Adv. Geom. 3 (2003), 287-299

Higher dimensional polarized varieties with non-integral nefvalue

Mauro C. Beltrametti and Susanna Di Termini

(Communicated by A. Sommese)

Abstract. Let *X* be an *n*-dimensional normal projective variety with terminal, Gorenstein, \mathbb{Q} -factorial singularities. Let *L* be an ample line bundle on *X*. Let τ be the nefvalue of (X, L). Then we classify (X, L), describing the structure of the nefvalue morphism of (X, L), when τ satisfies $n - k < \tau < n - k + 1$ and $n \ge 2k - 3$, $k \ge 4$. In the smooth case, we discuss the case n = 2k - 4, $k \ge 5$, as well.

Key words. Complex polarized *n*-fold, ample line bundle, nefvalue, nefvalue morphism, Gorenstein, terminal, Q-factorial singularities, adjunction theory, special varieties.

2000 Mathematics Subject Classification. Primary 14N30, 14J40; Secondary 14J45, 14C20

Introduction

Let *X* be an *n*-dimensional projective variety with terminal, Gorenstein, \mathbb{Q} -factorial singularities and let *L* be an ample line bundle on *X*. If the canonical bundle K_X is not nef, the Kawamata rationality theorem and the Kawamata–Shokurov basepoint free theorem imply that there is a fraction $\tau = u/v$, with *u*, *v* positive coprime integers, and a morphism $\phi : X \to W$ with connected fibers onto a normal projective variety *W* such that $vK_X + uL \approx \phi^* H$ for an ample line bundle *H* on *W* and $u \leq \max_{w \in W} \{\dim \phi^{-1}(w)\} + 1$. We call τ the *nefvalue* and ϕ the *nefvalue morphism* of (X, L) respectively.

Thus $\tau \leq n+1$ and by the Kobayashi–Ochiai theorem $\tau = n+1$ if and only if $(X, L) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)).$

It is a natural question to classify polarized pairs (X, L) in terms of the numerical values of τ and the structure of the morphism ϕ . The range $n - 3 \le \tau < n + 1$ has been extensively studied by several authors. We refer to [4, Chapter 7] for the case $n - 3 < \tau < n + 1$ with $n \ge 5$, to [7] for the n = 4 case, to [11], [12] for the case $\tau = n - 3$, and to [1] for a refinement in a more general context when ϕ is birational with $\tau = n - 1, n - 2$. Recently, the case where τ is not integer satisfying the condition $n - 4 < \tau < n - 3$, with $n \ge 5$ (as well as the case when τ satisfies $n - 3 < \tau < n - 2$), has been studied in [13]. In this paper we consider the more general situation when $\tau = u/v$ is not integer and satisfies $n - k < \tau < n - k + 1$, with $n \ge 2k - 3$, $k \ge 4$, which includes the results of [13]. If X is smooth, we study also the case n = 2k - 4, $k \ge 5$. Following [3], we use a new polarization A on X such that the nefvalue of (X, A) is u. Whenever $n \ge 2k - 3$ we fall in the range up to the second reduction in the adjunction theoretic sense, i.e., $u \ge n - 2$. If n = 2k - 4, then u = n - 3 and we need the third adjunction results [11], as well as the classification [2] of some codimension 2 small contractions which occur.

1 Background material

We work over the complex field \mathbb{C} . Throughout the paper we deal with projective varieties V (i.e., irreducible and reduced projective schemes), and we follow the usual notation in algebraic geometry. We denote by \approx (respectively \sim) the linear (respectively numerical) equivalence of line bundles.

The book [4] is a good reference for standard results and notation of adjunction theory. We also refer to [8] for some facts from Mori theory we use.

The paper is based on the following special case of a major theorem of Kawamata [8].

Theorem 1.1 (Kawamata rationality theorem). Let V be a normal projective variety of dimension n with terminal Gorenstein singularities. Let $\pi : V \to Y$ be a projective morphism onto a variety Y. Let L be a π -ample Cartier divisor of V. If K_V is not π -nef then

$$\tau = \min\{t \in \mathbb{R} \mid K_V + tL \text{ is } \pi\text{-nef}\}$$

is a rational number. Furthermore expressing $\tau = u/v$ with u, v coprime positive integers, we have $u \leq b + 1$ where $b = \max_{y \in Y} \{ \dim_{\mathbb{C}(y)} \pi^{-1}(y) \}$.

Definition 1.2. Let V be a normal variety of dimension n with terminal Gorenstein singularities. Let $\pi : V \to Y$ be a projective morphism onto a variety Y. Let \mathscr{L} be a π -ample Cartier divisor of V. Assume that K_V is not π -nef. Let τ be the positive rational number given by the Kawamata rationality theorem (1.1).

We say that the rational number τ is the π -nefvalue of (V, \mathscr{L}) . If Y is a point, τ is called the *nefvalue* of (V, \mathscr{L}) . Note also that, if Y is a point, then $K_V + \tau \mathscr{L}$ is nef and hence by Theorem 1.1 we have that $\tau = u/v$ for two coprime positive integers, u and v. Thus by the Kawamata–Shokurov basepoint free theorem we know that $|m(vK_V + u\mathscr{L})|$ is basepoint free for all $m \gg 0$. Therefore for such m, $|m(K_V + \tau \mathscr{L})|$ defines a morphism $f: V \to \mathbb{P}_{\mathbb{C}}$. Let $f = s \circ \phi$ be the Remmert–Stein factorization of f where $\phi: V \to W$ is a morphism with connected fibers onto a normal projective variety, W, and $s: W \to \mathbb{P}_{\mathbb{C}}$ is a finite-to-one morphism. By [4, (1.1.3)] we know that the morphism, ϕ , is the same for any m > 0 such that $|m(vK_V + u\mathscr{L})|$ is basepoint free, and thus only depends on (V, \mathscr{L}) . Note that, by [4, (1.1.3)], s is an embedding for $m \gg 0$ and therefore $f = \phi$ for $m \gg 0$. We call $\phi: V \to W$ the nefvalue morphism of (V, \mathscr{L}) . We also know by [4, (1.1.3)] that there is an ample line bundle H on W such that $vK_V + u\mathscr{L} \cong \phi^*H$.

Remark 1.3. Let V be as in Theorem 1.1 and \mathscr{L} an ample line bundle on V. Let τ be the nefvalue of (V, \mathscr{L}) and ϕ the nefvalue morphism of (V, \mathscr{L}) . Then \mathscr{L} is ϕ -ample and

$$\tau = \min\{\tau \in \mathbb{R} \mid K_V + t\mathcal{L} \text{ is nef}\} = \min\{t \in \mathbb{R} \mid K_V + t\mathcal{L} \text{ is } \phi\text{-nef}\}.$$

That is τ coincides with the ϕ -nefvalue of (V, \mathcal{L}) .

Lemma 1.4 ([4, (1.5.5)]). Let (V, \mathcal{L}) be as in Theorem 1.1. A real number τ is the nefvalue of (V, \mathcal{L}) if and only if $K_V + \tau \mathcal{L}$ is nef but not ample.

Let us recall a few results from adjunction theory.

Lemma 1.5 ([4, (3.3.2)]). Let \mathscr{L} be a nef and big line bundle on a normal projective variety, V, of dimension n with only terminal Gorenstein singularities. Then if $t(aK_V + b\mathscr{L}) \approx \mathscr{O}_V$ for some integers a > 0, b > 0, t > 0 one has $aK_V + b\mathscr{L} \approx \mathscr{O}_V$, and $b/a \leq n + 1$. If a, b are coprime, there exists a nef and big line bundle M on V such that $K_V \approx -bM$, $\mathscr{L} \approx aM$. If \mathscr{L} is ample, then so is M.

1.6 Special varieties. Let V be a normal Gorenstein variety of dimension n, and let L be an *ample* line bundle on V. We say that V is a *Gorenstein–Fano variety* (or simply that V is *Fano*) if $-K_V$ is ample. We say that (V, L) is a *Del Pezzo variety* (respectively a *Mukai variety*) if $K_V \approx -(n-1)L$ (respectively $K_V \approx -(n-2)L$).

We also say that (V, L) is a *scroll* (respectively a *quadric fibration*; respectively a *Del Pezzo fibration*; respectively a *Mukai fibration*) over a normal variety Y of dimension m if there exists a surjective morphism with connected fibers $p: V \to Y$, such that $K_V + (n - m + 1)L \approx p^* \mathcal{L}$ (respectively $K_V + (n - m)L \approx p^* \mathcal{L}$; respectively $K_V + (n - m - 1)L \approx p^* \mathcal{L}$; respectively $K_V + (n - m - 2)L \approx p^* \mathcal{L}$) for some *ample* line bundle \mathcal{L} on Y.

We say that a normal Gorenstein *n*-dimensional variety *V* is a *Fano variety of index i*, if *i* is the largest positive integer such that $K_V \approx -iH$ for some ample line bundle *H* on *V*. Note that $i \leq n + 1$ (see Lemma 1.5 below) and n - i + 1 is referred to as the *co-index* of *V*.

We refer to Fujita [5] and [6] for classification results on Del Pezzo varieties. Note that Del Pezzo manifolds are completely described by Fujita [5, I, §8]. We refer to Mukai [9] and [10] for results on Mukai varieties.

We also refer e.g. to [4, (3.1.6)] for a generalized version of Kobayashi–Ochiai theorem (characterizing projective spaces and quadrics) which we systematically use in the sequel.

The following useful fact was noted in [13, (1.1)]. It is an easy consequence of the Kawamata rationality theorem (1.1), and the assumption that τ is not integer.

Lemma 1.7 (Zhao). Let V be an n-dimensional normal projective variety with Gorenstein, terminal, \mathbb{Q} -factorial singularities. Let \mathcal{L} be an ample line bundle on V. Let τ be the nefvalue of (V, \mathcal{L}) . By the Kawamata rationality theorem, $\tau = u/v$, with u, v positive coprime integers. Assume $n - k < \tau < n - k + 1$ for positive k < n. Then $2 \le v \le \frac{n}{n-k}$ and $\tau = n - k + \frac{i}{n}$ for some positive integer i < v and i, v are coprime.

Finally, let us recall for reader's convenience the main results from [3].

Lemma 1.8 ([3, (1.1), (1.2)]). Let X be a normal projective variety with terminal Gorenstein singularities. Let L be an ample line bundle on X. Let $\varphi : X \to W$ be a surjective morphism onto a normal variety W. Assume that φ has at least one positive dimensional fiber and that $vK_X + uL \approx \varphi^*H$, for some ample line bundle H on W and coprime integers u, v.

- 1. There exist positive integers a, b such that av bu = 1;
- 2. Let $A := bK_X + aL$. Then A is ample, $K_X + uA \approx \varphi^*(aH)$ and u is the nefvalue of (X, A).

Theorem 1.9 ([3, (1.4)]). Let X be a projective variety of dimension n with Gorenstein rational singularities. Assume K_X not nef. Let L be an ample line bundle on X. Let $\tau = u/v$ be the nefvalue of (X, L), u, v coprime positive integers. Let $\phi : X \to W$ be the nefvalue morphism of (X, L). Let $A := bK_X + aL$ be an ample line bundle on X given by Lemma 1.8.

- 1. Assume that $u = \max_{w \in W} \{\dim \phi^{-1}(w)\} + 1$. Then (X, A) is a scroll over W under ϕ . If X is smooth, or more generally if $\operatorname{cod}_X \operatorname{Sing}(X) > \dim W$, then (X, A) is in fact a \mathbb{P}^{u-1} -bundle over W under ϕ . Furthermore ϕ is a fiber type contraction of an extremal ray.
- 2. Assume that $u = \max_{w \in W} \{\dim \phi^{-1}(w)\}$. If ϕ is not birational, then either
 - (a) (X, A) is a scroll over W under ϕ ; or
 - (b) (X, A) is a quadric fibration over W under ϕ , and all fibers are equidimensional.
 - If ϕ is birational, X is smooth, and $u \ge (n+1)/2$, then
 - (c) ϕ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(\mathscr{B})$ where \mathscr{B} is an algebraic subset of W which is the disjoint union of irreducible components of dimension n - u - 1. Let \mathcal{B} be an irreducible component of \mathscr{B} and let $E = \phi^{-1}(\mathcal{B})$. The general fiber, Δ , of the restriction, ϕ_E of ϕ to E is a linear \mathbb{P}^u , $(\Delta, A_\Delta) \cong (\mathbb{P}^u, \mathcal{O}_{\mathbb{P}^u}(1))$, $\mathcal{N}_{E/X|\Delta} \cong$ $\mathcal{O}_{\mathbb{P}^u}(-1)$ and W is factorial with terminal singularities.

Note that if X has terminal singularities, then X has rational singularities and it is a general fact that $\operatorname{cod}_X \operatorname{Sing}(X) \ge 3$, so that the above condition $\operatorname{cod}_X \operatorname{Sing}(X) > \dim W$ is always true if dim $W \le 2$.

2 The case of dimension $n \ge 2k - 3$

The following theorem includes the results of [13], which correspond to the cases k = 3, 4.

Theorem 2.1. Let X be a normal projective variety of dimension $n \ge 2k - 3$, $k \ge 4$, with terminal, Gorenstein, \mathbb{Q} -factorial singularities. Let L be an ample line bundle on X. Let τ be the nefvalue of (X, L) and let $\phi : X \to W$ be the nefvalue morphism of (X, L). Assume $n - k < \tau < n - k + 1$. Then (X, L) is described as follows:

- 1. n = 2k, $\tau = \frac{n+1}{2}$, $(X, L) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(2))$;
- 2. n = 2k 1, $\tau = \frac{n}{2}$, $A := K_X + kL$ is ample and either:
 - (a) $(X,L) \cong (\hat{\mathcal{Q}}, \mathcal{O}_2(2)), \, \hat{\mathcal{Q}} \text{ a hyperquadric in } \mathbb{P}^{n+1}; \text{ or }$
 - (b) $(X, A), \phi: X \to W$, is a \mathbb{P}^{n-1} -bundle over a smooth curve, and ϕ is a fiber type contraction of an extremal ray;
- 3. $n = 2k 2, \tau = \frac{n-1}{2}, A := K_X + (k-1)L$ is ample and either:
 - (a) (X, A) is a Del Pezzo variety, $L \approx 2A$; or
 - (b) $(X, A), \phi : X \to W$, is a quadric fibration over a smooth curve and all fibers are equidimensional, or
 - (c) $(X, A), \phi: X \to W$, is a scroll over a normal surface; or
 - (d) $(X, A), \phi : X \to W$, is a \mathbb{P}^{n-2} -bundle over a normal surface; furthermore ϕ is a fiber type contraction of an extremal ray; or
 - (e) $\phi: X \to W$ is the simultaneous contraction to distinct smooth points of disjoint divisors $E_i \cong \mathbb{P}^{n-1}$ such that $E_i \subset \operatorname{Reg}(X)$, $\mathcal{O}_{E_i}(E_i) \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-1)$ and $A_{E_i} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(1)$ for $i = 1, \ldots, t$. Furthermore $A_W := (\phi_* A)^{**}$ and $K_W + (n-1)A_W$ are ample and $K_X + (n-1)A \approx \phi^*(K_W + (n-1)A_W)$;
- 4. n = 2k 3, $\tau = \frac{n-2}{2}$, $A := K_X + (k-2)L$ is ample and either:
 - (a) (X, A) is a Mukai variety, $L \approx 2A$; or
 - (b) $(X, A), \phi: X \to W$, is a Del Pezzo fibration over a smooth curve; or
 - (c) $(X, A), \phi: X \to W$, is a quadric fibration over a normal surface; or
 - (d) $(X, A), \phi : X \to W$, is a scroll over a normal threefold; or
 - (e) $\phi: X \to W$ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(Z)$, where Z is an algebraic subset of W such that dim $Z \leq 1$. Moreover ϕ is the blowing up of W along Z and the following cases can occur:
 - i. The 1-dimensional component Z_1 of Z is the disjoint union of locally complete intersection curves and it is contained in the regular set of W; or
 - ii. If z is a 0-dimensional component of Z, then φ⁻¹(z) is an irreducible reduced divisor and either (E, A_E) ≃ (ℙⁿ⁻¹, 𝒪_{ℙⁿ⁻¹}(1)) with 儿_{E/X} ≃ 𝒪_{ℙⁿ⁻¹}(-2), or (E, A_E) ≃ (𝔅, 𝒪₂(1)), 𝔅 a (possibly singular) hyperquadric in ℙⁿ, with 儿_{E/X} ≃ 𝒪₂(-1);

5.
$$n = 6, \tau = \frac{7}{3}, (X, L) \cong (\mathbb{P}^6, \mathcal{O}_{\mathbb{P}^6}(3));$$

- 6. $n = 9, \tau = \frac{10}{3}, (X, L) \cong (\mathbb{P}^9, \mathcal{O}_{\mathbb{P}^9}(3));$
- 7. $n = 7, \tau = \frac{8}{3}, (X, L) \cong (\mathbb{P}^7, \mathcal{O}_{\mathbb{P}^7}(3));$
- 8. n = 7, $\tau = \frac{7}{3}$ and either:

- (a) $(X, L) \cong (\mathcal{Q}, \mathcal{O}_{\mathcal{Q}}(3)), \mathcal{Q}$ hyperquadric in \mathbb{P}^8 ; or
- (b) $A := 2K_X + 5L$ is ample, (X, A), $\phi : X \to W$, is a \mathbb{P}^6 -bundle over a smooth curve; moreover ϕ is a fiber type contraction of an extremal ray;
- 9. n = 5, $\tau = \frac{4}{3}, \frac{5}{3}, \frac{5}{4}, \frac{6}{5}$ and (X, L) is described as in [13, (1.2), (iv)].

Proof. Throughout the proof we use over and over all the results from §1 without always explicitly referring to them. Let $\tau = \frac{u}{v}$, where $v \ge 2$ since τ is not integer. By Lemma 1.8 there exist positive integers a, b such that av - bu = 1 and the line bundle $A := bK_X + aL$ is ample. Thus

$$K_X + uA = a(vK_X + uL) \tag{1}$$

and hence $K_X + uA \approx \phi^*(\mathscr{H})$ for some ample line bundle \mathscr{H} on W and u is the nefvalue of (X, A).

We put $m(\phi) := \max_{w \in W} \{\dim \phi^{-1}(w)\}$ and, if ϕ is not birational, we denote by $f(\phi)$ the dimension of the general fiber *F*. Note that in this case $K_F + uA_F \approx \mathcal{O}_F$ and hence

$$u \leqslant f(\phi) + 1 \leqslant m(\phi) + 1 \leqslant n + 1.$$

$$\tag{2}$$

Let us first consider the case v = 2. Then, by Lemma 1.7,

$$\tau = n - k + \frac{1}{2} = \frac{2n - 2k + 1}{2}$$

and hence, recalling the assumption on *n*, one has $n + 1 \ge u = 2n - 2k + 1 \ge n - 2$.

If u = n + 1, then n = 2k, $A = K_X + (k + 1)L$, $(X, A) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$ and we are in Case 1.

If u = n, or n = 2k - 1, we have $\tau = \frac{n}{2}$ and $A = K_X + kL$. Then $K_X + nA = k(2K_X + nL)$ by (1). Since $K_X + nA$ nef and big implies $K_X + nA$ ample by [4, (7.2.3)], we conclude that ϕ is not birational. Hence we have $u = n \leq m(\phi) + 1 \leq n + 1$. Then either $m(\phi) = n$ and ϕ contracts X to a point, or $u = n = m(\phi) + 1$. In the first case $2K_X + nL \approx \mathcal{O}_X$, so that $-K_X \approx nM$, $L \approx 2M$ for some ample line bundle M on X (and hence $A \approx (-n + 2k)M = M$), and therefore $(X, L) \cong (\mathcal{Q}, \mathcal{O}_2(2))$ as in Case 2 (a). In the latter case, by Theorem 1.9, (X, A) is a \mathbb{P}^{n-1} -bundle over W as in Case 2 (b).

If u = n - 1, or n = 2k - 2, then $\tau = \frac{n-1}{2}$ and $A = K_X + (k-1)L$. If ϕ is not birational, we have $u = n - 1 \leq m(\phi) + 1$, and therefore $n - 2 \leq m(\phi) \leq n$. If $m(\phi) = n$, then ϕ contracts X to a point, and hence $2K_X + (n-1)L \approx \mathcal{O}_X$. Thus, since n - 1 is odd, there exists an ample line bundle M on X such that $K_X \approx -(n-1)M$, $L \approx 2M$ (and hence $A \approx (1 - n + 2(k - 1))M = M$) and therefore (X, A) is a Del Pezzo variety as in Case 3 (a). Let $m(\phi) = n - 1$. Thus (2) yields $n - 1 \leq f(\phi) + 1 \leq n$ and hence either $f(\phi) = n - 1$ or $f(\phi) = n - 2$. Since $u = m(\phi)$, and recalling that $K_X + (n-1)A \approx \phi^*(\mathcal{H})$, we conclude from Theorem 1.9 that $(X, A), \phi : X \to W$, is either

292

a quadric fibration over a smooth curve, or a scroll over a normal surface as in Cases 3 (b), 3 (c). If $m(\phi) = n - 2$, Inequality (2) gives $u = n - 1 = m(\phi) + 1$, $f(\phi) = n - 2$ and $(X, A), \phi : X \to W$, is a \mathbb{P}^{n-2} -bundle as in Case 3 (d).

If ϕ is birational, since u = n - 1 is the nefvalue of (X, A), the structure theorem [4, (7.3.2)] applies to give Case 3 (e).

Next, assume u = n - 2, or n = 2k - 3. Then $\tau = \frac{n-2}{2}$ and $A = K_X + (k-2)L$. Assume ϕ is not birational. We have $u = n - 2 \leq m(\phi) + 1$, so that $n - 3 \leq m(\phi) + 1$ $m(\phi) \leq n$. If $m(\phi) = n$, then ϕ contracts X to a point, and hence $2K_X + (n-2)L \approx$ \mathcal{O}_X . Thus, since n-2 is odd, there exists an ample line bundle M on X such that $K_X \approx -(n-2)M$, $L \approx 2M$ (so that $A \approx (2-n+2(k-2))M = M$) and therefore (X, A) is a Mukai variety as in Case 4 (a). Let $m(\phi) = n - 1$. Then (2) yields $n - 2 \leq n - 1$ $f(\phi) + 1 \leq n$ and hence $n - 3 \leq f(\phi) \leq n - 1$. Let $f(\phi) = n - 1$ (respectively $f(\phi) =$ n-2; respectively $f(\phi) = n-3$). Thus, since $K_X + (n-2)A \approx \phi^*(\mathscr{H})$, we see that $(X, A), \phi: X \to W$, is a Del Pezzo fibration over W as in Case 4 (b) (respectively $(X, A), \phi: X \to W$, is a quadric fibration over W as in Case 4 (c); respectively $(X, A), \phi: X \to W$, is a scroll over W as in Case 4 (d)). Assume now $m(\phi) = n - 2$. Then $n-2 \leq f(\phi) + 1 \leq n-1$, and hence either $f(\phi) = n-2$, or $f(\phi) = n-3$. Since $u = m(\phi)$, we conclude from Theorem 1.9 that $(X, A), \phi: X \to W$, is either a quadric fibration over a normal surface (and all fibers are equidimensional in this case) as in 4 (c), or a scroll over a normal threefold as in 4 (d). Finally, let $m(\phi) =$ n-3. Then we find $f(\phi) = n-3$ and, since $u = m(\phi) + 1$, (X, A), $\phi: X \to W$, is again a scroll over a normal threefold as in Case 4 (d) (and in fact a linear \mathbb{P}^{n-3} bundle if X is smooth by Theorem 1.9).

If ϕ is birational, since u = n - 2 is the nefvalue of (X, A), the structure theorem [1, Theorem 3] (see also [4, (7.5.3)] in the smooth case) applies to give Case 4 (e).

From now on, we may assume $v \ge 3$. Lemma 1.7 yields the inequality

$$3 \leqslant v \leqslant \frac{n}{n-k}.$$
(3)

If $n \ge 2k - 1$, we find $3k \ge 2n \ge 2(2k - 1)$, or $k \le 2$, contradicting our assumption on k.

Let n = 2k - 2. Then $3k \ge 2n \ge 4k - 4$, or $k \le 4$. Hence k = 4, n = 6 and v = 3. Therefore Lemma 1.7 yields $\tau = 2 + \frac{i}{3}$, with i = 1, 2. If i = 2 one has $\tau = \frac{8}{3}$, u = 8, which contradicts the bound $u \le 7$ from the Kawamata rationality theorem (1.1). Thus i = 1, $\tau = \frac{7}{3}$, and hence $u = 7 = m(\phi) + 1$. Then $m(\phi) = 6$, so that ϕ contracts X to a point. In this case $3K_X + 7L \approx \mathcal{O}_X$, and we are in Case 5.

Assume now n = 2k - 3. Inequality (3) gives now $n \le 9$, so that n = 9, 7, 5 by parity.

Let n = 9. Then k = 6 and v = 3. Therefore $\tau = 3 + \frac{i}{3}$ with i = 1, 2. If i = 2, then $\tau = \frac{11}{3}$, u = 11, contradicting the bound $u \le 10$ from Theorem 1.1. Thus i = 1, $\tau = \frac{10}{3}$ and hence $u = 10 = m(\phi) + 1$, so that $m(\phi) = 9$ and ϕ contracts X to a point. In this case $3K_X + 10L \approx \mathcal{O}_X$, and we are in Case 6.

Let n = 7. Then k = 5 and again v = 3 by (3). Therefore $\tau = 2 + \frac{i}{3}$ with i = 1, 2. If i = 2 we have $\tau = \frac{8}{3}$, and $u = 8 = m(\phi) + 1$. Thus $m(\phi) = 7$, so that ϕ contracts X to a point. In this case $3K_X + 8L \approx \mathcal{O}_X$, and we are in Case 7. If i = 1, then $\tau = \frac{7}{3}$ and $u = 7 \leq m(\phi) + 1 \leq 8$, so that either $u = m(\phi) = 7$, or $u = 7 = m(\phi) + 1$. If $u = m(\phi) = 7$, ϕ contracts X to a point and therefore $3K_X + 7L \approx \mathcal{O}_X$, so we are in Case 8 (a). Let $u = 7 = m(\phi) + 1$. Note that $A = 2K_X + 5L$ in this case. If ϕ is not birational, Theorem 1.9 applies to say that (X, A) is a \mathbb{P}^6 -bundle over W under ϕ as in Case 8 (b). We claim that ϕ is not birational. Indeed, otherwise, we conclude from Lemma 1.8 that $K_X + 7A$ (=5($3K_X + 7L$)) is nef and big and not ample. Since n = 7, this contradicts [4, (7.2.3)].

Let n = 5. Then k = 4 and $3 \le v \le 5$ by (3). The relations $\tau = \frac{u}{v} = 1 + \frac{i}{v}$, (i, v) = 1, i < v, and $u \le n + 1 = 6$ yield for τ the values $\frac{4}{3}, \frac{5}{3}, \frac{5}{4}, \frac{3}{2}, \frac{6}{5}$. If $\tau = \frac{3}{2}$ we are in the previous Case 4 of the statement. The remaining cases are described in [13, (1.2), (iv)], to which we refer for details.

Remark 2.2. Note that, if X is smooth, in the scroll Cases 3 (c) and 4 (d) of Theorem 2.1, ϕ is a contraction of an extremal ray by [4, (14.1.1)]. Furthermore, if A is very ample, then ϕ is a linear $\mathbb{P}^{n-\dim(W)}$ -bundle by [4, (14.1.3)].

3 The case of dimension n = 2k - 4

In this section we deal with the case of a manifold of dimension n = 2k - 4. The smoothness assumption is needed to use the Ionescu–Wisniewski inequality (see e.g. [4, (6.3.6)]).

Theorem 3.1. Let X be a smooth projective variety of dimension n = 2k - 4, $k \ge 5$. Let L be an ample line bundle on X. Let τ be the nefvalue of (X, L) and let $\phi : X \to W$ be the nefvalue morphism of (X, L). Assume $n - k < \tau < n - k + 1$. Then (X, L) is described as follows:

- 1. $\tau = \frac{n-3}{2}$, $A := K_X + (k-3)L$ is ample, and either:
 - (a) (X, A) is a Fano variety of co-index 4, i.e., $K_X \approx -(n-3)A$, $L \approx 2A$; or
 - (b) $(X, A), \phi: X \to W$, is a Mukai fibration over a smooth curve; or
 - (c) $(X, A), \phi: X \to W$, is a Del Pezzo fibration over a normal surface; or
 - (d) $(X, A), \phi: X \to W$, is a quadric fibration over a normal threefold; or
 - (e) $(X, A), \phi: X \to W$, is a scroll over a normal fourfold; or
 - (f) $(X, A), \phi: X \to W$, is a \mathbb{P}^{n-4} -bundle over a normal fourfold; furthermore ϕ is a fiber type contraction of an extremal ray; or
 - (g) n≥8, φ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of φ⁻¹(𝔅) where 𝔅 is an algebraic subset of W which is the disjoint union of irreducible components of dimension 2. Let B be an irreducible component of 𝔅 and let E = φ⁻¹(B). The general fiber, Δ, of the restriction, φ_E of φ to E is a linear Pⁿ⁻³, (Δ, A_Δ) ≃ (Pⁿ⁻³, 𝔅_{Pⁿ⁻³}(1)), N_{E/X|Δ} ≃ 𝔅_{Pⁿ⁻³}(-1) and W is factorial with terminal singularities; or
 - (h) n = 6. Let R be an extremal ray subordinated to ϕ , i.e., $(K_X + 3A) \cdot R = 0$. Let E be an irreducible component of the exceptional locus of the contraction $\rho: X \to Y$ of R. Let Δ be any irreducible component of any fiber of the

restriction, ρ_E , of ρ to E. Thus ρ is a birational third adjoint contraction with supporting divisor $K_X + 3A$, and either:

- i. ρ is of divisorial type, *E* is a prime divisor and *E*, Δ are described as in [11, Theorem 1.3]; or
- ii. $E = \Delta$, $E \cong \widetilde{\mathbb{P}}^4$ and $\mathcal{N}_{E/X} \cong \mathcal{O}_{\mathbb{P}^4}(-1) \oplus \mathcal{O}_{\mathbb{P}^4}(-1)$.
- 2. $n = 12, \tau = \frac{13}{3}, (X, L) \cong (\mathbb{P}^{12}, \mathcal{O}_{\mathbb{P}^{12}}(3));$
- 3. n = 10 and either:
 - (a) $\tau = \frac{11}{3}, (X, L) \cong (\mathbb{P}^{10}, \mathcal{O}_{\mathbb{P}^{10}}(3)); or$
 - (b) $\tau = \frac{10}{3}$, $(X, L) \cong (\mathcal{Q}, \mathcal{O}_{\mathcal{Q}}(\overline{3}))$, \mathcal{Q} a hyperquadric in \mathbb{P}^{11} ; or
 - (c) $\tau = \frac{10}{3}$, $A := 2K_X + 7L$ is ample, (X, A), $\phi : X \to W$, is a \mathbb{P}^9 -bundle over a smooth curve, and ϕ is a fiber type contraction of an extremal ray;
- 4. n = 8, $\tau = \frac{7}{3}$, $A := 2K_X + 5L$ is ample and either:
 - (a) (X, A) is a Del Pezzo variety, $L \approx 3A$; or
 - (b) $(X, A), \phi: X \to W$, is a quadric fibration over a nonsingular curve, and all fibers are equidimensional; or
 - (c) $(X, A), \phi: X \to W$, is a scroll over a normal surface; or
 - (d) $(X, A), \phi : X \to W$, is a \mathbb{P}^6 -bundle over a normal surface, and ϕ is a fiber type contraction of an extremal ray; or
 - (e) $\phi: X \to W$ is the simultaneous contraction to distinct smooth points of disjoint divisors $E_i \cong \mathbb{P}^7$ such that $\mathcal{O}_{E_i}(E_i) \cong \mathcal{O}_{\mathbb{P}^7}(-1)$ and $A_{E_i} \cong \mathcal{O}_{\mathbb{P}^7}(1)$ for $i = 1, \ldots, t$. Furthermore $A_W := (\phi_* A)^{**}$ and $K_W + 7A_W$ are ample and $K_X + 7A \approx \phi^*(K_W + 7A_W)$;
- 5. n = 8, $\tau = \frac{8}{3}$, $A := K_X + 3L$ is ample and either:
 - (a) $(X,L) \cong (\mathcal{Q}, \mathcal{O}_{\mathcal{Q}}(3)), \mathcal{Q} \text{ a hyperquadric in } \mathbb{P}^9; \text{ or }$
 - (b) $(X, A), \phi : X \to W$, is a \mathbb{P}^7 -bundle over a nonsingular curve, and ϕ is a fiber type contraction of an extremal ray;
- 6. $n = 8, \tau = \frac{9}{4}, (X, L) \cong (\mathbb{P}^8, \mathcal{O}_{\mathbb{P}^8}(4));$
- 7. n = 6, $\tau = \frac{4}{3}$, $A := 2K_X + 3L$ is ample and either:
 - (a) (X, A) is a Mukai variety, $L \approx 3A$; or
 - (b) $(X, A), \phi: X \to W$, is a Del Pezzo fibration over a smooth curve; or
 - (c) $(X, A), \phi: X \to W$, is a quadric fibration over a normal surface; or
 - (d) $(X, A), \phi : X \to W$, is a scroll over a normal threefold; or
 - (e) $(X, A), \phi : X \to W$, is a \mathbb{P}^3 -bundle over a normal threefold, and ϕ is the contraction of an extremal ray; or
 - (f) ϕ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of $\phi^{-1}(\mathscr{B})$ where \mathscr{B} is an algebraic subset of Wwhich is the disjoint union of irreducible components of dimension 1. Let Bbe an irreducible component of \mathscr{B} and let $E = \phi^{-1}(B)$. The general fiber, Δ , of the restriction, ϕ_E , of ϕ to E is a linear \mathbb{P}^4 , $(\Delta, A_\Delta) \cong (\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1)), \mathscr{N}_{E/X|\Delta} \cong$ $\mathscr{O}_{\mathbb{P}^4}(-1)$ and W is factorial with terminal singularities;

- 8. n = 6, $\tau = \frac{5}{3}$, $A := K_X + 2L$ is ample and either:
 - (a) (X, A) is a Del Pezzo variety, $L \approx 3A$; or
 - (b) $(X, A), \phi: X \to W$, is a quadric fibration over a smooth curve, and all fibers are equidimensional; or
 - (c) $(X, A), \phi: X \to W$, is a scroll over a normal surface; or
 - (d) $(X, A), \phi: X \to W$, is a \mathbb{P}^4 -bundle over a normal surface, and ϕ is the contraction of an extremal ray; or
 - (e) φ is the simultaneous contraction of a finite number of extremal rays and is an isomorphism outside of φ⁻¹(𝔅) where 𝔅 is the union of a finite set of points. For each point b ∈ 𝔅 let E = φ⁻¹(b). Then (E, A_E) ≃ (Р⁵, 𝔅^s(1)), 𝔅_E(E) ≃ 𝔅^s(-1) and W is factorial with terminal singularities;
- 9. $n = 6, \tau = \frac{5}{4}, A := 3K_X + 4L$ is ample and either:
 - (a) (X, A) is a Del Pezzo variety, $L \approx 4A$; or
 - (b) $(X, A), \phi: X \to W$, is as in one of cases 8 (b), 8 (c), 8 (d), 8 (e) respectively;

10.
$$n = 6, \tau = \frac{7}{4}, (X, L) \cong (\mathbb{P}^6, \mathcal{O}_{\mathbb{P}^6}(4));$$

- 11. n = 6, $\tau = \frac{6}{5}$, $A := 4K_X + 5L$ is ample and either:
 - (a) $(X, L) \cong (\mathcal{Q}, \mathcal{O}_{\mathcal{Q}}(5)), \mathcal{Q} \text{ a hyperquadric in } \mathbb{P}^7; \text{ or }$
 - (b) $(X, A), \phi: X \to W$, is a \mathbb{P}^5 -bundle over a nonsingular curve; furthermore ϕ is a contraction of an extremal ray;
- 12. $n = 6, \tau = \frac{7}{5}, (X, L) \cong (\mathbb{P}^6, \mathcal{O}_{\mathbb{P}^6}(5));$

13.
$$n = 6, \tau = \frac{7}{6}, (X, L) \cong (\mathbb{P}^6, \mathcal{O}_{\mathbb{P}^6}(6)).$$

Proof. Throughout the proof we use over and over all the results from §1 without always explicitly referring to them. Let $\tau = \frac{u}{v}$, where $v \ge 2$ since τ is not integer. By Lemma 1.8 there exist positive integers a, b such that av - bu = 1 and the line bundle $A := bK_X + aL$ is ample. Thus $K_X + uA = a(vK_X + uL)$ and hence $K_X + uA \approx \phi^*(\mathscr{H})$ for some ample line bundle \mathscr{H} on W and u is the nefvalue of (X, A).

We put $m(\phi) := \max_{w \in W} \{\dim \phi^{-1}(w)\}$ and, if ϕ is not birational, we denote by $f(\phi)$ the dimension of the general fiber *F*. Note that in this case $K_F + uA_F \approx \mathcal{O}_F$ and hence Inequality (2) holds true.

Step I: Let us first consider case v = 2. From Lemma 1.7 we have

$$\tau = n - k + \frac{1}{2} = \frac{2k - 7}{2} = \frac{n - 3}{2}.$$

Therefore u = n - 3 and hence $A = K_X + (k - 3)L$.

If ϕ is not birational, then the same arguments as in the proof of Theorem 2.1 lead to Cases (a) to (f) in 1.

Thus we can assume ϕ birational. If $n \ge 8$, we are in the range $u \ge \frac{n+1}{2}$ and therefore we are in Case 1 (f) by using Theorem 1.9, (c).

Then we can assume n = 6. Hence u = 3 is the nefvalue of (X, A) and $K_X + 3A \approx \phi^*(\mathscr{H})$. Let *R* be an extremal ray subordinated to $K_X + 3A$ (i.e., $(K_X + 3A) \cdot R = 0$) and let *E* be an irreducible component of the exceptional locus of the contraction $\rho =$

 $\operatorname{cont}_R : X \to Y$ of R. Let Δ be any irreducible component of any fiber of the restriction, ρ_E , of ρ to E. Then, since X is smooth, the Ionescu–Wisniewski inequality (see e.g. [4, (6.3.6)]) yields dim $E + \dim \Delta \ge \dim X + \ell(R) - 1$, where $\ell(R)$ denotes the length of R. In our case $\ell(R) = 3$ (cf. [4, (4.2.15)]), so that the above inequality gives

$$\dim E + \dim \Delta \ge 8. \tag{4}$$

Thus $2 \dim E \ge 8$, or $\dim E \ge 4$. Note that since $K_X + 3A$ is the supporting divisor of ρ , ρ is a 6-dimensional third reduction in the sense of [11]. If dim E = 5, i.e., if ρ is of divisorial type, then E, Δ are completely described in [11, Theorem 1.3]. We are in Case 1 (h), i. If dim E = 4, Inequality (4) yields dim $\Delta \ge 4$, which implies $\Delta = E$ and hence ρ contracts E to a point. Thus [2, (5.8.1)] applies to give Case 1 (h), ii.

Thus from now on we can assume $v \ge 3$. Inequality (3) gives for *n* the possible values n = 12, 10, 8, 6.

If n = 12, 10, the same arguments as in the proof of Theorem 2.1 (cases n = 9, 7) easily lead to Cases 2, 3.

Step II: The case n = 8. We have k = 6 and (3) yields v = 3, 4. We deal first with the case v = 3. From Lemma 1.7 either $\tau = \frac{7}{3}$, u = 7 or $\tau = \frac{8}{3}$, u = 8.

Let $\tau = \frac{7}{3}$, so that $A = 2K_X + 5L$. Assume ϕ is not birational. We have $7 \le f(\phi) + 1 \le m(\phi) + 1$ from Inequality (2) and hence $6 \le m(\phi) \le 8$. If $m(\phi) = 8$, ϕ contracts X to a point so that $3K_X + 7L \approx \mathcal{O}_X$. It follows that $K_X \approx -7A$, $L \approx 3A$, and we are in Case 4 (a). If $u = m(\phi) = 7$, one has $6 \le f(\phi) \le 7$. Then, recalling that $K_X + 7A \approx \phi^*(\mathscr{H})$, (X, A), $\phi : X \to W$, is a quadric fibration over a nonsingular curve as in Case 4 (b) if $f(\phi) = 7$; and (X, A), $\phi : X \to W$, is a scroll over a normal surface as in Case 4 (c) if $f(\phi) = 6$. If $m(\phi) = 6$, then $u = m(\phi) + 1$ and (X, A), $\phi : X \to W$, is a \mathbb{P}^6 -bundle over a normal surface as in Case 4 (d). Whenever ϕ is birational, since u = 7 = n - 1 is the nefvalue of (X, A), we are in Case 4 (e) by using [4, (7.3.2)].

Let $\tau = \frac{8}{3}$, so that $A = K_X + 3L$. If ϕ is not birational, we have $8 \le f(\phi) + 1 \le m(\phi) + 1$ from Inequality (2) and hence $7 \le m(\phi) \le 8$. If $m(\phi) = 8$, ϕ contracts X to a point, so that $3K_X + 8L \approx \mathcal{O}_X$ and we are in Case 5 (a). If $m(\phi) = 7$, then $u = m(\phi) + 1$ and (X, A), $\phi : X \to W$, is a \mathbb{P}^7 -bundle over a smooth curve as in Case 5 (b).

We claim that ϕ is not birational. Indeed, if it was, then $K_X + 8A = K_X + 8(K_X + 3L) = 3(3K_X + 8L)$ would be nef and big and not ample; since n = 8 this is not possible by [4, (7.2.3)].

Let v = 4. From Lemma 1.7 either $\tau = \frac{9}{4}$, u = 9, or $\tau = \frac{11}{4}$, u = 11. The second case contradicts the bound $u \leq 9$ from the Kawamata rationality theorem. Therefore $\tau = \frac{9}{4}$. Then $u = m(\phi) + 1 = 9$, that is $m(\phi) = 8$ and $\phi : X \to W$ contracts X to a point. Hence $4K_X + 9L \approx \mathcal{O}_X$ and we are in Case 6.

Step III: The case n = 6. We have k = 5 and (3) yields $3 \le v \le 6$.

Let v = 3. From Lemma 1.7 either $\tau = \frac{4}{3}$, u = 4 or $\tau = \frac{5}{3}$, u = 5. Consider first the case $\tau = \frac{4}{3}$. Then $A = 2K_X + 3L$. Assume ϕ is not birational. Then Inequality (2) yields $4 \le f(\phi) + 1 \le m(\phi) + 1$, so that $3 \le m(\phi) \le 6$. If $m(\phi) = 6$, ϕ contracts X to a point, and therefore $3K_X + 4L \approx \mathcal{O}_X$; it follows that $K_X \approx -4A$, $L \approx 3A$ and we are in Case 7 (a). If $m(\phi) = 5$, then $3 \le f(\phi) \le 5$. If $f(\phi) = 5$ (respectively $f(\phi) = 4$; respectively $f(\phi) = 3$), recalling that $K_X + 4L \approx \phi^*(\mathscr{H})$, we see that (X, A), $\phi: X \to W$, is a Del Pezzo fibration over a smooth curve as in Case 7 (b) (respectively a quadric fibration over a normal surface as in Case 7 (c); respectively a scroll over a normal threefold as in Case 7 (d)). If $u = m(\phi) = 4$, then $3 \leq f(\phi) \leq 4$ and $(X, A), \phi: X \to W$, is either a quadric fibration over a normal surface if $f(\phi) = 4$ (and all fibers are equidimensional since $u = m(\phi)$), or a scroll over a normal threefold if $f(\phi) = 3$; we fall again in Cases 7 (c), 7 (d). If $m(\phi) = 3$, then $u = m(\phi) + 1$ and $(X, A), \phi: X \to W$, is a \mathbb{P}^3 -bundle over a normal threefold as in Case 7 (e). Whenever ϕ is birational Theorem 1.9, (c) applies to give Case 7 (f).

Let $\tau = \frac{5}{3}$, and hence $A = K_X + 2L$. If ϕ is not birational, Inequality (2) gives $5 \le f(\phi) + 1 \le m(\phi) + 1$. Thus $4 \le m(\phi) \le 6$ and exactly the same argument as in the case $\tau = \frac{4}{3}$, shows that we are in one of Cases 8 (a), 8 (b), 8 (c), 8 (d) (note that in Case 8 (c) all fibers are equidimensional since $u = m(\phi)$). If ϕ is birational we are in Case 8 (e) by using again Theorem 1.9, (c).

Let v = 4. From Lemma 1.7 either $\tau = \frac{5}{4}$, u = 5, or $\tau = \frac{7}{4}$, u = 7. Let $\tau = \frac{5}{4}$, so that $A = 3K_X + 4L$. If ϕ is not birational, we have $5 \leq f(\phi) + 1 \leq m(\phi) + 1$, so that $4 \leq m(\phi) \leq 6$. If $m(\phi) = 6$, ϕ contracts X to a point and hence $4K_X + 5L \approx \mathcal{O}_X$. Thus $K_X \approx -5A$, $L \approx 4A$ and (X, A) is a Del Pezzo variety as in Case 9 (a). If $u = m(\phi) = 5$, we have $4 \leq f(\phi) \leq 5$. Therefore, since $K_X + 5A \approx \phi^*(\mathscr{H})$, we see that $(X, A), \phi : X \to W$, is a quadric fibration over a smooth curve, and all fibers are equidimensional, if $f(\phi) = 5$; and $(X, A), \phi : X \to W$, is a scroll over a normal surface if $f(\phi) = 4$; we find the first two cases of 9 (b). If $m(\phi) = 4$, then $u = m(\phi) + 1$ and $(X, A), \phi : X \to W$, is a \mathbb{P}^4 -bundle over a normal surface as in the third case of 9 (b). If ϕ is birational, Theorem 1.9 applies again and we are in the last case of 9 (b).

Let $\tau = \frac{7}{4}$. Since $u = m(\phi) + 1 = 7$ we have $m(\phi) = 6$, that is ϕ contracts X to a point, and therefore $4K_X + 7L \approx \mathcal{O}_X$; we are in Case 10 (a).

Next, let us assume v = 5. Lemma 1.7 yields $\tau = 1 + \frac{i}{5}$ with i = 1, 2, 3, 4. Hence we find for τ the possible numerical values $\frac{6}{5}, \frac{7}{5}, \frac{8}{5}, \frac{9}{5}$. Clearly the last two cases cannot occur since they contradict the bound $u \leq 7$ from the Kawamata rationality theorem.

Let $\tau = \frac{6}{5}$, and hence $A = 4K_X + 5L$. Note that ϕ is not birational. Indeed, if it was, $K_X + 6A$ (=5(5 $K_X + 6L$)) would be nef and not ample, contradicting [4, (7.2.3)]. Thus ϕ is a fibration satisfying $6 \le f(\phi) + 1 \le m(\phi) + 1$, and hence $5 \le m(\phi) \le 6$. If $m(\phi) = 6$, ϕ contracts X to a point, so that $5K_X + 6L \approx \mathcal{O}_X$ and we find Case 11 (a). If $m(\phi) = 5$, we are in Case 11 (b) since $u = m(\phi) + 1$.

Finally, let $\tau = \frac{7}{5}$. Since $u = m(\phi) + 1 = 7$ we have $m(\phi) = 6$ and therefore $5K_X + 7L \approx \mathcal{O}_X$; we are in Case 12.

If v = 6, then $\tau = 1 + \frac{i}{6}$, i = 1, 5, by Lemma 1.7. The case i = 5 is excluded by the usual bound $u \leq 7$. Therefore $\tau = \frac{7}{6}$ and hence $6K_X + 7L \approx \mathcal{O}_X$; we are in Case 13.

Remark 3.2. Note that in the scroll Cases 1 (e) (with $n \ge 7$), 4 (c), 7 (d), 8 (c) of Theorem 3.1, ϕ is a contraction of an extremal ray by [4, (14.1.1)]. Furthermore, if A is very ample, in Cases 4 (c), 7 (d), 8 (c), ϕ is a linear $\mathbb{P}^{n-\dim(W)}$ -bundle by [4, (14.1.3)].

Note also that in the quadric fibration Cases 1 (d) (with $n \ge 7$), 4 (b), 7 (c), 8 (b), ϕ is a contraction of an extremal ray by [4, (14.2.1)].

References

- M. Andreatta, Contractions of Gorenstein polarized varieties with high nef value. *Math. Ann.* 300 (1994), 669–679. MR 96b:14007 Zbl 0813.14009
- M. Andreatta, J. A. Wiśniewski, On contractions of smooth varieties. J. Algebraic Geom. 7 (1998), 253–312. MR 99f:14021a Zbl 0966.14012
- [3] M. C. Beltrametti, A. J. Sommese, A remark on the Kawamata rationality theorem. J. Math. Soc. Japan 45 (1993), 557–568. MR 94e:14006 Zbl 0803.14003
- [4] M. C. Beltrametti, A. J. Sommese, *The adjunction theory of complex projective varieties*. de Gruyter 1995. MR 96f:14004 Zbl 0845.14003
- [5] T. Fujita, Classification theories of polarized varieties. Cambridge Univ. Press 1990. MR 93e:14009 Zbl 0743.14004
- [6] T. Fujita, On singular del Pezzo varieties. In: Algebraic geometry (L'Aquila, 1988), volume 1417 of Lecture Notes in Math., 117–128, Springer 1990. MR 91b:14057 Zbl 0714.14026
- [7] T. Fujita, On Kodaira energy and adjoint reduction of polarized manifolds. *Manuscripta Math.* 76 (1992), 59–84. MR 93i:14032 Zbl 0766.14027
- [8] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem. In: *Algebraic geometry, Sendai*, 1985, volume 10 of *Adv. Stud. Pure Math.*, 283–360, North-Holland 1987. MR 89e:14015 Zbl 0672.14006
- [9] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3000–3002. MR 90g:14024 Zbl 0679.14020
- [10] S. Mukai, New classification of Fano threefolds and manifolds of coindex 3. Preprint 1988.
- [11] S. Nakamura, On the third adjoint contractions. J. Reine Angew. Math. 467 (1995), 51–65. MR 97a:14007 Zbl 0832.14003
- S. Nakamura, On the classification of the third reduction with a spectral value condition.
 J. Math. Soc. Japan 49 (1997), 633–646. MR 98g:14016 Zbl 0932.14023
- [13] Y. Zhao, On classification of polarized varieties with non-integral nef values. Proc. Amer. Math. Soc. 129 (2001), 1907–1913. MR 2002b:14011 Zbl 01597844

Received 18 April, 2002; revised 26 June, 2002

- M. C. Beltrametti, Dipartimento di Matematica, Via Dodecaneso 35, I-16146 Genova, Italy Email: beltrame@dima.unige.it
- S. Di Termini, Via G. Opisso 252/25, I-16155 Genova, Italy Email: 2100177@studenti.unige.it