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Abstract. Let X be an n-dimensional normal projective variety with terminal, Gorenstein, Q-
factorial singularities. Let L be an ample line bundle on X . Let t be the nefvalue of ðX ;LÞ.
Then we classify ðX ;LÞ, describing the structure of the nefvalue morphism of ðX ;LÞ, when t

satisfies n� k < t < n� k þ 1 and nd 2k � 3, kd 4. In the smooth case, we discuss the case
n ¼ 2k � 4, kd 5, as well.
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Introduction

Let X be an n-dimensional projective variety with terminal, Gorenstein, Q-factorial
singularities and let L be an ample line bundle on X . If the canonical bundle KX is
not nef, the Kawamata rationality theorem and the Kawamata–Shokurov basepoint
free theorem imply that there is a fraction t ¼ u=v, with u, v positive coprime inte-
gers, and a morphism f : X ! W with connected fibers onto a normal projective
variety W such that vKX þ uLAf�H for an ample line bundle H on W and uc

maxw AWfdim f�1ðwÞg þ 1. We call t the nefvalue and f the nefvalue morphism of
ðX ;LÞ respectively.

Thus tc nþ 1 and by the Kobayashi–Ochiai theorem t ¼ nþ 1 if and only if
ðX ;LÞG ðPn;OPnð1ÞÞ.

It is a natural question to classify polarized pairs ðX ;LÞ in terms of the numer-
ical values of t and the structure of the morphism f. The range n� 3c t < nþ 1
has been extensively studied by several authors. We refer to [4, Chapter 7] for the
case n� 3 < t < nþ 1 with nd 5, to [7] for the n ¼ 4 case, to [11], [12] for the case
t ¼ n� 3, and to [1] for a refinement in a more general context when f is birational
with t ¼ n� 1; n� 2. Recently, the case where t is not integer satisfying the condi-
tion n� 4 < t < n� 3, with nd 5 (as well as the case when t satisfies n� 3 < t <
n� 2), has been studied in [13].



In this paper we consider the more general situation when t ¼ u=v is not integer
and satisfies n� k < t < n� k þ 1, with nd 2k � 3, kd 4, which includes the results
of [13]. If X is smooth, we study also the case n ¼ 2k � 4, kd 5. Following [3], we
use a new polarization A on X such that the nefvalue of ðX ;AÞ is u. Whenever
nd 2k � 3 we fall in the range up to the second reduction in the adjunction theoretic
sense, i.e., ud n� 2. If n ¼ 2k � 4, then u ¼ n� 3 and we need the third adjunction
results [11], as well as the classification [2] of some codimension 2 small contractions
which occur.

1 Background material

We work over the complex field C. Throughout the paper we deal with projective
varieties V (i.e., irreducible and reduced projective schemes), and we follow the usual
notation in algebraic geometry. We denote byA (respectively@) the linear (respec-
tively numerical) equivalence of line bundles.

The book [4] is a good reference for standard results and notation of adjunction
theory. We also refer to [8] for some facts from Mori theory we use.

The paper is based on the following special case of a major theorem of Kawamata
[8].

Theorem 1.1 (Kawamata rationality theorem). Let V be a normal projective variety

of dimension n with terminal Gorenstein singularities. Let p : V ! Y be a projective

morphism onto a variety Y. Let L be a p-ample Cartier divisor of V. If KV is not p-nef
then

t ¼ minft A R jKV þ tL is p-nef g

is a rational number. Furthermore expressing t ¼ u=v with u, v coprime positive inte-

gers, we have uc bþ 1 where b ¼ maxy AYfdimCðyÞ p
�1ðyÞg.

Definition 1.2. Let V be a normal variety of dimension n with terminal Gorenstein
singularities. Let p : V ! Y be a projective morphism onto a variety Y . Let L be
a p-ample Cartier divisor of V . Assume that KV is not p-nef. Let t be the positive
rational number given by the Kawamata rationality theorem (1.1).

We say that the rational number t is the p-nefvalue of ðV ;LÞ. If Y is a point, t is
called the nefvalue of ðV ;LÞ. Note also that, if Y is a point, then KV þ tL is nef
and hence by Theorem 1.1 we have that t ¼ u=v for two coprime positive integers,
u and v. Thus by the Kawamata–Shokurov basepoint free theorem we know that
jmðvKV þ uLÞj is basepoint free for all mg 0. Therefore for such m, jmðKV þ tLÞj
defines a morphism f : V ! PC. Let f ¼ s � f be the Remmert–Stein factorization
of f where f : V ! W is a morphism with connected fibers onto a normal projective
variety, W , and s : W ! PC is a finite-to-one morphism. By [4, (1.1.3)] we know that
the morphism, f, is the same for any m > 0 such that jmðvKV þ uLÞj is basepoint
free, and thus only depends on ðV ;LÞ. Note that, by [4, (1.1.3)], s is an embedding
for mg 0 and therefore f ¼ f for mg 0. We call f : V ! W the nefvalue morphism

of ðV ;LÞ. We also know by [4, (1.1.3)] that there is an ample line bundle H on W

such that vKV þ uLG f�H.
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Remark 1.3. Let V be as in Theorem 1.1 and L an ample line bundle on V . Let t
be the nefvalue of ðV ;LÞ and f the nefvalue morphism of ðV ;LÞ. Then L is
f-ample and

t ¼ minft A R jKV þ tL is nefg ¼ minft A R jKV þ tL is f-nefg:

That is t coincides with the f-nefvalue of ðV ;LÞ.

Lemma 1.4 ([4, (1.5.5)]). Let ðV ;LÞ be as in Theorem 1.1. A real number t is the

nefvalue of ðV ;LÞ if and only if KV þ tL is nef but not ample.

Let us recall a few results from adjunction theory.

Lemma 1.5 ([4, (3.3.2)]). Let L be a nef and big line bundle on a normal projec-

tive variety, V, of dimension n with only terminal Gorenstein singularities. Then if

tðaKV þ bLÞAOV for some integers a > 0, b > 0, t > 0 one has aKV þ bLAOV ,
and b=ac nþ 1. If a, b are coprime, there exists a nef and big line bundle M on V such

that KV A�bM, LAaM. If L is ample, then so is M.

1.6 Special varieties. Let V be a normal Gorenstein variety of dimension n, and
let L be an ample line bundle on V . We say that V is a Gorenstein–Fano variety (or
simply that V is Fano) if �KV is ample. We say that ðV ;LÞ is a Del Pezzo variety

(respectively a Mukai variety) if KV A�ðn� 1ÞL (respectively KV A�ðn� 2ÞL).
We also say that ðV ;LÞ is a scroll (respectively a quadric fibration; respectively

a Del Pezzo fibration; respectively a Mukai fibration) over a normal variety Y of
dimension m if there exists a surjective morphism with connected fibers p : V ! Y ,
such that KV þ ðn�mþ 1ÞLAp�L (respectively KV þ ðn�mÞLAp�L; respectively
KV þ ðn�m� 1ÞLAp�L; respectively KV þ ðn�m� 2ÞLAp�L) for some ample

line bundle L on Y .
We say that a normal Gorenstein n-dimensional variety V is a Fano variety of

index i, if i is the largest positive integer such that KV A�iH for some ample line
bundle H on V . Note that ic nþ 1 (see Lemma 1.5 below) and n� i þ 1 is referred
to as the co-index of V .

We refer to Fujita [5] and [6] for classification results on Del Pezzo varieties. Note
that Del Pezzo manifolds are completely described by Fujita [5, I, §8]. We refer to
Mukai [9] and [10] for results on Mukai varieties.

We also refer e.g. to [4, (3.1.6)] for a generalized version of Kobayashi–Ochiai
theorem (characterizing projective spaces and quadrics) which we systematically use
in the sequel.

The following useful fact was noted in [13, (1.1)]. It is an easy consequence of the
Kawamata rationality theorem (1.1), and the assumption that t is not integer.

Lemma 1.7 (Zhao). Let V be an n-dimensional normal projective variety with Goren-

stein, terminal, Q-factorial singularities. Let L be an ample line bundle on V . Let t
be the nefvalue of ðV ;LÞ. By the Kawamata rationality theorem, t ¼ u=v, with u, v

Higher dimensional polarized varieties with non-integral nefvalue 289



positive coprime integers. Assume n� k < t < n� k þ 1 for positive k < n. Then 2c
vc n

n�k
and t ¼ n� k þ i

v
for some positive integer i < v and i, v are coprime.

Finally, let us recall for reader’s convenience the main results from [3].

Lemma 1.8 ([3, (1.1), (1.2)]). Let X be a normal projective variety with terminal

Gorenstein singularities. Let L be an ample line bundle on X. Let j : X ! W be a

surjective morphism onto a normal variety W. Assume that j has at least one positive

dimensional fiber and that vKX þ uLAj�H, for some ample line bundle H on W and

coprime integers u, v.

1. There exist positive integers a, b such that av� bu ¼ 1;

2. Let A :¼ bKX þ aL. Then A is ample, KX þ uAAj�ðaHÞ and u is the nefvalue of

ðX ;AÞ.

Theorem 1.9 ([3, (1.4)]). Let X be a projective variety of dimension n with Gorenstein

rational singularities. Assume KX not nef. Let L be an ample line bundle on X. Let
t ¼ u=v be the nefvalue of ðX ;LÞ, u, v coprime positive integers. Let f : X ! W be the

nefvalue morphism of ðX ;LÞ. Let A :¼ bKX þ aL be an ample line bundle on X given

by Lemma 1.8.

1. Assume that u ¼ maxw AWfdim f�1ðwÞg þ 1. Then ðX ;AÞ is a scroll over W under

f. If X is smooth, or more generally if codX SingðXÞ > dimW , then ðX ;AÞ is in

fact a Pu�1-bundle over W under f. Furthermore f is a fiber type contraction of an

extremal ray.

2. Assume that u ¼ maxw AWfdim f�1ðwÞg. If f is not birational, then either

(a) ðX ;AÞ is a scroll over W under f; or
(b) ðX ;AÞ is a quadric fibration over W under f, and all fibers are equidimen-

sional.
If f is birational, X is smooth, and ud ðnþ 1Þ=2, then
(c) f is the simultaneous contraction of a finite number of extremal rays and is

an isomorphism outside of f�1ðBÞ where B is an algebraic subset of W which

is the disjoint union of irreducible components of dimension n� u� 1. Let B
be an irreducible component of B and let E ¼ f�1ðBÞ. The general fiber, D, of
the restriction, fE of f to E is a linear Pu, ðD;ADÞG ðPu;OP uð1ÞÞ, NE=X jD G
OP uð�1Þ and W is factorial with terminal singularities.

Note that if X has terminal singularities, then X has rational singularities and it is
a general fact that codX SingðXÞd 3, so that the above condition codX SingðXÞ >
dimW is always true if dimW c 2.

2 The case of dimension nd 2kC 3

The following theorem includes the results of [13], which correspond to the cases
k ¼ 3; 4.
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Theorem 2.1. Let X be a normal projective variety of dimension nd 2k � 3, kd 4,
with terminal, Gorenstein, Q-factorial singularities. Let L be an ample line bundle on

X. Let t be the nefvalue of ðX ;LÞ and let f : X ! W be the nefvalue morphism of

ðX ;LÞ. Assume n� k < t < n� k þ 1. Then ðX ;LÞ is described as follows:

1. n ¼ 2k, t ¼ nþ1
2 , ðX ;LÞG ðPn;OP nð2ÞÞ;

2. n ¼ 2k � 1, t ¼ n
2 , A :¼ KX þ kL is ample and either:

(a) ðX ;LÞG ðQ;OQð2ÞÞ, Q a hyperquadric in Pnþ1; or
(b) ðX ;AÞ, f : X ! W , is a Pn�1-bundle over a smooth curve, and f is a fiber type

contraction of an extremal ray;

3. n ¼ 2k � 2, t ¼ n�1
2 , A :¼ KX þ ðk � 1ÞL is ample and either:

(a) ðX ;AÞ is a Del Pezzo variety, LA2A; or
(b) ðX ;AÞ, f : X ! W , is a quadric fibration over a smooth curve and all fibers are

equidimensional, or
(c) ðX ;AÞ, f : X ! W , is a scroll over a normal surface; or
(d) ðX ;AÞ, f : X ! W , is a Pn�2-bundle over a normal surface; furthermore f is a

fiber type contraction of an extremal ray; or
(e) f : X ! W is the simultaneous contraction to distinct smooth points of dis-

joint divisors EiGPn�1 such that EiHRegðX Þ, OEi
ðEiÞGOPn�1ð�1Þ and AEi

G
OP n�1ð1Þ for i ¼ 1; . . . ; t. Furthermore AW :¼ ðf�AÞ

��
and KW þ ðn� 1ÞAW are

ample and KX þ ðn� 1ÞAAf�ðKW þ ðn� 1ÞAW Þ;

4. n ¼ 2k � 3, t ¼ n�2
2 , A :¼ KX þ ðk � 2ÞL is ample and either:

(a) ðX ;AÞ is a Mukai variety, LA2A; or
(b) ðX ;AÞ, f : X ! W , is a Del Pezzo fibration over a smooth curve; or
(c) ðX ;AÞ, f : X ! W , is a quadric fibration over a normal surface; or
(d) ðX ;AÞ, f : X ! W , is a scroll over a normal threefold; or
(e) f : X ! W is the simultaneous contraction of a finite number of extremal rays

and is an isomorphism outside of f�1ðZÞ, where Z is an algebraic subset of W

such that dimZc 1. Moreover f is the blowing up of W along Z and the fol-

lowing cases can occur:
i. The 1-dimensional component Z1 of Z is the disjoint union of locally com-

plete intersection curves and it is contained in the regular set of W; or
ii. If z is a 0-dimensional component of Z, then f�1ðzÞ is an irreducible reduced

divisor and either ðE;AEÞG ðPn�1;OPn�1ð1ÞÞ with NE=X GOP n�1ð�2Þ, or

ðE;AEÞG ðQ;OQð1ÞÞ, Q a ( possibly singular) hyperquadric in Pn, with

NE=X GOQð�1Þ;

5. n ¼ 6, t ¼ 7
3 , ðX ;LÞG ðP6;OP6ð3ÞÞ;

6. n ¼ 9, t ¼ 10
3 , ðX ;LÞG ðP9;OP9ð3ÞÞ;

7. n ¼ 7, t ¼ 8
3 , ðX ;LÞG ðP7;OP7ð3ÞÞ;

8. n ¼ 7, t ¼ 7
3 and either:
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(a) ðX ;LÞG ðQ;OQð3ÞÞ, Q hyperquadric in P8; or
(b) A :¼ 2KX þ 5L is ample, ðX ;AÞ, f : X ! W , is a P6-bundle over a smooth

curve; moreover f is a fiber type contraction of an extremal ray;

9. n ¼ 5, t ¼ 4
3 ;

5
3 ;

5
4 ;

6
5 and ðX ;LÞ is described as in [13, (1.2), (iv)].

Proof. Throughout the proof we use over and over all the results from §1 without
always explicitly referring to them. Let t ¼ u

v
, where vd 2 since t is not integer. By

Lemma 1.8 there exist positive integers a, b such that av� bu ¼ 1 and the line bundle
A :¼ bKX þ aL is ample. Thus

KX þ uA ¼ aðvKX þ uLÞ ð1Þ

and hence KX þ uAAf�ðHÞ for some ample line bundle H on W and u is the nef-
value of ðX ;AÞ.

We put mðfÞ :¼ maxw AWfdim f�1ðwÞg and, if f is not birational, we denote by
f ðfÞ the dimension of the general fiber F . Note that in this case KF þ uAF AOF and
hence

uc f ðfÞ þ 1cmðfÞ þ 1c nþ 1: ð2Þ

Let us first consider the case v ¼ 2. Then, by Lemma 1.7,

t ¼ n� k þ 1

2
¼ 2n� 2k þ 1

2

and hence, recalling the assumption on n, one has nþ 1d u ¼ 2n� 2k þ 1d n� 2.
If u ¼ nþ 1, then n ¼ 2k, A ¼ KX þ ðk þ 1ÞL, ðX ;AÞG ðPn;OP nð1ÞÞ and we are

in Case 1.
If u ¼ n, or n ¼ 2k � 1, we have t ¼ n

2 and A ¼ KX þ kL. Then KX þ nA ¼
kð2KX þ nLÞ by (1). Since KX þ nA nef and big implies KX þ nA ample by [4, (7.2.3)],
we conclude that f is not birational. Hence we have u ¼ ncmðfÞ þ 1c nþ 1. Then
either mðfÞ ¼ n and f contracts X to a point, or u ¼ n ¼ mðfÞ þ 1. In the first case
2KX þ nLAOX , so that �KX AnM, LA2M for some ample line bundle M on X

(and hence AA ð�nþ 2kÞM ¼ M), and therefore ðX ;LÞG ðQ;OQð2ÞÞ as in Case 2
(a). In the latter case, by Theorem 1.9, ðX ;AÞ is a Pn�1-bundle over W as in Case 2
(b).

If u ¼ n� 1, or n ¼ 2k � 2, then t ¼ n�1
2 and A ¼ KX þ ðk � 1ÞL. If f is not bira-

tional, we have u ¼ n� 1cmðfÞ þ 1, and therefore n� 2cmðfÞc n. If mðfÞ ¼ n,
then f contracts X to a point, and hence 2KX þ ðn� 1ÞLAOX . Thus, since n� 1 is
odd, there exists an ample line bundle M on X such that KX A�ðn� 1ÞM, LA2M
(and hence AAð1� nþ 2ðk � 1ÞÞM ¼ M) and therefore ðX ;AÞ is a Del Pezzo
variety as in Case 3 (a). Let mðfÞ ¼ n� 1. Thus (2) yields n� 1c f ðfÞ þ 1c n and
hence either f ðfÞ ¼ n� 1 or f ðfÞ ¼ n� 2. Since u ¼ mðfÞ, and recalling that KX þ
ðn� 1ÞAAf�ðHÞ, we conclude from Theorem 1.9 that ðX ;AÞ, f : X ! W , is either
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a quadric fibration over a smooth curve, or a scroll over a normal surface as in Cases
3 (b), 3 (c). If mðfÞ ¼ n� 2, Inequality (2) gives u ¼ n� 1 ¼ mðfÞ þ 1, f ðfÞ ¼ n� 2
and ðX ;AÞ, f : X ! W , is a Pn�2-bundle as in Case 3 (d).

If f is birational, since u ¼ n� 1 is the nefvalue of ðX ;AÞ, the structure theorem [4,
(7.3.2)] applies to give Case 3 (e).

Next, assume u ¼ n� 2, or n ¼ 2k � 3. Then t ¼ n�2
2 and A ¼ KX þ ðk � 2ÞL.

Assume f is not birational. We have u ¼ n� 2cmðfÞ þ 1, so that n� 3c
mðfÞc n. If mðfÞ ¼ n, then f contracts X to a point, and hence 2KX þ ðn� 2ÞLA
OX . Thus, since n� 2 is odd, there exists an ample line bundle M on X such that
KX A�ðn� 2ÞM, LA2M (so that AAð2� nþ 2ðk � 2ÞÞM ¼ M) and therefore
ðX ;AÞ is a Mukai variety as in Case 4 (a). Let mðfÞ ¼ n� 1. Then (2) yields n� 2c
f ðfÞ þ 1c n and hence n� 3c f ðfÞc n� 1. Let f ðfÞ ¼ n� 1 (respectively f ðfÞ ¼
n� 2; respectively f ðfÞ ¼ n� 3). Thus, since KX þ ðn� 2ÞAAf�ðHÞ, we see that
ðX ;AÞ, f : X ! W , is a Del Pezzo fibration over W as in Case 4 (b) (respectively
ðX ;AÞ, f : X ! W , is a quadric fibration over W as in Case 4 (c); respectively
ðX ;AÞ, f : X ! W , is a scroll over W as in Case 4 (d)). Assume now mðfÞ ¼ n� 2.
Then n� 2c f ðfÞ þ 1c n� 1, and hence either f ðfÞ ¼ n� 2, or f ðfÞ ¼ n� 3.
Since u ¼ mðfÞ, we conclude from Theorem 1.9 that ðX ;AÞ, f : X ! W , is either
a quadric fibration over a normal surface (and all fibers are equidimensional in this
case) as in 4 (c), or a scroll over a normal threefold as in 4 (d). Finally, let mðfÞ ¼
n� 3. Then we find f ðfÞ ¼ n� 3 and, since u ¼ mðfÞ þ 1, ðX ;AÞ, f : X ! W , is
again a scroll over a normal threefold as in Case 4 (d) (and in fact a linear Pn�3-
bundle if X is smooth by Theorem 1.9).

If f is birational, since u ¼ n� 2 is the nefvalue of ðX ;AÞ, the structure theorem [1,
Theorem 3] (see also [4, (7.5.3)] in the smooth case) applies to give Case 4 (e).

From now on, we may assume vd 3. Lemma 1.7 yields the inequality

3c vc
n

n� k
: ð3Þ

If nd 2k � 1, we find 3kd 2nd 2ð2k � 1Þ, or kc 2, contradicting our assump-
tion on k.

Let n ¼ 2k � 2. Then 3kd 2nd 4k � 4, or kc 4. Hence k ¼ 4, n ¼ 6 and v ¼ 3.
Therefore Lemma 1.7 yields t ¼ 2þ i

3 , with i ¼ 1; 2. If i ¼ 2 one has t ¼ 8
3 , u ¼ 8,

which contradicts the bound uc 7 from the Kawamata rationality theorem (1.1).
Thus i ¼ 1, t ¼ 7

3 , and hence u ¼ 7 ¼ mðfÞ þ 1. Then mðfÞ ¼ 6, so that f contracts
X to a point. In this case 3KX þ 7LAOX , and we are in Case 5.

Assume now n ¼ 2k � 3. Inequality (3) gives now nc 9, so that n ¼ 9; 7; 5 by
parity.

Let n ¼ 9. Then k ¼ 6 and v ¼ 3. Therefore t ¼ 3þ i
3 with i ¼ 1; 2. If i ¼ 2, then

t ¼ 11
3 , u ¼ 11, contradicting the bound uc 10 from Theorem 1.1. Thus i ¼ 1, t ¼ 10

3
and hence u ¼ 10 ¼ mðfÞ þ 1, so that mðfÞ ¼ 9 and f contracts X to a point. In this
case 3KX þ 10LAOX , and we are in Case 6.

Let n ¼ 7. Then k ¼ 5 and again v ¼ 3 by (3). Therefore t ¼ 2þ i
3 with i ¼ 1; 2.

If i ¼ 2 we have t ¼ 8
3 , and u ¼ 8 ¼ mðfÞ þ 1. Thus mðfÞ ¼ 7, so that f contracts X
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to a point. In this case 3KX þ 8LAOX , and we are in Case 7. If i ¼ 1, then t ¼ 7
3

and u ¼ 7cmðfÞ þ 1c 8, so that either u ¼ mðfÞ ¼ 7, or u ¼ 7 ¼ mðfÞ þ 1. If u ¼
mðfÞ ¼ 7, f contracts X to a point and therefore 3KX þ 7LAOX , so we are in Case 8
(a). Let u ¼ 7 ¼ mðfÞ þ 1. Note that A ¼ 2KX þ 5L in this case. If f is not bira-
tional, Theorem 1.9 applies to say that ðX ;AÞ is a P6-bundle over W under f as in
Case 8 (b). We claim that f is not birational. Indeed, otherwise, we conclude from
Lemma 1.8 that KX þ 7A ð¼5ð3KX þ 7LÞÞ is nef and big and not ample. Since n ¼ 7,
this contradicts [4, (7.2.3)].

Let n ¼ 5. Then k ¼ 4 and 3c vc 5 by (3). The relations t ¼ u
v
¼ 1þ i

v
, ði; vÞ ¼ 1,

i < v, and uc nþ 1 ¼ 6 yield for t the values 4
3 ,

5
3 ,

5
4 ,

3
2 ,

6
5 . If t ¼ 3

2 we are in the
previous Case 4 of the statement. The remaining cases are described in [13, (1.2), (iv)],
to which we refer for details. r

Remark 2.2. Note that, if X is smooth, in the scroll Cases 3 (c) and 4 (d) of Theorem
2.1, f is a contraction of an extremal ray by [4, (14.1.1)]. Furthermore, if A is very
ample, then f is a linear Pn�dimðW Þ-bundle by [4, (14.1.3)].

3 The case of dimension nF 2kC 4

In this section we deal with the case of a manifold of dimension n ¼ 2k � 4. The
smoothness assumption is needed to use the Ionescu–Wis̀niewski inequality (see e.g.
[4, (6.3.6)]).

Theorem 3.1. Let X be a smooth projective variety of dimension n ¼ 2k � 4, kd 5.
Let L be an ample line bundle on X. Let t be the nefvalue of ðX ;LÞ and let f : X ! W

be the nefvalue morphism of ðX ;LÞ. Assume n� k < t < n� k þ 1. Then ðX ;LÞ is

described as follows:

1. t ¼ n�3
2 , A :¼ KX þ ðk � 3ÞL is ample, and either:

(a) ðX ;AÞ is a Fano variety of co-index 4, i.e., KX A�ðn� 3ÞA, LA2A; or
(b) ðX ;AÞ, f : X ! W , is a Mukai fibration over a smooth curve; or
(c) ðX ;AÞ, f : X ! W , is a Del Pezzo fibration over a normal surface; or
(d) ðX ;AÞ, f : X ! W , is a quadric fibration over a normal threefold; or
(e) ðX ;AÞ, f : X ! W , is a scroll over a normal fourfold; or
(f ) ðX ;AÞ, f : X ! W , is a Pn�4-bundle over a normal fourfold; furthermore f is

a fiber type contraction of an extremal ray; or
(g) nd 8, f is the simultaneous contraction of a finite number of extremal rays

and is an isomorphism outside of f�1ðBÞ where B is an algebraic subset of

W which is the disjoint union of irreducible components of dimension 2. Let
B be an irreducible component of B and let E ¼ f�1ðBÞ. The general fiber, D,
of the restriction, fE of f to E is a linear Pn�3, ðD;ADÞG ðPn�3;OPn�3ð1ÞÞ,
NE=X jD GOPn�3ð�1Þ and W is factorial with terminal singularities; or

(h) n ¼ 6. Let R be an extremal ray subordinated to f, i.e., ðKX þ 3AÞ � R ¼ 0.
Let E be an irreducible component of the exceptional locus of the contrac-

tion r : X ! Y of R. Let D be any irreducible component of any fiber of the

Mauro C. Beltrametti and Susanna Di Termini294



restriction, rE , of r to E. Thus r is a birational third adjoint contraction with

supporting divisor KX þ 3A, and either:
i. r is of divisorial type, E is a prime divisor and E, D are described as in [11,

Theorem 1.3]; or
ii. E ¼ D, EGP4 and NE=X GOP4ð�1ÞlOP4ð�1Þ.

2. n ¼ 12, t ¼ 13
3 , ðX ;LÞG ðP12;OP12ð3ÞÞ;

3. n ¼ 10 and either:
(a) t ¼ 11

3 , ðX ;LÞG ðP10;OP10ð3ÞÞ; or
(b) t ¼ 10

3 , ðX ;LÞG ðQ;OQð3ÞÞ, Q a hyperquadric in P11; or

(c) t ¼ 10
3 , A :¼ 2KX þ 7L is ample, ðX ;AÞ, f : X ! W , is a P9-bundle over a

smooth curve, and f is a fiber type contraction of an extremal ray;

4. n ¼ 8, t ¼ 7
3 , A :¼ 2KX þ 5L is ample and either:

(a) ðX ;AÞ is a Del Pezzo variety, LA3A; or
(b) ðX ;AÞ, f : X ! W , is a quadric fibration over a nonsingular curve, and all

fibers are equidimensional; or
(c) ðX ;AÞ, f : X ! W , is a scroll over a normal surface; or
(d) ðX ;AÞ, f : X ! W , is a P6-bundle over a normal surface, and f is a fiber type

contraction of an extremal ray; or
(e) f : X ! W is the simultaneous contraction to distinct smooth points of dis-

joint divisors Ei GP7 such that OEi
ðEiÞGOP7ð�1Þ and AEi

GOP7ð1Þ for i ¼
1; . . . ; t. Furthermore AW :¼ ðf�AÞ

��
and KW þ 7AW are ample and KX þ 7AA

f�ðKW þ 7AW Þ;

5. n ¼ 8, t ¼ 8
3 , A :¼ KX þ 3L is ample and either:

(a) ðX ;LÞG ðQ;OQð3ÞÞ, Q a hyperquadric in P9; or
(b) ðX ;AÞ, f : X ! W , is a P7-bundle over a nonsingular curve, and f is a fiber

type contraction of an extremal ray;

6. n ¼ 8, t ¼ 9
4 , ðX ;LÞG ðP8;OP8ð4ÞÞ;

7. n ¼ 6, t ¼ 4
3 , A :¼ 2KX þ 3L is ample and either:

(a) ðX ;AÞ is a Mukai variety, LA3A; or
(b) ðX ;AÞ, f : X ! W , is a Del Pezzo fibration over a smooth curve; or
(c) ðX ;AÞ, f : X ! W , is a quadric fibration over a normal surface; or
(d) ðX ;AÞ, f : X ! W , is a scroll over a normal threefold; or
(e) ðX ;AÞ, f : X ! W , is a P3-bundle over a normal threefold, and f is the con-

traction of an extremal ray; or
(f ) f is the simultaneous contraction of a finite number of extremal rays and

is an isomorphism outside of f�1ðBÞ where B is an algebraic subset of W

which is the disjoint union of irreducible components of dimension 1. Let B
be an irreducible component of B and let E ¼ f�1ðBÞ. The general fiber, D, of
the restriction, fE , of f to E is a linear P4, ðD;ADÞG ðP4;OP4ð1ÞÞ, NE=X jD G
OP4ð�1Þ and W is factorial with terminal singularities;
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8. n ¼ 6, t ¼ 5
3 , A :¼ KX þ 2L is ample and either:

(a) ðX ;AÞ is a Del Pezzo variety, LA3A; or
(b) ðX ;AÞ, f : X ! W , is a quadric fibration over a smooth curve, and all fibers

are equidimensional; or
(c) ðX ;AÞ, f : X ! W , is a scroll over a normal surface; or
(d) ðX ;AÞ, f : X ! W , is a P4-bundle over a normal surface, and f is the con-

traction of an extremal ray; or
(e) f is the simultaneous contraction of a finite number of extremal rays and is

an isomorphism outside of f�1ðBÞ where B is the union of a finite set of points.

For each point b A B let E ¼ f�1ðbÞ. Then ðE;AEÞG ðP5;OP5ð1ÞÞ, OEðEÞG
OP5ð�1Þ and W is factorial with terminal singularities;

9. n ¼ 6, t ¼ 5
4 , A :¼ 3KX þ 4L is ample and either:

(a) ðX ;AÞ is a Del Pezzo variety, LA4A; or
(b) ðX ;AÞ, f : X ! W , is as in one of cases 8 (b), 8 (c), 8 (d), 8 (e) respectively;

10. n ¼ 6, t ¼ 7
4 , ðX ;LÞG ðP6;OP6ð4ÞÞ;

11. n ¼ 6, t ¼ 6
5 , A :¼ 4KX þ 5L is ample and either:

(a) ðX ;LÞG ðQ;OQð5ÞÞ, Q a hyperquadric in P7; or
(b) ðX ;AÞ, f : X ! W , is a P5-bundle over a nonsingular curve; furthermore f is

a contraction of an extremal ray;

12. n ¼ 6, t ¼ 7
5 , ðX ;LÞG ðP6;OP6ð5ÞÞ;

13. n ¼ 6, t ¼ 7
6 , ðX ;LÞG ðP6;OP6ð6ÞÞ.

Proof. Throughout the proof we use over and over all the results from §1 without
always explicitly referring to them. Let t ¼ u

v
, where vd 2 since t is not integer. By

Lemma 1.8 there exist positive integers a, b such that av� bu ¼ 1 and the line bundle
A :¼ bKX þ aL is ample. Thus KX þ uA ¼ aðvKX þ uLÞ and hence KX þ uAA
f�ðHÞ for some ample line bundle H on W and u is the nefvalue of ðX ;AÞ.

We put mðfÞ :¼ maxw AWfdim f�1ðwÞg and, if f is not birational, we denote by
f ðfÞ the dimension of the general fiber F . Note that in this case KF þ uAF AOF and
hence Inequality (2) holds true.

Step I: Let us first consider case v ¼ 2. From Lemma 1.7 we have

t ¼ n� k þ 1

2
¼ 2k � 7

2
¼ n� 3

2
:

Therefore u ¼ n� 3 and hence A ¼ KX þ ðk � 3ÞL.
If f is not birational, then the same arguments as in the proof of Theorem 2.1 lead

to Cases (a) to (f ) in 1.
Thus we can assume f birational. If nd 8, we are in the range ud nþ1

2 and there-
fore we are in Case 1 (f ) by using Theorem 1.9, (c).

Then we can assume n ¼ 6. Hence u ¼ 3 is the nefvalue of ðX ;AÞ and KX þ 3AA
f�ðHÞ. Let R be an extremal ray subordinated to KX þ 3A (i.e., ðKX þ 3AÞ � R ¼ 0)
and let E be an irreducible component of the exceptional locus of the contraction r ¼
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contR : X ! Y of R. Let D be any irreducible component of any fiber of the restric-
tion, rE , of r to E. Then, since X is smooth, the Ionescu–Wis̀niewski inequality (see
e.g. [4, (6.3.6)]) yields dimE þ dimDd dimX þ lðRÞ � 1, where lðRÞ denotes the
length of R. In our case lðRÞ ¼ 3 (cf. [4, (4.2.15)]), so that the above inequality gives

dimE þ dimDd 8: ð4Þ

Thus 2 dimEd 8, or dimEd 4. Note that since KX þ 3A is the supporting divisor
of r, r is a 6-dimensional third reduction in the sense of [11]. If dimE ¼ 5, i.e., if r is
of divisorial type, then E, D are completely described in [11, Theorem 1.3]. We are in
Case 1 (h), i. If dimE ¼ 4, Inequality (4) yields dimDd 4, which implies D ¼ E and
hence r contracts E to a point. Thus [2, (5.8.1)] applies to give Case 1 (h), ii.

Thus from now on we can assume vd 3. Inequality (3) gives for n the possible
values n ¼ 12; 10; 8; 6.

If n ¼ 12; 10, the same arguments as in the proof of Theorem 2.1 (cases n ¼ 9; 7)
easily lead to Cases 2, 3.

Step II: The case n ¼ 8. We have k ¼ 6 and (3) yields v ¼ 3; 4. We deal first with
the case v ¼ 3. From Lemma 1.7 either t ¼ 7

3 , u ¼ 7 or t ¼ 8
3 , u ¼ 8.

Let t ¼ 7
3 , so that A ¼ 2KX þ 5L. Assume f is not birational. We have 7c f ðfÞþ

1cmðfÞ þ 1 from Inequality (2) and hence 6cmðfÞc 8. If mðfÞ ¼ 8, f contracts
X to a point so that 3KX þ 7LAOX . It follows that KX A�7A, LA3A, and we are
in Case 4 (a). If u ¼ mðfÞ ¼ 7, one has 6c f ðfÞc 7. Then, recalling that KX þ 7AA
f�ðHÞ, ðX ;AÞ, f : X ! W , is a quadric fibration over a nonsingular curve as in
Case 4 (b) if f ðfÞ ¼ 7; and ðX ;AÞ, f : X ! W , is a scroll over a normal surface as
in Case 4 (c) if f ðfÞ ¼ 6. If mðfÞ ¼ 6, then u ¼ mðfÞ þ 1 and ðX ;AÞ, f : X ! W , is
a P6-bundle over a normal surface as in Case 4 (d). Whenever f is birational, since
u ¼ 7 ¼ n� 1 is the nefvalue of ðX ;AÞ, we are in Case 4 (e) by using [4, (7.3.2)].

Let t ¼ 8
3 , so that A ¼ KX þ 3L. If f is not birational, we have 8c f ðfÞ þ 1c

mðfÞ þ 1 from Inequality (2) and hence 7cmðfÞc 8. If mðfÞ ¼ 8, f contracts X

to a point, so that 3KX þ 8LAOX and we are in Case 5 (a). If mðfÞ ¼ 7, then
u ¼ mðfÞ þ 1 and ðX ;AÞ, f : X ! W , is a P7-bundle over a smooth curve as in
Case 5 (b).

We claim that f is not birational. Indeed, if it was, then KX þ 8A ¼ KX þ
8ðKX þ 3LÞ ¼ 3ð3KX þ 8LÞ would be nef and big and not ample; since n ¼ 8 this is
not possible by [4, (7.2.3)].

Let v ¼ 4. From Lemma 1.7 either t ¼ 9
4 , u ¼ 9, or t ¼ 11

4 , u ¼ 11. The second
case contradicts the bound uc 9 from the Kawamata rationality theorem. Therefore
t ¼ 9

4 . Then u ¼ mðfÞ þ 1 ¼ 9, that is mðfÞ ¼ 8 and f : X ! W contracts X to a
point. Hence 4KX þ 9LAOX and we are in Case 6.

Step III: The case n ¼ 6. We have k ¼ 5 and (3) yields 3c vc 6.
Let v ¼ 3. From Lemma 1.7 either t ¼ 4

3 , u ¼ 4 or t ¼ 5
3 , u ¼ 5. Consider

first the case t ¼ 4
3 . Then A ¼ 2KX þ 3L. Assume f is not birational. Then Inequal-

ity (2) yields 4c f ðfÞ þ 1cmðfÞ þ 1, so that 3cmðfÞc 6. If mðfÞ ¼ 6, f con-
tracts X to a point, and therefore 3KX þ 4LAOX ; it follows that KX A�4A, LA3A
and we are in Case 7 (a). If mðfÞ ¼ 5, then 3c f ðfÞc 5. If f ðfÞ ¼ 5 (respectively
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f ðfÞ ¼ 4; respectively f ðfÞ ¼ 3), recalling that KX þ 4LAf�ðHÞ, we see that ðX ;AÞ,
f : X ! W , is a Del Pezzo fibration over a smooth curve as in Case 7 (b) (respec-
tively a quadric fibration over a normal surface as in Case 7 (c); respectively a scroll
over a normal threefold as in Case 7 (d)). If u ¼ mðfÞ ¼ 4, then 3c f ðfÞc 4 and
ðX ;AÞ, f : X ! W , is either a quadric fibration over a normal surface if f ðfÞ ¼ 4
(and all fibers are equidimensional since u ¼ mðfÞ), or a scroll over a normal three-
fold if f ðfÞ ¼ 3; we fall again in Cases 7 (c), 7 (d). If mðfÞ ¼ 3, then u ¼ mðfÞ þ 1
and ðX ;AÞ, f : X ! W , is a P3-bundle over a normal threefold as in Case 7 (e).
Whenever f is birational Theorem 1.9, (c) applies to give Case 7 (f ).

Let t ¼ 5
3 , and hence A ¼ KX þ 2L. If f is not birational, Inequality (2) gives

5c f ðfÞ þ 1cmðfÞ þ 1. Thus 4cmðfÞc 6 and exactly the same argument as in
the case t ¼ 4

3 , shows that we are in one of Cases 8 (a), 8 (b), 8 (c), 8 (d) (note that
in Case 8 (c) all fibers are equidimensional since u ¼ mðfÞ). If f is birational we are in
Case 8 (e) by using again Theorem 1.9, (c).

Let v ¼ 4. From Lemma 1.7 either t ¼ 5
4 , u ¼ 5, or t ¼ 7

4 , u ¼ 7. Let t ¼ 5
4 , so

that A ¼ 3KX þ 4L. If f is not birational, we have 5c f ðfÞ þ 1cmðfÞ þ 1, so that
4cmðfÞc 6. If mðfÞ ¼ 6, f contracts X to a point and hence 4KX þ 5LAOX .
Thus KX A�5A, LA4A and ðX ;AÞ is a Del Pezzo variety as in Case 9 (a). If u ¼
mðfÞ ¼ 5, we have 4c f ðfÞc 5. Therefore, since KX þ 5AAf�ðHÞ, we see that
ðX ;AÞ, f : X ! W , is a quadric fibration over a smooth curve, and all fibers are
equidimensional, if f ðfÞ ¼ 5; and ðX ;AÞ, f : X ! W , is a scroll over a normal sur-
face if f ðfÞ ¼ 4; we find the first two cases of 9 (b). If mðfÞ ¼ 4, then u ¼ mðfÞ þ 1
and ðX ;AÞ, f : X ! W , is a P4-bundle over a normal surface as in the third case of 9
(b). If f is birational, Theorem 1.9 applies again and we are in the last case of 9 (b).

Let t ¼ 7
4 . Since u ¼ mðfÞ þ 1 ¼ 7 we have mðfÞ ¼ 6, that is f contracts X to a

point, and therefore 4KX þ 7LAOX ; we are in Case 10 (a).
Next, let us assume v ¼ 5. Lemma 1.7 yields t ¼ 1þ i

5 with i ¼ 1; 2; 3; 4. Hence we
find for t the possible numerical values 6

5 ,
7
5 ,

8
5 ,

9
5 . Clearly the last two cases cannot

occur since they contradict the bound uc 7 from the Kawamata rationality theorem.
Let t ¼ 6

5 , and hence A ¼ 4KX þ 5L. Note that f is not birational. Indeed, if it
was, KX þ 6A ð¼5ð5KX þ 6LÞÞ would be nef and not ample, contradicting [4, (7.2.3)].
Thus f is a fibration satisfying 6c f ðfÞ þ 1cmðfÞ þ 1, and hence 5cmðfÞc 6. If
mðfÞ ¼ 6, f contracts X to a point, so that 5KX þ 6LAOX and we find Case 11 (a).
If mðfÞ ¼ 5, we are in Case 11 (b) since u ¼ mðfÞ þ 1.

Finally, let t ¼ 7
5 . Since u ¼ mðfÞ þ 1 ¼ 7 we have mðfÞ ¼ 6 and therefore

5KX þ 7LAOX ; we are in Case 12.
If v ¼ 6, then t ¼ 1þ i

6 , i ¼ 1; 5, by Lemma 1.7. The case i ¼ 5 is excluded by
the usual bound uc 7. Therefore t ¼ 7

6 and hence 6KX þ 7LAOX ; we are in Case
13. r

Remark 3.2. Note that in the scroll Cases 1 (e) (with nd 7), 4 (c), 7 (d), 8 (c) of
Theorem 3.1, f is a contraction of an extremal ray by [4, (14.1.1)]. Furthermore, if A

is very ample, in Cases 4 (c), 7 (d), 8 (c), f is a linear Pn�dimðWÞ-bundle by [4, (14.1.3)].
Note also that in the quadric fibration Cases 1 (d) (with nd 7), 4 (b), 7 (c), 8 (b), f

is a contraction of an extremal ray by [4, (14.2.1)].
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