)] applies to give Case 1 (h), ii.

Thus from now on we can assume $v \geqslant 3$. Inequality (3) gives for n the possible values $n=12,10,8,6$.

If $n=12,10$, the same arguments as in the proof of Theorem 2.1 (cases $n=9,7$) easily lead to Cases 2,3 .

Step II: The case $n=8$. We have $k=6$ and (3) yields $v=3,4$. We deal first with the case $v=3$. From Lemma 1.7 either $\tau=\frac{7}{3}, u=7$ or $\tau=\frac{8}{3}, u=8$.

Let $\tau=\frac{7}{3}$, so that $A=2 K_{X}+5 L$. Assume ϕ is not birational. We have $7 \leqslant f(\phi)+$ $1 \leqslant m(\phi)+1$ from Inequality (2) and hence $6 \leqslant m(\phi) \leqslant 8$. If $m(\phi)=8, \phi$ contracts X to a point so that $3 K_{X}+7 L \approx \mathcal{O}_{X}$. It follows that $K_{X} \approx-7 A, L \approx 3 A$, and we are in Case 4 (a). If $u=m(\phi)=7$, one has $6 \leqslant f(\phi) \leqslant 7$. Then, recalling that $K_{X}+7 A \approx$ $\phi^{*}(\mathscr{H}),(X, A), \phi: X \rightarrow W$, is a quadric fibration over a nonsingular curve as in Case 4 (b) if $f(\phi)=7$; and $(X, A), \phi: X \rightarrow W$, is a scroll over a normal surface as in Case 4 (c) if $f(\phi)=6$. If $m(\phi)=6$, then $u=m(\phi)+1$ and $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{6}-bundle over a normal surface as in Case $4(\mathrm{~d})$. Whenever ϕ is birational, since $u=7=n-1$ is the nefvalue of (X, A), we are in Case 4 (e) by using [4, (7.3.2)].

Let $\tau=\frac{8}{3}$, so that $A=K_{X}+3 L$. If ϕ is not birational, we have $8 \leqslant f(\phi)+1 \leqslant$ $m(\phi)+1$ from Inequality (2) and hence $7 \leqslant m(\phi) \leqslant 8$. If $m(\phi)=8, \phi$ contracts X to a point, so that $3 K_{X}+8 L \approx \mathcal{O}_{X}$ and we are in Case 5 (a). If $m(\phi)=7$, then $u=m(\phi)+1$ and $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{7}-bundle over a smooth curve as in Case 5 (b).

We claim that ϕ is not birational. Indeed, if it was, then $K_{X}+8 A=K_{X}+$ $8\left(K_{X}+3 L\right)=3\left(3 K_{X}+8 L\right)$ would be nef and big and not ample; since $n=8$ this is not possible by [4, (7.2.3)].

Let $v=4$. From Lemma 1.7 either $\tau=\frac{9}{4}, u=9$, or $\tau=\frac{11}{4}, u=11$. The second case contradicts the bound $u \leqslant 9$ from the Kawamata rationality theorem. Therefore $\tau=\frac{9}{4}$. Then $u=m(\phi)+1=9$, that is $m(\phi)=8$ and $\phi: X \rightarrow W$ contracts X to a point. Hence $4 K_{X}+9 L \approx \mathcal{O}_{X}$ and we are in Case 6.

Step III: The case $n=6$. We have $k=5$ and (3) yields $3 \leqslant v \leqslant 6$.
Let $v=3$. From Lemma 1.7 either $\tau=\frac{4}{3}, u=4$ or $\tau=\frac{5}{3}, u=5$. Consider first the case $\tau=\frac{4}{3}$. Then $A=2 K_{X}+3 L$. Assume ϕ is not birational. Then Inequality (2) yields $4 \leqslant f(\phi)+1 \leqslant m(\phi)+1$, so that $3 \leqslant m(\phi) \leqslant 6$. If $m(\phi)=6, \phi$ contracts X to a point, and therefore $3 K_{X}+4 L \approx \mathcal{O}_{X}$; it follows that $K_{X} \approx-4 A, L \approx 3 A$ and we are in Case 7 (a). If $m(\phi)=5$, then $3 \leqslant f(\phi) \leqslant 5$. If $f(\phi)=5$ (respectively
$f(\phi)=4$; respectively $f(\phi)=3)$, recalling that $K_{X}+4 L \approx \phi^{*}(\mathscr{H})$, we see that (X, A), $\phi: X \rightarrow W$, is a Del Pezzo fibration over a smooth curve as in Case 7 (b) (respectively a quadric fibration over a normal surface as in Case 7 (c); respectively a scroll over a normal threefold as in Case 7 (d)). If $u=m(\phi)=4$, then $3 \leqslant f(\phi) \leqslant 4$ and $(X, A), \phi: X \rightarrow W$, is either a quadric fibration over a normal surface if $f(\phi)=4$ (and all fibers are equidimensional since $u=m(\phi)$), or a scroll over a normal threefold if $f(\phi)=3$; we fall again in Cases 7 (c), $7(\mathrm{~d})$. If $m(\phi)=3$, then $u=m(\phi)+1$ and $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{3}-bundle over a normal threefold as in Case 7 (e). Whenever ϕ is birational Theorem 1.9, (c) applies to give Case 7 (f).

Let $\tau=\frac{5}{3}$, and hence $A=K_{X}+2 L$. If ϕ is not birational, Inequality (2) gives $5 \leqslant f(\phi)+1 \leqslant m(\phi)+1$. Thus $4 \leqslant m(\phi) \leqslant 6$ and exactly the same argument as in the case $\tau=\frac{4}{3}$, shows that we are in one of Cases 8 (a), 8 (b), 8 (c), 8 (d) (note that in Case 8 (c) all fibers are equidimensional since $u=m(\phi)$). If ϕ is birational we are in Case 8 (e) by using again Theorem 1.9, (c).

Let $v=4$. From Lemma 1.7 either $\tau=\frac{5}{4}, u=5$, or $\tau=\frac{7}{4}, u=7$. Let $\tau=\frac{5}{4}$, so that $A=3 K_{X}+4 L$. If ϕ is not birational, we have $5 \leqslant f(\phi)+1 \leqslant m(\phi)+1$, so that $4 \leqslant m(\phi) \leqslant 6$. If $m(\phi)=6, \phi$ contracts X to a point and hence $4 K_{X}+5 L \approx \mathcal{O}_{X}$. Thus $K_{X} \approx-5 A, L \approx 4 A$ and (X, A) is a Del Pezzo variety as in Case 9 (a). If $u=$ $m(\phi)=5$, we have $4 \leqslant f(\phi) \leqslant 5$. Therefore, since $K_{X}+5 A \approx \phi^{*}(\mathscr{H})$, we see that $(X, A), \phi: X \rightarrow W$, is a quadric fibration over a smooth curve, and all fibers are equidimensional, if $f(\phi)=5$; and $(X, A), \phi: X \rightarrow W$, is a scroll over a normal surface if $f(\phi)=4$; we find the first two cases of $9(\mathrm{~b})$. If $m(\phi)=4$, then $u=m(\phi)+1$ and $(X, A), \phi: X \rightarrow W$, is a \mathbb{P}^{4}-bundle over a normal surface as in the third case of 9 (b). If ϕ is birational, Theorem 1.9 applies again and we are in the last case of 9 (b).

Let $\tau=\frac{7}{4}$. Since $u=m(\phi)+1=7$ we have $m(\phi)=6$, that is ϕ contracts X to a point, and therefore $4 K_{X}+7 L \approx \mathcal{O}_{X}$; we are in Case 10 (a).

Next, let us assume $v=5$. Lemma 1.7 yields $\tau=1+\frac{i}{5}$ with $i=1,2,3,4$. Hence we find for τ the possible numerical values $\frac{6}{5}, \frac{7}{5}, \frac{8}{5}, \frac{9}{5}$. Clearly the last two cases cannot occur since they contradict the bound $u \leqslant 7$ from the Kawamata rationality theorem.

Let $\tau=\frac{6}{5}$, and hence $A=4 K_{X}+5 L$. Note that ϕ is not birational. Indeed, if it was, $K_{X}+6 A\left(=5\left(5 K_{X}+6 L\right)\right)$ would be nef and not ample, contradicting [4, (7.2.3)]. Thus ϕ is a fibration satisfying $6 \leqslant f(\phi)+1 \leqslant m(\phi)+1$, and hence $5 \leqslant m(\phi) \leqslant 6$. If $m(\phi)=6, \phi$ contracts X to a point, so that $5 K_{X}+6 L \approx \mathcal{O}_{X}$ and we find Case 11 (a). If $m(\phi)=5$, we are in Case 11 (b) since $u=m(\phi)+1$.

Finally, let $\tau=\frac{7}{5}$. Since $u=m(\phi)+1=7$ we have $m(\phi)=6$ and therefore $5 K_{X}+7 L \approx \mathcal{O}_{X}$; we are in Case 12.

If $v=6$, then $\tau=1+\frac{i}{6}, i=1,5$, by Lemma 1.7. The case $i=5$ is excluded by the usual bound $u \leqslant 7$. Therefore $\tau=\frac{7}{6}$ and hence $6 K_{X}+7 L \approx \mathcal{O}_{X}$; we are in Case 13.

Remark 3.2. Note that in the scroll Cases 1 (e) (with $n \geqslant 7$), 4 (c), 7 (d), 8 (c) of Theorem 3.1, ϕ is a contraction of an extremal ray by [4, (14.1.1)]. Furthermore, if A is very ample, in Cases $4(\mathrm{c}), 7(\mathrm{~d}), 8(\mathrm{c}), \phi$ is a linear $\mathbb{P}^{n-\operatorname{dim}(W)}$-bundle by [4, (14.1.3)].

Note also that in the quadric fibration Cases 1 (d) (with $n \geqslant 7$), 4 (b), 7 (c), 8 (b), ϕ is a contraction of an extremal ray by [4, (14.2.1)].

References

[1] M. Andreatta, Contractions of Gorenstein polarized varieties with high nef value. Math. Ann. 300 (1994), 669-679. MR 96b:14007 Zbl 0813.14009
[2] M. Andreatta, J. A. Wiśniewski, On contractions of smooth varieties. J. Algebraic Geom. 7 (1998), 253-312. MR 99f:14021a Zbl 0966.14012
[3] M. C. Beltrametti, A. J. Sommese, A remark on the Kawamata rationality theorem. J. Math. Soc. Japan 45 (1993), 557-568. MR 94e:14006 Zbl 0803.14003
[4] M. C. Beltrametti, A. J. Sommese, The adjunction theory of complex projective varieties. de Gruyter 1995. MR 96f:14004 Zbl 0845.14003
[5] T. Fujita, Classification theories of polarized varieties. Cambridge Univ. Press 1990. MR 93e:14009 Zbl 0743.14004
[6] T. Fujita, On singular del Pezzo varieties. In: Algebraic geometry (L'Aquila, 1988), volume 1417 of Lecture Notes in Math., 117-128, Springer 1990. MR 91b:14057 Zbl 0714.14026
[7] T. Fujita, On Kodaira energy and adjoint reduction of polarized manifolds. Manuscripta Math. 76 (1992), 59-84. MR 93i:14032 Zbl 0766.14027
[8] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem. In: Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., 283-360, NorthHolland 1987. MR 89e:14015 Zbl 0672.14006
[9] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3000-3002. MR 90g:14024 Zbl 0679.14020
[10] S. Mukai, New classification of Fano threefolds and manifolds of coindex 3. Preprint 1988.
[11] S. Nakamura, On the third adjoint contractions. J. Reine Angew. Math. 467 (1995), 51-65. MR 97a:14007 Zbl 0832.14003
[12] S. Nakamura, On the classification of the third reduction with a spectral value condition. J. Math. Soc. Japan 49 (1997), 633-646. MR 98g: 14016 Zbl 0932.14023
[13] Y. Zhao, On classification of polarized varieties with non-integral nef values. Proc. Amer. Math. Soc. 129 (2001), 1907-1913. MR 2002b:14011 Zbl 01597844

Received 18 April, 2002; revised 26 June, 2002
M. C. Beltrametti, Dipartimento di Matematica, Via Dodecaneso 35, I-16146 Genova, Italy Email: beltrame@dima.unige.it
S. Di Termini, Via G. Opisso 252/25, I-16155 Genova, Italy

Email: 2100177@studenti.unige.it

