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Abstract. A dimensional dual hyperoval satisfying property (H) [6] in a projective space
of order 2 is naturally associated with a ‘‘semi-Boolean’’ Steiner quadruple system. The only
known examples are associated with Boolean systems. For every d > 2, we construct a new d-
dimensional dual hyperoval satisfying property (H) in PGðdðd þ 3Þ=2; 2Þ; its related semi-
Boolean system is the Teirlinck one. It is universal and admits quotients in PGðn; 2Þ, with
4d < n < dðd þ 3Þ=2, if dd 6. We also prove the uniqueness of d-dimensional dual hyperovals
satisfying property (H) in PGðdðd þ 3Þ=2; 2Þ, whose related semi-Boolean systems belongs to
a particular class, which includes Boolean and Teirlinck systems. Finally, we prove property
(mI) [6] for them.

1 Introduction

1.1 Definitions and preliminary results. As in [7], a d-dimensional dual hyperoval is
a family F of d-dimensional subspaces in a projective space P of dimension n and
order q satisfying the following conditions:

(i) every point of P belongs to either 0 or 2 members of F ;

(ii) any two members of F have precisely a point in common;

(iii) the set of points belonging to the members of F spans P.

Since the number yðd; qÞ of points of PGðd; qÞ is equal to ðqdþ1 � 1Þ=ðq� 1Þ, it
follows by (i) and (ii) that jF j ¼ yðd; qÞ þ 1 ¼ ðqdþ1 þ q� 2Þ=ðq� 1Þ.

When n ¼ 2 and d ¼ 1, we get the classical definition of dual hyperoval in a pro-
jective plane. In that case q is necessarily even. This property has been generalized in
[4] for any d-dimensional dual hyperoval in PGðn; qÞ with n odd.

d-dimensional dual hyperovals appear as a particular case of d-dimensional dual

arcs, defined in [11] substituting (i) with

( j) every point of P belongs to at most 2 members of F .



For any result on d-dimensional dual arcs, we refer to [12]. In this paper we restrict
the subject to d-dimensional dual hyperovals. We also assume d > 1, since d ¼ 1
corresponds to the usual dual hyperovals in projective planes. We use the terminol-
ogy dimensional dual hyperoval if we do not need to point out the dimension d.

Yoshiara proved in [12] that D ¼ dðd þ 3Þ=2 and Dþ 2 are upper bounds for the
dimension of a projective space of order q, containing a d-dimensional dual hyper-
oval, in the cases q > 2 and q ¼ 2, respectively.

For q ¼ 2h, h > 1, this is the best possible, since Yoshiara also constructed in [12]
a d-dimensional dual hyperoval, for any d, by completing a d-dimensional dual arc
defined by Thas and Van Maldeghem in [9].

The upper bound Dþ 2 in the case q ¼ 2 maybe could be improved. In fact the
d-dimensional dual hyperovals, which are known until now in projective spaces of
order 2, also suggest D as upper bound.

As in [6], we give the following definition.

Definition 1.1. Given a d-dimensional dual hyperoval F and an m-subspace W

in PGðn; qÞ, if the family F 0 obtained factorizing F by W is a d-dimensional dual
hyperoval in PGðn�m� 1; qÞ, we say that F 0 is a quotient of F . A dimensional dual
hyperoval which is not a quotient of any other one is called universal. A dimensional
dual hyperoval is minimal if does not admit any quotient.

We get the following result for the existence of quotients of dimensional dual
hyperovals in projective spaces of order 2.

Theorem 1.2. A d-dimensional dual hyperoval F in PGðn; 2Þ, with n > 4d, admits a

quotient in PGðk; 2Þ, 4dc kc n.

Proof. We recall that a d-dimensional dual hyperoval F in PGðn; 2Þ can be factorized
in a d-dimensional dual hyperoval in PGðn� i � 1; 2Þ if and only if there is an i-
subspace of PGðn; 2Þ disjoint with the union, say L, of the 2d-spaces spanned by the
pairs of distinct d-spaces of F ([6], [12]).

Since the number of pairs of d-spaces of F is 2dð2dþ1 � 1Þ and the number of points
of a 2d-space is 22dþ1 � 1, we have:

jLj < 2dð2dþ1 � 1Þð22dþ1 � 1Þ < 24dþ2 � 1 ¼ jPGð4d þ 1; 2Þj

Since nd 4d þ 1, the complement CL of L in PGðn; 2Þ is not empty. Therefore, fac-
torizing by a point of CL, we get a d-dimensional dual hyperoval of PGðn� 1; 2Þ.
By induction we get the statement. r

Definition 1.3. A dimensional dual hyperoval F in PGðn; qÞ is said to satisfy property

(H) if, for any triple of distinct members of F , denoting by p the plane containing
their pairwise intersection points, the set of lines of p contained in some member of F
is a dual hyperoval (then q is even).
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Note that any quotient of a dimensional dual hyperoval defined as above also sat-
isfies property (H).

Definition 1.4. A d-dimensional dual hyperoval F is said to satisfy property (mI) if,
for any triple of distinct members of F , the intersection between the 2d-space spanned
by two of them and the third one is a line.

Property (mI) is not necessarily preserved by quotients. Property (mI) is denoted
by (T) in [4] and in [12]. Huybrechts proved in [6] that (mI) implies (H).

It is immediate to see that property (H) allows to group the members of F in
blocks of size qþ 2 such that any qþ 1 members of a block B meet the remaining
member of B in qþ 1 points belonging to the same line. These blocks give rise to
a ð3; qþ 2; ðqdþ1 þ q� 2Þ=ðq� 1ÞÞ Steiner system (whose points are the members of
F ) whose derived systems are isomorphic to PG1ðd; qÞ, the point-line system asso-
ciated with PGðd; qÞ. We recall that, enriching such a Steiner system by all possible
pairs of distinct points, called lines, we get a geometry belonging to the diagram
c:PG1ðd; qÞ.

We remark that any quotient of a dimensional dual hyperoval F satisfying prop-
erty (H) gives rise to the same Steiner system related to F .

For q ¼ 2 a Steiner system as above is said to be a semi-Boolean Steiner quadruple

system of order 2dþ1 (SBQSð2dþ1Þ in short). A particular case of SBQSð2dþ1Þ is the
Boolean Steiner quadruple system of order 2dþ1, i.e., the point-plane system associated
with the a‰ne space of dimension d þ 1 and order 2.

In [1] an explicit construction of SBQSs is proposed. Here we describe a particular
case of it. Let V be the ðd þ 1Þ-dimensional vector space over Z2 and let z be an ele-
ment chosen in V � f0g. Given X JV � f0; zg such that x A X if and only if
xþ z A X , consider the map q from V

3

� �
to V defined as follows:

qðfa; b; cgÞ ¼ aþ bþ cþ ½wðaþ bÞ þ wðaþ cÞ þ wðbþ cÞ�z; ð1Þ

where w is the characteristic function of X . Set QðX Þ ¼
�
fa; b; c; qðfa; b; cgÞg j

fa; b; cg A V
3

� ��
. In [1] it is proved that the pair ðV ;QðX ÞÞ is an SBQS. In the fol-

lowing such a system will be called characteristic. Since in [1] it is also proved that
there are at least 2b3ðd�3Þ=2c characteristic SBQSð2dþ1Þ, we may state the following
theorem.

Theorem 1.5. For any dd 3, there exist at least 2b3ðd�3Þ=2c geometries belonging to the

diagram c:PG1ðd; 2Þ.

Remark 1.6. The Boolean SBQSð2dþ1Þ is characteristic, since it corresponds to the
case X ¼ q. Also, the SBQSð2dþ1Þ as defined by Teirlinck in [8] is characteristic
since it may be viewed as ðV ;QðX ÞÞ with X ¼ V � f0; zg.

1.2 Examples of dimensional dual hyperovals. We give a list of the dimensional dual
hyperovals which are known until now.
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author d n q reference

a Yoshiara any dðd þ 3Þ=2 2h [12]

b Huybrechts any dðd þ 3Þ=2 2 [6]

c Yoshiara any 2d and 2d þ 1 2 [10]

d Cooperstein–Thas any 2d 2 [3]

e Huybrechts–Pasini 2 5 4 [7] and [2]

f Buratti–Del Fra any dðd þ 3Þ=2 2 this paper

Property (mI) (and consequently property (H)) always holds in cases b), e) and f ),
while in case c) it holds only if ðd; nÞ ¼ ð2; 5Þ. Property (H) also holds, for each d, for
exactly one d-dimensional dual hyperoval of c) in dimension 2d þ 1. All these dimen-
sional dual hyperovals satisfying (H) are related to the Boolean Steiner system. Prop-
erty (H) (and consequently property (mI)) does not hold for any dimensional dual
hyperoval of a), as proved by Yoshiara (private communication).

The d-dimensional dual hyperovals of b) admit quotients in PGðn; 2Þ, for every n

with 2d þ 1c ncD ¼ dðd þ 3Þ=2 ([12], Theorem 14). Those of f ) admit quotients
in PGðn; 2Þ, for every n with 4dc ncD, if dd 6 (Theorem 3.4). The d-dimensional
dual hyperovals of a) also admit quotients in PGðn; 2hÞ, for every n with 4d � 2c
ncD ([12], Proposition 15).

We refer the reader to the papers recalled in the above table for more information
about the examples. Here, we describe explicitly only the dimensional dual hyper-
ovals of b). Consider in PGðD; 2Þ the Grassmann variety of lines of PGðd þ 1; 2Þ
(D ¼ dðd þ 3Þ=2). The image of the point set of a copy of AGðd þ 1; 2Þ inside
PGðd þ 1; 2Þ, under the Grassmann transformation, is a d-dimensional dual hyper-
oval of PGðD; 2Þ.

1.3 Dimensional dual hyperovals and c:AG* geometries. As remarked in [7], every
d-dimensional dual hyperoval F gives rise to a geometry belonging to the diagram
c:AG�

dþ1, where AG�
dþ1 represents the dual of the point-line system of a ðd þ 1Þ-

dimensional a‰ne space. This geometry satisfies property (LL), and also satisfies
property (T) (see [7], §1.5) if and only if F satisfies property (mI). If q ¼ 2, the
previous diagram becomes c:c* and the corresponding geometries are semi-
biplanes.

2 Characteristic dimensional dual hyperovals

As in the previous section let V ¼ Zdþ1
2 and let X be a subset of V � f0; zg (z a non-

zero element of V ), with the property that x A X implies that xþ z A X .
Let B be a basis of V containing z and set G ¼ BU f0g. Every vector of V is the

sum of an odd number of elements of G, in a unique way. We denote by JðvÞ the odd
subset of G related to the vector v.

Recall that the symmetric di¤erence AsB between two sets A;B is defined by
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AsB ¼ ðAUBÞ � ðAVBÞ. More generally, given A1; . . . ;An, the symmetric di¤er-
ence A1s � � �sAn is the set of elements belonging to an odd number of Ai’s.

For every ordered pair ðu; vÞ of elements of V , let us define:

xu; v ¼ ½jX V ðfuþ wgw A JðvÞsfuþ vgÞj�; ð2Þ

where ½y� means the residue class of y modulo 2. Note that:

fv; vþ zgVG0q ) xu; v ¼ 0: ð3Þ

We remark that, for any u; v A V

xu; v ¼ xu; vþz ¼ xuþz; v ¼ xuþz; vþz ð4Þ

and, in particular,

xu;0 ¼ xu; z; x0;u ¼ xz;u: ð5Þ

We point out that, in the following, all equalities involving xu; v’s are understood in
Z2. By abuse of notation, we will write y instead of the residue class ½y�.

Proposition 2.1. For every triple of elements u; v1; v2 in V, we have

xu; v1 þ xu; v2 þ xu;u þ xu;uþv1þv2 ¼ jX V fuþ v1; uþ v2; v1 þ v2gj: ð6Þ

Proof. Using (2) we get

xu; v1 þ xu; v2 þ xu;u ¼
X2

i¼1

jX V ðfuþ wgw A JðviÞsfuþ vigÞj þ jX V fuþ wgw A JðuÞj:

ð7Þ

Since Jðv1 þ v2 þ uÞ ¼ Jðv1ÞsJðv2ÞsJðuÞ, we also have

xu;uþv1þv2 ¼ jX V ðfuþ wg
w A Jðv1Þ

sfuþ wg
w A Jðv2Þ

sfuþ wg
w A JðuÞ

sfv1 þ v2gÞj:
ð8Þ

From (7), (8) we deduce the statement. r

Let F be a d-dimensional dual hyperoval in PGðn; 2Þ satisfying property (H).
Assume that its associated SBQS, say Q, is characteristic and related to X JV �
f0; zg (z a non-zero element of V such that x A X ) xþ z A X ). Such a structure will
be called a characteristic d-dimensional dual hyperoval.

For every v A V , let Sv be the d-space of F associated with v. Given two d-spaces
Su;Sv in F , denote by au; v (or indi¤erently by av;u) the intersection point Su VSv.
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From now on we will work in Znþ1
2 that, by abuse of notation, will be identified

with PGðn; 2ÞU f0g. For every u A V , we set:

au;u ¼ 0: ð9Þ

Given pairwise distinct u; v1; v2 in V , in view of property (H) we have

au; v1 þ au; v2 ¼ au;qðfu; v1; v2gÞ; ð10Þ

where qðfu; v1; v2gÞ is the 4th point of the block of Q determined by u; v1; v2. Since Q
is characteristic, equalities (10), (9) and (1) imply

au; v1 þ au; v2 ¼
au;uþv1þv2 if jX V ðfuþ v1gs fuþ v2gs fv1 þ v2gÞj

is even,

au;uþv1þv2þz otherwise.

8<
: ð11Þ

Thus, chosen v1; v2; . . . ; vi, i > 2,

—if i is even, we have

au; v1 þ au; v2 þ � � � þ au; vi

¼
au;uþv1þ���þvi if jX V ðfuþ v1gs � � �sfuþ vigsfv1 þ � � � þ vigÞj

is even,

au;uþv1þ���þviþz otherwise.

8<
: ð12Þ

—if i is odd, we have

au; v1 þ au; v2 þ � � � þ au; vi

¼
au; v1þ���þvi if jX V ðfuþ v1gs � � �sfuþ vigsfuþ v1 þ � � � þ vigÞj

is even,

au; v1þ���þviþz otherwise.

8<
: ð13Þ

We remark that, for any u; v in V , we get by (13)

au; vþz ¼ au; v þ au;0 þ au; z: ð14Þ

For any ordered pair ðu; vÞ of elements of V , we get by (2), (13) and (14)

au; v ¼
X

w A JðvÞ
au;w þ xu; vðau;0 þ au; zÞ: ð15Þ

By iterated use of (15) and (4), we get
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au; v ¼
X

w A JðvÞ
aw;u þ xu; vða0;u þ az;uÞ

¼
X

w A JðvÞ;w 0A JðuÞ
aw;w 0 þ

X
w A JðvÞ

xw;uðaw;0 þ aw; zÞ

þ xu; v
X

w A JðuÞ
a0;w þ x0;uða0;0 þ a0; zÞ þ

X
w A JðuÞ

az;w þ xz;uðaz;0 þ az; zÞ

2
4

3
5

¼
X

w A JðvÞ;w 0A JðuÞ
aw;w 0 þ

X
w A JðvÞ

xw;uðaw;0 þ aw; zÞ þ xu; v
X

w A JðuÞ
ða0;w þ az;wÞ:

In conclusion, for any u; v A V we have:

au; v ¼
X

w A JðvÞ
w 0A JðuÞ

aw;w 0 þ
X

w A JðvÞ
xw;uðaw;0 þ aw; zÞ þ xu; v

X
w A JðuÞ

ða0;w þ az;wÞ: ð16Þ

Note that from (14) we also deduce

au; vþz ¼ au; v þ
X

w A JðuÞ
ðaw;0 þ aw; zÞ ð17Þ

and in particular

au;uþz ¼
X

w A JðuÞ
ðaw;0 þ aw; zÞ: ð18Þ

The previous results allow to get the following upper bound for the dimension of a
projective space containing a characteristic d-dimensional dual hyperoval:

Theorem 2.2. If a characteristic d-dimensional dual hyperoval F exists in PGðn; 2Þ, then
nc dðd þ 3Þ=2.

Proof. In view of (iii) in Section 1, it is enough to prove that the set faw;w 0 jw;w 0 A
G;w0w 0g of size dþ2

2

� �
spans all the points au; v of the d-spaces of F . The statement

follows from equality (16). r

Remark 2.3. Equality (16) shows that a characteristic dimensional dual hyperoval in
PGðdðd þ 3Þ=2; 2Þ is completely determined by the characteristic SBQS related to it.
In particular, for any d, the only d-dimensional dual hyperoval in PGðdðd þ 3Þ; 2Þ
whose related SBQS is Boolean belongs to the Huybrechts’ family.

Remark 2.4. For any u; v A V , equalities au;u ¼ 0 and au; v ¼ av;u imply, by (16), strong
conditions on the values xu; v and consequently on the SBQS associated with a char-
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acteristic dimensional dual hyperoval. We already know that the Boolean system of
order 2dþ1 is suitable for a d-dimensional dual hyperoval (the Huybrechts’ one).
Now, we prove that the Teirlinck SBQSð2dþ1Þ is also related to a d-dimensional dual
hyperoval.

Theorem 2.5. Let Q be the Boolean or the Teirlinck system Sð3; 4; 2dþ1Þ. Up to isomor-

phism, there is exactly one d-dimensional dual hyperoval in PGðdðd þ 3Þ=2; 2Þ, sat-
isfying property (H) and admitting Q as related SBQS.

Proof. The uniqueness has been noticed in Remark 2.3. The existence in the Boolean
case is clear in view of the Huybrechts’ family. It remains to prove the existence in the
case when Q is a Teirlinck system.

Take an arbitrary bijection a between G
2

� �
and a fixed basis of W ¼ Z

dþ2
2ð Þ

2 and set:

bw;w 0 ¼ bw 0;w ¼ aðfw;w 0gÞ for all fw;w 0g A
G

2

� �
: ð19Þ

We also set bw;w ¼ 0 for every w A G.
For every pair fu; vg of elements of V , we define bu; v as suggested by (16):

bu; v ¼
X

w A JðuÞ
w 0A JðvÞ

bw;w 0 þ
X

w A JðvÞ
xw;uðbw;0 þ bw; zÞ þ xu; v

X
w A JðuÞ

ðbw;0 þ bw; zÞ: ð20Þ

We note that (20) is an identity for u; v in G, since in this case JðuÞ ¼ fug, JðvÞ ¼ fvg
and xu; v ¼ xv;u ¼ 0 by (3).

We recall that the Teirlinck system is related to the set X ¼ V � f0; zg (see Remark
1.6). Since the size of ffuþ wgw A JðvÞsfuþ vgg is even, by (2) we have xu; v ¼ 1 if and
only if fv; vþ zgVG ¼ q and one of the following conditions holds:

A) f0; zgU JðvÞ and fu; uþ zgV JðvÞ0q;

B) f0; zgJ JðvÞ and fu; uþ zgV ðJðvÞ � f0; zgÞ0q;

C) u A fv; vþ zg.

Hence, a straightforward computation shows that (20) implies

bu;u ¼ 0 for all u A V ; ð21Þ

bu;uþz ¼
X

w A JðuÞ
ðbw;0 þ bw; zÞ for all u A V ð22Þ

and for any u; v with u B fv; vþ zg

bu; v ¼
X

w A JðuÞ
w 0A JðvÞ

bw;w 0 þ
X

w A ðJðuÞVJðvÞÞ�f0; zg
ðbw;0 þ bw; zÞ þ iu; vb0; z ð23Þ
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with iu; v A Z2 defined by

iu; v ¼ 0 , f0; zgH JðyÞ for some y A fu; uþ z; v; vþ zg: ð24Þ

It follows that, for any u; v in V

bu; v ¼ bv;u: ð25Þ

If bu; v 0 0, (23) allows to express bu; v as a sum of some pairwise distinct elements
bp;q, with p; q A G. This sum will be called reduced sum of bu; v. If bu; v ¼ 0, we will say
that the reduced sum of bu; v is null.

Let us prove that u0 v implies bu; v 0 0. Let v0 uþ z. If v ¼ 0, equality (23)
becomes bu;0 ¼

P
w A JðuÞ bw;0 þ iu;0b0; z 0 0 since JðuÞ � fzg0q. We get the analo-

gous result for v ¼ z or u ¼ 0 or u ¼ z. If both u and v are di¤erent from 0 and z, by
(23) there is at least one bw;w 0 with w;w 0 A G� f0; zg appearing in the reduced sum of
bu; v. On the other hand (22) implies bu;uþz 0 0. Thus, in every case, from u0 v we
deduce bu; v 0 0.

For any u; v in V , a straightforward but quite tedious computation shows that (21),
(22) and (23) imply

bu; v ¼
X

w A JðvÞ
bu;w þ xu; vðbu;0 þ bu; zÞ: ð26Þ

Given three pairwise distinct elements u; v1; v2 in V , from (26) and (21) it follows:

bu; vi ¼
X

w A JðviÞ
bu;w þ xu; viðbu;0 þ bu; zÞ ði ¼ 1; 2Þ; ð27Þ

X
w A JðuÞ

bu;w ¼ xu;uðbu;0 þ bu; zÞ; ð28Þ

bu;uþv1þv2 ¼
X

w A Jðuþv1þv2Þ
bu;w þ xu;uþv1þv2ðbu;0 þ bu; zÞ: ð29Þ

Recalling that Jðuþ v1 þ v2Þ ¼ JðuÞsJðv1ÞsJðv2Þ, we deduce from (27), (28) and
(29)

bu;uþv1þv2 ¼
X

w A Jðv1Þ
bu;w þ

X
w A Jðv2Þ

bu;w þ
X

w A JðuÞ
bu;w þ xu;uþv1þv2ðbu;0 þ bu; zÞ

¼ bu; v1 þ bu; v2 þ
X

w A JðuÞ
bu;w þ ðxu; v1 þ xu; v2 þ xu;uþv1þv2Þðbu;0 þ bu; zÞ

¼ bu; v1 þ bu; v2 þ ðxu; v1 þ xu; v2 þ xu;u þ xu;uþv1þv2Þðbu;0 þ bu; zÞ;

whence
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bu; v1 þ bu; v2 ¼ bu;uþv1þv2 þ ðxu; v1 þ xu; v2 þ xu;u þ xu;uþv1þv2Þðbu;0 þ bu; zÞ: ð30Þ

Since bu;uþv1þv2þz ¼ bu;uþv1þv2 þ bu;0 þ bu; z, we get from (6) and (30)

bu; v1 þ bu; v2 ¼
bu;uþv1þv2 if jX V fuþ v1; uþ v2; v1 þ v2gj is even,
bu;uþv1þv2þz otherwise,

�
ð31Þ

that is by (1)

bu; v1 þ bu; v2 ¼ bu;qðfu; v1; v2gÞ: ð32Þ

For every u A V , define Su ¼ fbu; v : v A Vg. By (32) Su is a subspace of W , which,
by (26), is spanned by the elements bu;w with w A G.

For any u A V and w A JðuÞ, (28) implies

bu; w ¼
X

w A JðuÞ�fwg
bu;w þ xu;uðbu;0 þ bu; zÞ: ð33Þ

Thus we deduce that the dimension (as vector space) of Su is at most d þ 1. Now,
our goal is to prove that, for any choice of two distinct pairs of distinct elements of
V , fu; vg; fu 0; v 0g, we have bu; v 0 bu 0; v 0 .

Partition the set of pairs fu; vg, u0 v, in equivalence classes of type ffu; vg;
fuþ z; vg; fu; vþ zg; fuþ z; vþ zgg. We denote such a class by ½fu; vg�.

Note that (23) implies that any w A ðJðuÞU JðvÞÞ � f0; zg appears an even or odd
number of times as index of some elements in the reduced sum of bu; v, according to
whether w belongs to JðuÞV JðvÞ or JðuÞs JðvÞ, respectively.

This remark allows, starting from the reduced sum of bu; v, to completely determine
JðuÞ � f0; zg, JðvÞ � f0; zg, and therefore the equivalence class ½fu; vg�. It follows
that, if fu; vg; fu 0; v 0g do not belong to the same class, then bu; v and bu 0; v 0 have distinct
reduced sums, namely they are distinct.

Now we choose an equivalence class ½fu; vg�. If v ¼ uþ z, this class is a singleton.
If v0 uþ z, it is formed by four distinct pairs. In this case, from (23) we deduce

bu; vþz ¼ bu; v þ bu;0 þ bu; z ¼ bu; v þ
X

w A JðuÞ
ðbw;0 þ bw; zÞ;

whence

buþz; v ¼ bu; v þ
X

w A JðvÞ
ðbw;0 þ bw; zÞ;

buþz; vþz ¼ bu; v þ
X

w A JðuÞ
ðbw;0 þ bw; zÞ þ

X
w A JðvÞ

ðbw;0 þ bw; zÞ:

Then bu; v, bu; vþz, buþz; v, buþz; vþz have pairwise distinct reduced sums.
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Since the set bw;w 0 j fw;w 0g A G
2

� �� �
is a basis of Z

dþ2
2ð Þ

2 , it follows that bu; v 0 bu 0; v 0 ,
whenever fu; vg; fu 0; v 0g are distinct pairs of V

2

� �
. This implies that for any two dis-

tinct Su;Sv we have Su VSv ¼ f0; bu; vg.
Now note that jSuj ¼ jfbu; v j v A Vgj ¼ 2dþ1, so that Su has dimension d þ 1. Inter-

preting the previous results in PGðdðd þ 3Þ=2; 2Þ, we deduce that the projective d-
spaces corresponding to the Su’s form a d-dimensional dual hyperoval. It satisfies
property (H) by (32). r

3 Universality and quotients

Theorem 2.2 immediately implies:

Theorem 3.1. All characteristic d-dimensional dual hyperovals in PGðdðd þ 3Þ=2; 2Þ
are universal.

Now, we prove that any characteristic d-dimensional dual hyperoval is quotient of
a suitable one in PGðdðd þ 3Þ=2; 2Þ.

Theorem 3.2. Any characteristic d-dimensional dual hyperoval F in PGðn; 2Þ, n <
dðd þ 3Þ=2, is the quotient of a characteristic d-dimensional dual hyperoval in

PGðdðd þ 3Þ=2; 2Þ, related to the same characteristic SBQS.

Proof. We use the same notation as in the previous section. Since n < dðd þ 3Þ=2, the
set A ¼ ax;y : fx; yg A G

2

� �� �
is a set of generators but not a basis of PGðn; 2Þ. Let A 0

be a basis contained in A, and take ax;y in A� A 0. Consider PGðn; 2Þ as a hyperplane
a in PGðnþ 1; 2Þ and fix a point p in PGðnþ 1; 2Þ � a. Set

a 0
x;y ¼ ax;y for x; y A G with fx; yg0 fx; yg and

a 0
x;y ¼ ax;y þ p:

For any au; v in PGðn; 2Þ consider equality (16) and define a 0
u; v in PGðnþ 1; 2Þ by

replacing every ax;y ðx; y A GÞ with a 0
x;y in the right hand side of (16).

For any fixed u, the elements a 0
u; v again determine a d-space S 0

u, whose projection
from p on a is Su. The family F 0 ¼ fS 0

ugu AV is a d-dimensional dual hyperoval hav-
ing F as quotient. By a finite number of liftings, we get a d-dimensional dual hyper-
oval in PGðdðd þ 3Þ=2; 2Þ having F as quotient. r

Theorems 3.1, 3.2 imply:

Theorem 3.3. A characteristic d-dimensional dual hyperoval in PGðn; 2Þ is universal if
and only if n ¼ dðd þ 3Þ=2.

We note that Theorem 1.2 implies:

Theorem 3.4. If dd 6, any characteristic d-dimensional dual hyperoval in PGðdðd þ
3Þ=2; 2Þ admits quotients in PGðk; 2Þ, 4dc kc dðd þ 3Þ=2.
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In particular the above result holds for the universal dimensional dual hyperovals
constructed starting from the Teirlinck SBQS’s in Theorem 2.5. In our opinion, the
lower bound 4d should be improved for them, as it happens for the Huybrechts’
family.

4 Property (mI )

Lemma 4.1. A d-dimensional dual hyperoval satisfying property (H) does not satisfy

property (mI) if and only if there exist six pairwise distinct elements of V, u; v; u 0; v 0; u 00;
v 00, such that

au; v þ au 0; v 0 ¼ au 00; v 00 : ð34Þ

Proof. Suppose that (34) holds. Since the elements u; v; u 0; v 0; u 00; v 00 are pairwise
distinct, the intersection of Su 00 with the 2d-space spanned by Su and Su 0 contains
the point au 00; v 00 . We want to prove that this point does not belong to the line
hau;u 00 ; au 0;u 00i. If not this line would be coplanar with the line hau; v; au 0; v 0i so that
hau; v; au;u 00i and hau 0; v 0 ; au 0;u 00i would meet in the point au;u 0 . In this case au 00; v 00

would lie on the plane determined by the pairwise meeting points of Su;Su 0 and Su 00 .
Property (H) would imply v ¼ v 0 ¼ v 00 ¼ qðfu; u 0; u 00gÞ, a contradiction. Since au 00; v 00

belongs to hSu;Su 0i� hau;u 00 ; au 0;u 00i (hence hSu;Su 0iVSu 00 is not a line), property
(mI) does not hold.

If property (mI) does not hold then there exist three pairwise distinct elements
u; u 0; u 00 in V such that hSu;Su 0iVSu 00 contains a point au 00; v 00 , with v 00 c fu; u 0; u 00;
qðfu; u 0; u 00gÞg. Thus there exist v and v 0 in V such that

au; v þ au 0; v 0 ¼ au 00; v 00 : ð35Þ

Obviously, both v and v 0 are di¤erent from u and u 0. It remains to prove that
v; v 0; v 00 are pairwise distinct. If not, we may suppose v ¼ v 0. In such a case, property
(H) also implies v ¼ v 0 ¼ v 00. Thus, by property (H) and (35), we have:

au 00; v 00 ¼ au; v 00 þ au 0; v 00 ¼ aqðfu;u 0; v 00gÞ; v 00

whence u 00 ¼ qðfu; u 0; v 00gÞ, i.e., v 00 ¼ qðfu; u 0; u 00gÞ, a contradiction. r

From now on, let F be a characteristic d-dimensional dual hyperoval. As in the

previous sections we work in the vector space Z
dþ2
2ð Þ

2 . Again we choose a basis B
containing z in V ¼ Zdþ1

2 and set, as in Section 2, G ¼ BU f0g.

Lemma 4.2. For any u; u 0; u 00 in V, we have

au;uþz þ au 0;u 0þz þ au 00;u 00þz 0 0: ð36Þ

Proof. Suppose au;uþz þ au 0;u 0þz þ au 00;u 00þz ¼ 0. It follows from (18) that

0 ¼
X

w A JðuÞ
ðaw;0 þ aw; zÞ þ

X
w A Jðu 0Þ

ðaw;0 þ aw; zÞ þ
X

w A Jðu 00Þ
ðaw;0 þ aw; zÞ:

Semi-Boolean Steiner quadruple systems and dimensional dual hyperovals S265



The above equality implies Jðu 00Þ ¼ JðuÞsJðu 0Þ, and then Jðu 00Þ would be even, a
contradiction. r

Lemma 4.3. For any u; u 0; v 0 in V, we have

au;uþz þ au 0; v 0 þ au 0þz; v 0þz 0 0: ð37Þ

Proof. Suppose au;uþz þ au 0; v 0 þ au 0þz; v 0þz ¼ 0. It follows from (14) and (18) that

0 ¼
X

w A JðuÞ
ðaw;0 þ aw; zÞ þ

X
w A Jðu 0Þ

ðaw;0 þ aw; zÞ þ
X

w A Jðv 0Þ
ðaw;0 þ aw; zÞ:

The above equality implies JðuÞ ¼ Jðu 0ÞsJðv 0Þ, and then JðuÞ would be even, a con-
tradiction. r

We give some new notation. For every u in V , we set J �ðuÞ ¼ JðuÞ � f0; zg. For
u; v in V , we also set:

Iu; v ¼ JðuÞV JðvÞ I �u; v ¼ J �ðuÞV J �ðvÞ

Du; v ¼ JðuÞ � JðvÞ D�
u; v ¼ J �ðuÞ � J �ðvÞ

Dv;u ¼ JðvÞ � JðuÞ D�
v;u ¼ J �ðvÞ � J �ðuÞ

Uu; v ¼ JðuÞU JðvÞ U �
u; v ¼ J �ðuÞU J �ðvÞ

ð38Þ

Furthermore, for any pair of subsets S;T of G, define

aS;T ¼ aT ;S ¼
X
s AS
t AT

as; t:

Finally, define by (16) the reduced sum of the au; v’s as done by (23) for the bu; v’s in
the proof of Theorem 2.5.

Remark 4.4. Since JðuÞ and JðvÞ have odd size, we deduce jDu; vj1 jDv;uj1
jIu; vj þ 1 ðmod2Þ. If w A I �u; v, then the number yw of elements aw;x in the reduced
sum of au; v equals either jDu; vj þ jDv;uj or jDu; vj þ jDv;ujG 2 (taking into account the
possible term aw;0 þ aw; z) so that yw is even. If w A D�

u; v, then the number yw of ele-

ments aw;x in the reduced sum of au; v equals either jJðvÞj or jJðvÞjG 2 so that yw is
odd. Analogously it happens for the elements w in D�

v;u.

Proposition 4.5. Let au; v þ au 0; v 0 þ au 00; v 00 ¼ 0. Every w A ðUu; v UUu 0; v 0 UUu 00; v 00 Þ �
f0; zg belongs to at least two sets among Uu; v;Uu 0; v 0 ;Uu 00; v 00 and belongs to 0 or 2 sets

among Du; v;Dv;u;Du 0; v 0 ;Dv 0;u 0 ;Du 00; v 00 ;Dv 00;u 00 .

Proof. The equality in the hypothesis implies that the number of distinct elements
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aw;x in the sum of the three reduced sums of au; v; au 0; v 0 ; au 00; v 00 is even. The statement
follows from Remark 4.4. r

Theorem 4.6. Every characteristic d-dimensional dual hyperoval in PGðdðd þ 3Þ=2; 2Þ
satisfies property (mI).

Proof. According to Lemma 4.1, it is enough to prove that equality (34) does not
hold for any choice of pairwise distinct elements u; v; u 0; v 0; u 00; v 00 in V . Set

bu; v ¼
X

w A JðvÞ
xw;uðaw;0 þ aw; zÞ þ xu; v

X
w A JðuÞ

ðaw;0 þ aw; zÞ: ð39Þ

Using (16) and (39), equality (34) becomes

0 ¼ aIu; v;Du; v
þ aIu; v;Dv; u

þ aDu; v;Dv; u
þ bu; v

þ aIu 0 ; v 0 ;Du 0 ; v 0 þ aIu 0 ; v 0 ;Dv 0 ; u 0 þ aDu 0 ; v 0 ;Dv 0 ; u 0 þ bu 0; v 0

þ aIu 00 ; v 00 ;Du 00 ; v 00 þ aIu 00 ; v 00 ;Dv 00 ; u 00 þ aDu 00 ; v 00 ;Dv 00 ; u 00 þ bu 00; v 00 : ð40Þ

Since the points ax;y with x; y distinct elements of G (and in particular of G� f0; zg)
are independent in PGðdðd þ 3Þ=2; 2Þ, equality (40) implies

0 ¼ aI �
u; v;D

�
u; v

þ aI �
u; v;D

�
v; u

þ aD �
u; v;D

�
v; u

þ aI �
u 0 ; v 0 ;D

�
u 0 ; v 0

þ aI �
u 0 ; v 0 ;D

�
v 0 ; u 0

þ aD �
u 0 ; v 0 ;D

�
v 0 ; u 0

þ aI �
u 00 ; v 00 ;D

�
u 00 ; v 00

þ aI �
u 00 ; v 00 ;D

�
v 00 ; u 00

þ aD �
u 00 ; v 00 ;D

�
v 00 ; u 00

: ð41Þ

With

A ¼ Iu; v �Uu 0; v 0 ; A 0 ¼ Iu 0; v 0 �Uu; v; B ¼ Iu; v V Iu 0; v 0 ;

E ¼ Iu; v VDu 0; v 0 ; F ¼ Iu; v VDv 0;u 0 ; E 0 ¼ Iu 0; v 0 VDu; v; F 0 ¼ Iu 0; v 0 VDv;u;

H ¼ Du; v �Uu 0; v 0 ; K ¼ Dv;u �Uu 0; v 0 ; H 0 ¼ Du 0; v 0 �Uu; v; K 0 ¼ Dv 0;u 0 �Uu; v;

P ¼ Du; v VDu 0; v 0 ; Q ¼ Dv;u VDv 0;u 0 ; X ¼ Du; v VDv 0;u 0 ; Y ¼ Dv;u VDu 0; v 0 ;

we have

aI �
u; v;D

�
u; v

þ aI �
u; v;D

�
v; u

þ aD �
u; v;D

�
v; u

¼ aA;E 0 þ aA;H þ aA;P þ aA;X þ aA;F 0 þ aA;K

þ aA;Q þ aA;Y þ aB;E 0 þ aB;H þ aB;P þ aB;X þ aB;F 0 þ aB;K þ aB;Q þ aB;Y þ aE;E 0

þ aE;H þ aE;P þ aE;X þ aE;F 0 þ aE;K þ aE;Q þ aE;Y þ aF ;E 0 þ aF ;H þ aF ;P þ aF ;X

þ aF ;F 0 þ aF ;K þ aF ;Q þ aF ;Y þ aE 0;F 0 þ aE 0;K þ aE 0;Q þ aE 0;Y þ aH;F 0 þ aH;K

þ aH;Q þ aH;Y þ aP;F 0 þ aP;K þ aP;Q þ aP;Y þ aX ;F 0 þ aX ;K þ aX ;Q þ aX ;Y ;
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aI �
u 0 ; v 0 ;D

�
u 0 ; v 0

þ aI �
u 0 ; v 0 ;D

�
v 0 ; u 0

þ aD �
u 0 ; v 0 ;D

�
v 0 ; u 0

¼ aA 0;E þ aA 0;H 0 þ aA 0;P þ aA 0;Y þ aA 0;F

þ aA 0;K 0 þ aA 0;Q þ aA 0;X þ aB;E þ aB;H 0 þ aB;P þ aB;Y þ aB;F þ aB;K 0 þ aB;Q þ aB;X

þ aE 0;E þ aE 0;H 0 þ aE 0;P þ aE 0;Y þ aE 0;F þ aE 0;K 0 þ aE 0;Q þ aE 0;X þ aF 0;E þ aF 0;H 0

þ aF 0;P þ aF 0;Y þ aF 0;F þ aF 0;K 0 þ aF 0;Q þ aF 0;X þ aE;F þ aE;K 0 þ aE;Q þ aE;X þ aH 0;F

þ aH 0;K 0 þ aH 0;Q þ aH 0;X þ aP;F þ aP;K 0 þ aP;Q þ aP;X þ aY ;F þ aY ;K 0 þ aY ;Q þ aY ;X :

It follows from (41) that

aI �
u 00 ; v 00 ;D

�
u 00 ; v 00

þ aI �
u 00 ; v 00 ;D

�
v 00 ; u 00

þ aD �
u 00 ; v 00 ;D

�
v 00 ; u 00

¼ aA;E 0 þ aA;H þ aA;P

þ aA;X þ aA;F 0 þ aA;K þ aA;Q þ aA;Y þ aA 0;E þ aA 0;H 0 þ aA 0;P þ aA 0;Y

þ aA 0;F þ aA 0;K 0 þ aA 0;Q þ aA 0;X þ aB;E 0 þ aB;H þ aB;F 0 þ aB;K þ aB;E

þ aB;H 0 þ aB;F þ aB;K 0 þ aE;H þ aE;P þ aE;K þ aE;Y þ aE;F þ aE;K 0

þ aF ;H þ aF ;X þ aF ;K þ aF ;Q þ aE 0;F 0 þ aE 0;K þ aE 0;H 0 þ aE 0;P þ aE 0;K 0

þ aE 0;X þ aF 0;H 0 þ aF 0;Y þ aF 0;K 0 þ aF 0;Q þ aH;F 0 þ aH;K þ aH;Q þ aH;Y

þ aH 0;F þ aH 0;K 0 þ aH 0;Q þ aH 0;X þ aP;K þ aP;Y þ aP;K 0 þ aP;X þ aX ;K

þ aX ;Q þ aY ;K 0 þ aY ;Q: ð42Þ

By Proposition 4.5, I �u 00; v 00 contains A, A
0 and a (possibly empty) set T which is the

union of some sets among B;P;Q;X ;Y , while D�
u 00; v 00 UD�

v 00;u 00 contains E, F , E 0, F 0,
H, K , H 0, K 0.

The presence of any non-empty set among the last ones either in D�
u 00; v 00 or in D�

v 00;u 00

implies some conditions for the position of some other ones. We only explicitely
declare the conditions related to the presence in D�

u 00; v 00 :

E0q; EJD�
u 00; v 00 ) D�

v 00;u 00 ¼ F UH UK UK 0; T ¼ BUPUY

F 0q; F JD�
u 00; v 00 ) D�

v 00;u 00 ¼ E UH UK UH 0; T ¼ BUQUX

E 0 0q; E 0 JD�
u 00; v 00 ) D�

v 00;u 00 ¼ F 0 UH 0 UK UK 0; T ¼ BUPUX

F 0 0q; F 0 JD�
u 00; v 00 ) D�

v 00;u 00 ¼ E 0 UH UH 0 UK 0; T ¼ BUQUY

H0q; HJD�
u 00; v 00 ) D�

v 00;u 00 ¼ E UF UF 0 UK ; T ¼ BUQUY

K0q; KJD�
u 00; v 00 ) D�

v 00;u 00 ¼ E UF UE 0 UH; T ¼ BUPUX

H 0 0q; H 0 JD�
u 00; v 00 ) D�

v 00;u 00 ¼ F UE 0 UF 0 UK 0; T ¼ BUQUX

K 0 0q; K 0 JD�
u 00; v 00 ) D�

v 00;u 00 ¼ E UE 0 UF 0 UH 0; T ¼ BUPUY ð43Þ

The presence of aP;Y ; aP;X ; aX ;Q; aY ;Q in equality (42) also implies

P ¼ Q ¼ q or X ¼ Y ¼ q; ð44Þ
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while the presence of aA;P; aA;X ; aA;Q; aA;Y ; aA 0;P; aA 0;Y ; aA 0;Q; aA 0;X in equality (42)
implies

AUA 0 0q ) P ¼ Q ¼ X ¼ Y ¼ q: ð45Þ

The absence of aA;H 0 ; aA;K 0 ; aA;E ; aA;F in (42) implies

A0q ) H 0 ¼ K 0 ¼ E ¼ F ¼ q ð46Þ

while the absence of aA 0;H ; aA 0;K ; aA 0;E 0 ; aA 0;F 0 , implies

A 0 0q ) H ¼ K ¼ E 0 ¼ F 0 ¼ q: ð47Þ

If A0q and A 0 0q, it follows from (45), (46) and (47)

Iu; v ¼ AUB; Du; v ¼ q; Dv;u ¼ q;

Iu 0; v 0 ¼ A 0 UB; Du 0; v 0 ¼ q; Dv 0;u 0 ¼ q;

Iu 00; v 00 ¼ AUA 0 UB; Du 00; v 00 ¼ q; Dv 00;u 00 ¼ q:

Thus we have v ¼ uþ z, v 0 ¼ u 0 þ z, v 00 ¼ u 00 þ z and equality (34) does not hold by
Lemma 4.2.

If A0q and A 0 ¼ q, by (45), (46) we have, up to exchange between Du 00; v 00 and
Dv 00;u 00

Iu; v ¼ AUB; Du; v ¼ E 0 UH; Dv;u ¼ F 0 UK ;

Iu 0; v 0 ¼ BUE 0 UF 0; Du 0; v 0 ¼ q; Dv 0;u 0 ¼ q;

Iu 00; v 00 ¼ AUB; Du 00; v 00 ¼ E 0 UH; Dv 00;u 00 ¼ F 0 UK :

Thus v 0 ¼ u 0 þ z, u 00 ¼ uþ z and v 00 ¼ vþ z and equality (34) does not hold by
Lemma 4.3.

Analogously we also exclude the case A ¼ q, A 0 0q.
The case A ¼ A 0 ¼ q can be discussed in a similar way, distinguishing some

subcases according to the non-empty sets among E;E 0;F ;F 0;H;H 0;K;K 0. In
every case one gets a contradiction, using Lemmas 4.2, 4.3 or falling in a coincidence
between two elements among u; u 0; v; v 0; u 00; v 00. r

Theorem 4.6 includes Huybrechts’ family (for which property (mI) is already
proved in [6]) and the dimensional dual hyperovals constructed in Theorem 2.5.

5 Open problems

We have proved that dðd þ 3Þ=2 is the upper bound for the dimension of a projective
space containing a characteristic d-dimensional dual hyperoval. Is this true for any d-
dimensional dual hyperoval satisfying property (H), or better, for any d-dimensional
dual hyperoval?

Boolean and Teirlinck systems are associated with some dimensional dual hyper-
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ovals. Are there other (possibly characteristic) SBQS’s related to dimensional dual
hyperovals satisfying property (H)? In view of Remark 2.4, we conjecture that the
answer is negative. In other words, the link between SBQSs and dimensional dual
hyperovals does not appear so strong as we suspected at the beginning of our research
on this subject.

As noticed by Huybrechts in [6], Huybrechts’ family gives rise to semi-biplanes (see
Section 1.3) that are quotients of upper 3-truncated Coxeter complexes. Are the semi-
biplanes defined by the dimensional dual hyperovals of Theorem 2.5 completely new?

Acknowledgement. The authors wish to thank S. Yoshiara for having pointed out
useful information about the family a) in the table of Section 1.2.
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