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Abstract. We generalize the theory of sheaves to chamber systems. We prove that, given a
chamber system % and a family # of proper residues of ¥ containing all residues of rank <1,
every sheaf defined over # admits a completion which extends . We also prove that, under
suitable hypotheses, a sheaf defined over a truncation of % can be extended to a sheaf for €. In
the last section of this paper, we apply these results to a number of special cases.

1 Introduction

Given a diagram D over a set of types I and a nonempty subset J of I with |I\J| > 3,
let I" be a geometry over K := I'\J where residues of rank 2 are as if ' were a trun-
cation of a geometry & belonging to D. We might wonder if such an extension &
really exists for I', being willing to be satisfied with something less than a geometry,
namely a chamber system from which the chamber system of I" can be obtained as a
truncation. That geometry (or chamber system) &, if it exists, is called a D-extension
of I'. More formally, a D-extension of I is a pair (&,7) where & is a geometry (or a
chamber system) belonging to D and 7 is an isomorphism from I" (respectively, from
the chamber system %(T") of T') to the J-truncation Tr;(&) of &. (We recall that,
when & is a geometry, Tr; (&) is the induced subgeometry of & obtained by removing
all elements of type j € J; when & is a chamber system, Tr;(&) is the chamber system
induced by & on the set of its J-cells.)

The most natural way to cope with the above problem is inductive: Assume that,
for a suitable family # of proper residues of I" and every 2" € #, a Dy\,(#)-extension
(6x,ta) of X' is given, where Dy ,(#) is the diagram induced by D on 7\#(%') and #(Z')
is the type of 2. We call (€4, 74) a local extension of T at Z. Under suitable com-
patibility conditions, we can paste local extensions together in such a way to obtain a
D-extension of T.

Three different kinds of compatibility conditions are considered in the literature,
namely those assumed in Ronan’s theory of extensions [22], those of Ceccherini and
Pasini [7] and the conditions embodied by the notion of sheaf (Brouwer and Cohen
[5]; see also Kasikova and Shult [11, Section 3]).

Ronan’s theory is entirely formulated in the language of chamber systems: A
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chamber system % is considered instead of a geometry and local extensions are cham-
ber systems. Z is the family of all residues of % of type Ky = K\{0} or K; = K\{1}
for two distinguished types 0,1 € K, and K\{0, 1} admits a proper nonempty subset
H that separates {0, 1} from I'\(H U {0, 1}) in D. (Note that this forces |K| = 4.) The
following are assumed: 1) For every K,-residue 2 of €, every (I\(H U {1})-residue
of the local extension &y is the direct product of a 0-panel and an (7\(H U {0, 1})-
residue %, and every non-trivial automorphism of % acts non-trivially on Tr;(%).
2) For every residue % of € of type K\{0,1} and any two Dy, (9, 1}-extensions (&7, 71)
and (&2, 72) of %, there is an isomorphism « : & — &> such that az; = 7. Under
the above assumptions, ¥ admits a D-extension (Ronan [22, (2.4)]). Actually, one
would expect to see compatibility conditions stated explicitly for pairs of extensions
(2, T2,) and (g, 7a,) where t(2;) = K; and ZyN % # &, but they are implicit
in the above hypotheses (see [22, (2.1), (2.2)]). Note also that no particular local
extension is associated to any K\{0, 1}-residue.

The machinery set up by Ceccherini and myself [7] is a compromise between
Ronan’s theory and sheaf theory. We expose it here, generalizing it a bit. A type
0 € K and a subset H = K\{0} are given, such that H separates J from 0 in D and
K\(0U H) separates 0 from H, where 0 is the subset of K formed by 0 and all its
neighbours in D. (For instance, this happens when the diagram induced by D on K
is a string of length at least 4 with 0 as the leftmost node and H only contains the
rightmost node of that string.) £ is the family of residues of type Ky, K| or H, where
Ko = K\{0} and K| = {0} U H. Local extensions are chamber systems, as in Ronan’s
theory. A geometry I" over K is considered in [7], but we may take a chamber system
% instead of that. For every H- res1due Z of €, if Z; is the K;-residue of ‘6 containing
Z(i= 0 1), then an embedding 51 : &y — &y, 18 given such that 61 T = r[zﬁ,
where 1 z ! denotes the inclusion mapping of Z in %;. Moreover, for any two H-residues
Z and @ of w1th ff U % contained in a common K1 -residue %7, there exists exactly
one isomorphism o : &4 — &y such that &« = &' A reducibility condition is also
needed, as in Ronan’s theory: for every K-residue Z', & is the direct product of a
0-panel and a (J U {1})-residue. (But there is no need to assume this condition when
% is the chamber system of a geometry.)

In sheaf theory (inspired by Aschbacher [1], as Brouwer and Cohen say in [5]), £ is
the collection of all proper residues of I', namely # = {Resr(F)} . where 7 is the
family of nonempty flags of I'. For every F € .7, the local extension &r := &res(r)
is a geometry. As we are dealing with geometries, we may assume that Resp(F) =
Tr;(6F) and that the isomorphism 7z : Resp(F) — Try(&F) is the identity mapping.
For every nonempty subflag G of F a compatibility embedding ¢f : & — &g is given,

in such a way that ¢¢ induces on Resr(F) its natural embeddmg in Resr(G) and

efef; = ef for every flag H 2 F. The pair S = ({67} pe 7, {68 } £ e s ger) 1s called
a sheaf. If a sheaf S is given for I', then a chamber system can be constructed by
pasting the extensions associated by S to the flags F' € %, according to the compati-
bility embeddings. That chamber system (called the completion of S) is indeed a D-
extension of I'.

This approach is admittedly more elegant than Ronan’s theory, let alone the

machinery of [7], but perhaps less satisfactory in two respects. Firstly, the local
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extensions are geometries, but the completion is a chamber system, which might not
arise from any geometry. That slip from geometries to chamber systems is not very
elegant either. It might also cause some trouble in practise, if, when in an inductive
argument, one has to use at step n + 1 an extension that one has got at step n as a
completion. A translation of sheaf theory into the language of chamber systems
would meet these objections. We shall give it in Section 3 of this paper. That trans-
lation is straightforward in principle, but not all details are so trivial. As a by-product
of it, we will see that a sheaf defined over the collection of all residues of rank <2 of a
given chamber system % (in the geometric case, residues of flags of corank <2), does
the same job as a complete sheaf, defined for all proper residues of . This makes
things easier in many circumstances. We will also see that, in order to get an exten-
sion of a chamber system %, a sheaf defined only on the set of panels and chambers
of % is sufficient. That will allow us to recognize sheaves with fairly nice com-
pletions even in cases where one hardly would have expected to see them, as when &
has rank 2.

Turning to my second objection, when one has to apply sheaf theory in practise,
one firstly must show that a sheaf indeed exists. This is not always so obvious. Let us
consider the following seemingly easy case, for instance. Suppose that I' belongs to
the following truncated diagram:

where K = {0,1,...,n— 1} is the type-set of I', I = {0,1,2,... ,n}, J = {n} and D is
the Coxeter diagram C,,;. We want to define a sheaf. In view of a result of Ellard
and Shult [8], reported by Onofrei [14, Section 6], we only need to define extensions
&y and &y , and embeddings &; y 16y — 6y for elements x and flags {x, y} of T

Assume firstly that x has type #(x) < n — 1. When #(x) = 0, & is an n-dimensional
projective geometry with {1,2,...,n} as its type-set and Resr(x) = Tr,(&y). As
every n-element ¢ of &, is uniquely determined by the set a(&) of (n — 1)-elements of
&y incident to &, we may regard & as the same thing as ¢(¢). Thus, ¢ is a distinguished
set of (n — 1)-elements of I'. Suppose that | < #(x) < n — 1. Then &, = Resp(x) @ &
where Resp-(x) is the direct summand of Resr(x) formed by the elements of type less
than 7(x) and & is an (n — t(x))-dimensional projective geometry over the set of
types {#(x) + 1,#(x) + 1,...,n}. Denoting by Resf(x) the other direct summand of
Resr(x), formed by the elements of type greater than 7(x), we have Tr, (&) = Resf(x).
Accordingly, we may regard every n-element & of & as the set (&) of (n—1)-
elements of I that, as elements of &, are incident to & Turning to flags, for a
flag {x, y} with 0 < #(x) < #(y) <n— 1, we put &y, := (Resr(x) NResp(y)) ® &, ,
where Tr, (& y) = Resf(p). Two n-elements ¢ and v of &, and &), correspond to the
same n-element of &\ , when o(v) = g(¢). Accordingly, we may take as n-elements of
&, the pairs (a(v), (<)) with a(v) = a(&), v and & as above. It is now clear how
the embeddings & y 6y — 6y and &) y i 6xy — &y are defined.

So far, we have indeed obtained a sheaf, but for the (n — 1)-truncation Tr,_;(I") of
I" rather than for T itself. In order to define a sheaf for I', we also need to consider
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&y for t(x) =n— 1. When #(x) =n — 1, & = Resr(x) ® & where & is a projective
line. For an element y of I incident to x, we may assume that &, . = Resg, (x). How-
ever, in order to define the embedding sy : 6, x — 6y, we need a trick to relate the
points of the projective line & to the n-elements of &),. The following is the way sug-
gested in [5] (but not thoroughly checked, regretfully) for every y e Resr(x), let S,
be the set of all n-elements of &, that are incident to x and put S = U}EReSr( o Sy A
graph X can be defined on S, as follows: &, € S,, and &, € ), are adjacent when
{»1,y2} isaflag of I" and there exists an n-element { of &), ,, such that &)! , ({) =¢;
for i = 1,2. Suppose the following:

(x) we have |CNS,
y € Resr(x).

<1 for every connected component C of ¥ and every

Then we can take the connected components of ¥ as elements of &. The rest
follows. Regretfully, Brouwer and Cohen do not mention (x) in [5], as if they took it
for granted in the case they consider, where n > 3 and all C;-residues of I" are cov-
ered by buildings. However, () might fail to hold when n = 3, as it certainly happens
when no Cy-extension exists. Examples of this kind are described by Ronan [22], [21]
(see also Subsection 5.2 of this paper). They are mentioned in [5], too. On the other
hand, it follows from [22] that a C,j-extension & of I" always exists when n > 3. If
furthermore all Cs-residues of I are covered by buildings, then & is covered by a
building & and () holds, as one can see by lifting the graph X and the sets S, to é.
Regretfully, this indirect argument does not really explain what might go wrong with
(x) when n = 3. Only direct verifications would give us a satisfactory answer, but
checking directly if a condition like () holds or not in a given particular case is
beyond my capabilities. However, there is an easy way to prove the existence of a
C,-1-extension when n > 3, exploiting sheaf theory but without caring about (x) at
all. Here it is: As remarked above, a sheaf S exists, but defined over the family %, of
nonempty flags of [y := Tr,_; (). Its completion, say &, is a C,i-extension of I,
but it is not difficult to check that Tr;(&) = €(I'). So, & is also a C,;-extension of I'.

Difficulties similar to that discussed here are faced fairly often, but in most cases
we can avoid them by a trick as above. An axiomatization of that trick will be given
in Section 4. In Section 5, we will apply the theory set up in Sections 3 and 4 to a
number of special cases.

2 Essentials on chamber systems

In this section we give an epitome of the theory of chamber systems, focusing on
notions and results to be used in the rest of this paper.

2.1 Basics. Following [16] and [7, Section 7], given a finite nonempty set I, we
define a chamber system over the set of types I as a pair ¥ = ((C, ~), t) where (C, ~)
is a connected graph and ¢ is a surjective mapping from the set of edges of (C, ~) to 1
such that

(CS) for every i eI, all connected components of %’ are complete graphs with at
least two vertices,
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where %' is the subgraph of (C, ~) with C as the vertex-set and ¢! (i) as the set of
edges. The size |I| of I is called the rank of ¥ and the vertices of (C, ~) are called
chambers. We will write ¢ € € to say that ¢ is a chamber of €. If #({c¢,d}) =i for an
edge {c,d} of (C,~) then we say that the chambers ¢ and d are i-adjacent and we
write ¢ ~; d. The connected components of %' are called i-panels. The paths of (C, ~)
are called galleries. The type of a gallery Cy ~; Cy ~;, -+ ~;, C, is the sequence
(k)i -

For J < I, let 4’ be the subgraph of (C,~) with all chambers ¢ € % as vertices
and r~!(J) as the set of edges. The connected components of %’ are called residues
of type J (also J-residues, for short). Given a J-residue 2, we write #(Z) = J to recall
that J is its type, we call |J| the rank of &, I\J the cotype of Z and |I\J| the corank
of 2. In particular, the residues of rank 1 are the panels and those of rank 0 are the
chambers of ¥. Only one /-residue exists, namely % itself. We call it the improper
residue, all remaining residues of & being called proper.

Note that, for ¢ # J < I, all J-residues are chamber systems over J. When a J-
residue is regarded as a set of chambers, no mind of its adjacency relations, we call it
a J-cell, also denoting it by [c]", where ¢ is any of its chambers. For two residues 2/,
Y of €, if (X)) = t(%) and X = ¥, then we say that 2 is a subresidue of % and we
write 2 < % (also & < %, when 4 # %).

Every chamber is declared to be i-adjacent to itself, for every type i. With this
convention, the i-adjacency relation is an equivalence relation. We denote that rela-
tion by ®'. For J =1, ®’ := \/je J<Dj is the equivalence relation on C that has
the J-cells of % as classes. In particular, ® is the identity relation on C.

We recall that the chambers (maximal flags) of a geometry I form a chamber
system %(I"). We can recover I' from its chamber system % = (') as follows: the
i-elements of I' correspond to the cells of € of cotype i, two elements of I" being
incident precisely when their corresponding cells meet non-trivially; the flags of T of
type J correspond to the (7\J)-cells of €.

We say that a chamber system % is geometric if € ~ % (I") for a suitable geometry
I'. Geometric chamber systems are characterized by the following properties (see
[16, Chapter 12]): 1) ®/ N®X = ®’"X for all J,K =1, and 2) &’ N(dXDH) =
(@' NdX) (@’ Nd) forall J,K, H = I.

All chamber systems of rank 2 are geometric. So, diagrams can be defined for
chamber systems using just the same conventions as for geometries. Similarly for
orders, thinness and thickness.

We say that a chamber system % is tight at a given type i if it admits only one
residue of cotype 7, namely: the set C of all chambers of % is an (7\{i})-cell. Tight
chamber systems insistently spring out of many contexts (see Example 5.1, for
instance). They are non-geometric.

Remark. The above definition of chamber system is more restrictive than those given
by other authors (compare Kasikova and Shult [11], for instance), but it is sufficient
for many purposes. For instance, it suites chamber systems arising from parabolic
systems. It also keeps chamber systems as close as possible to geometries. As for the
latter, we recall that the inductive definition of [16] (which we follow here) forces all
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geometries to be residually connected and firm. Firmness corresponds to the assump-
tion, made in (CS), that every panel contains at least two chambers. The residual con-
nectedness of a geometry I' accounts for the connectedness of ¢(I') and the corre-
spondence between flags of T and cells of €(T).

Geometric chamber systems are called ‘residually connected’ by some authors, but
I don’t like that terminology.

2.2 Morphisms, epimorphisms, embeddings and coverings. Given two finite sets /
and I’ with INI' # & and chamber systems 4 and %’ on I and I’ respectively, a
morphism from % to %’ is a mapping ¢ from the set C of chambers of & to the set C’
of chambers of €’ such that, for every i € I and any two i-adjacent chambers ¢, d € C,
if ie INI' then ¢(c) ~; p(d) and, if i € I\I', then ¢(c) = ¢p(d).

Assuming I = I, a morphism ¢ : ¥ — %’ is called an isomorphism if it is bijective
as a mapping from C to C’ and ¢! is also a morphism. Symbols as =~ and Aut(%)
have the usual meaning. If Aut(%) acts transitively on C, then we say that € is tran-
sitive. When ¢ = €(T') for a geometry I', Aut(%) = Aut(I') and ¥ is transitive if and
only if I is flag-transitive.

Epimorphisms and quotients. Assume that / = I’. We say that a morphism ¢ : € — %’
is an epimorphism if ¢(C) = C'. If moreover, for any i € I’ and any two i-adjacent
chambers ¢’,d’ € ', there are chambers c € p~!(¢’) and d € 9~ (d’) such that ¢ ~; d,
then we say that the epimorphism ¢ is full.

We turn to quotients now. Let ® be an equivalence relation on the set C of cham-
bers of & such that:

Q1) ="
(Q2) no class of @ is the join of i-panels of €, for any i e I';
(Q3) (@ v ®)N(® v ®/) = O for any two distinct types i, j € I';

(Note that (Q1) is empty when I’ = I.) We can form a chamber system %/® over
I’, which we call the quotient of € by @, by taking the classes of ® as chambers
and the quotient relations (@’ v ©)/0 as i-adjacency relations, for i € I'. (Note that,
in view of (Q3), if X ~; Y ~; X in %/0O for different types 7, j, then X = Y; also, by
(Q2), all panels of ¥/® have size > 2, as required in (CS).) The natural projection
ne : C — C/@ is an epimorphism from & to /O, called the projection of € onto
€/0.

Conversely, given an epimorphism ¢ : € — %', let ® be the equivalence relation
on C with the fibers of ¢ as classes. Then © satisfies (Q1), (Q2) and (Q3) and we have
¢ = ong for a unique isomorphism o : /0 — €.

When I =1’ and the classes of ® are the orbits of a subgroup G < Aut(%), the
quotient /O is also denoted by 4/G and is called the quotient of € by G. In this
case, the projection epimorphism is full.

Finally, a warning: quotients of geometric chamber systems are non-geometric, in
general.
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Embeddings. Let I = I'. An embedding of € in €' is an injective morphism from % to
%’. If moreover ¢(C) is an I-cell of ¥’ and ¢ induces an isomorphism from % to the
I-residue of %' supported by ¢(C), then we say that the embedding ¢ is full.

Coverings. Given two chamber systems % and 4’ over the same set of types I, let ¢ be
a morphism from % to %’ and suppose that, for a given positive integer m < |I| and
every residue 4 of € of rank m, the restriction of ¢ to %" is a full embedding of 2" in
%'. Then ¢ is called an m-covering. If an m-covering ¢ : € — %' exists, then we say
that % is an m-cover of ¥’ and that €’ is an m-quotient of 6.

Every m-covering is a full epimorphism. Clearly, every isomorphism is an m-
covering. If an m-covering ¢ : ¢ — %’ is not an isomorphism, then we call it a proper
m-covering. Accordingly, we say that & is a proper m-cover of 4’ and €’ is a proper
m-quotient of €.

It is well known (Tits [26], Ronan [20]) that every chamber system % of rank n >
m > 1 admits a universal m-covering ¢ : € — %, uniquely determined up to isomor-
phism by the following property: Given a chamber ¢ € 4 and a chamber ¢ € ¢~!(c),
for any m-covering ¢ : ' — % and every chamber ¢’ € p~!(c), there exist a unique
m-cover i : % — %' such that y(¢) = ¢’. Moreover, ¢ =~ %/D(¢) where D(¢) :=
{9 € Aut(%) | pg = ¢}.

A chamber system is said to be m-simply connected if its universal m-covering is
an isomorphism. The following celebrated theorem of Tits will be exploited a number
of times in Section 5:

Theorem 2.1. Given a chamber system € belonging to a Coxeter diagram, suppose that
all residues of € of rank 3 and spherical type are 2-covered by buildings. Then the uni-
versal 2-cover of € is a building. Moreover, all buildings are 2-simply connected.

We recall that thin buildings are Coxeter complexes. All thin chamber systems of
rank 3 and spherical type are 2-quotients of Coxeter complexes (see [17]). Therefore,

Corollary 2.2. Every thin chamber system is 2-covered by a Coxeter complex.

2.3 Truncations. Given a chamber system % over a set of types / and a nonempty
proper subset J of I, if ®/ defines a quotient of % then we say that % admits the J-
truncation and we call Tr;(%) := €/®’ the J-truncation of %. Needless to say, the
projection of € onto Tr;(%) is the projection 7y := ngs : 6 — €/®’ = Tr;(%).

If € is geometric, say ¥ = ¢(I"), then ¥ admits the J-truncation for every non-
empty proper subset J of I and we have Tr; (%) =~ €(Tr,(I')), where Tr;(T") is the J-
truncation of I', namely the induced subgeometry of I" obtained by removing all ele-
ments of type j € J. (Note that the chambers of Tr;(I") are flags of I' of cotype J,
whence they correspond to J-cells of %.)

Truncations of morphisms. Given two chambers systems % and % with type-sets I and
I where I < I, suppose that both % and 4 admit the J-truncation for a given proper
nonempty subset J of I and let ¢ :  — % be a morphism. Then ¢([c]”) < [p(c)]” for
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every chamber c € €. So, ¢ induces a morphism Tr;(¢) : Tr;(4) — Tr;(%). We call
Tr;(p) the J-truncation of ¢. If ¢ is a (full) epimorphism, then Tr;(¢p) is also a (full)
epimorphism. If ¢ is a (full) embedding, then Tr,(p) is a (full) embedding.

Truncations and covers. With ¢ : % — % as above, let I = I and suppose that the mor-
phism ¢ : ¢ — % is an m-covering for a positive integer m < |I\J| and that, for every
residue 2 of € of cotype i € I\J, ¢ induces on 2 a full embedding in ¥. Then Tr;(p)

is an m-covering from Tr,;(%) to Tr;(%). Assume furthermore that ¢ is universal.

Then one might wonder if Tr;(%) is the universal m-cover of Tr;(%). The next the-
orem partially answers this question.

Theorem 2.3 ([7, Theorem 7.19)). Let € admit the J-truncation and suppose that, for
a given positive integer m < |I\J| and every subset K = I\J of size m, all (KU J)-
residues of € are m-simply connected. Then the universal m-cover € of € admits the J-

truncation and Tr;(€) is the universal m-cover of Tr;(%).

2.4 Reducibility. Given a diagram D over a set of types I, let J and K be mutually
disjoint subsets of I such that no type of J is joined to any type of K by a stroke of
D. Let % be a chamber system belonging to D. Then ®/®* = ®X®’. (We warn the
reader that, contrary to what is said in [7, Proposition 7.4], the converse is false in
general: when % is non-geometric, it might happen that ®’/®X = ®X®”’ and, never-
theless, some strokes of D go from J to K.)

Assume that J U K = I. Then the equality ®’®X = ®X®’ can be rephrased as fol-
lows: Z N% # & for every J-cell Z and every K-cell % of ¥. Suppose moreover that
@’ N DK = ®Z. (We recall that ®? is the identity relation on the set of chambers
of €.) Then & = Trg(%) and % =~ Tr; (%) for any J-residue 2 and any K-residue %
of €, and we have ¥ =~ 2 x %, the direct product X x % being defined as follows:
The chambers of 2 x # are the pairs (x, y) with x e Z and y € # and, for je J (or
k € K), two pairs (x, y1) and (x;, y») are declared to be j-adjacent (k-adjacent) when
X1 ~jxy and y; = y (respectively, x| = x and y; ~ »2).

With €, %,%,J and K as above, suppose that both " and % are geometric. Then
% is geometric if and only if ®/ N®X = ®Z, namely ¥ = 2 x %. When JUK < I,
all the above remain valid, but applied to (J U K)-residues of & rather than to %
itself.

3 Sheaves and their completions

3.1 Definitions. Given a set I of types, a subset J < I with |I\J| > 3, a chamber

system & over K := I'\J and a nonempty family % of proper residues of €, an I-sheaf

for ¢ over Zis a triple S = ({2} ey {0} e &7 b o wep <) Where

(S1) For every 2 € #, &y is a chamber system over the set of types J U %), it
admits the J-truncation and 74 is an isomorphism from %" to Tr; (&% ).

(S2) For all Z,% € # with <%, &7 is a full embedding of &z in &». (When
4 =%, &} stands for the identity automorphism of &,.) Moreover:
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(S3) Try(e7)ta = 417 where 1)) is the inclusion mapping of 2" into %.

(S4) For 2, %, % e R,if X < ¥ < ¥ then elye) = &%

Furthermore, if a diagram D over [/ is given and

(S5) for every X € #, &4 belongs to the diagram Dy,(4) induced by D on J U #(%),

then we say that S is a defined over D, or that S is a D-sheaf, for short. We call 2
the support of S. We say that Z is reliable if it contains all panels and all chambers of
% (the latter being regarded as residues of rank 0). If furthermore % contains all res-
idues of € of rank 2, then we say that # is fully reliable. Note that the collection of
reliable families of proper residues of ¢ admits a minimal element, namely the family
Rmin of all panels and chambers of ¢. The family of all proper residues of € is the
maximal (fully) reliable family. If S is an /-sheaf over # and %, is a reliable sub-
family of £, then the triple

({g%}.%'e.%g’ {TI}%e%()a {83}3[,21@%0,%«1/)

is an /-sheaf over %y. We call it the sheaf induced by S on %,. Given two [-sheaves,

S={ér}ream T2} ren {Si]{}r YeR, a<w)s

S' = {Fat e 102} wens {’7?;};2',%592,;&{7/)7

with the same support 2, an isomorphism from S to S’ is a collection y = {y4} . Of
isomorphisms y, : & — F4 such that

(I1) ypta = O for every X € # and
(12) yyey = ny, for any choice of Z',% € # with Z < %.

An I-extension (D-extension) of € is a chamber system & over the set of types I (be-
longing to the diagram D) such that Tr;(&) = %. Given an I-extension & of %, a
family 2 of proper residues of ¢ and an isomorphism o : Tr; (&) — &, put ¢ := any,
where 7; is the projection of & onto Tr,(&). For 4 € Z, let &4 be the preimage of
Z by ¢, regarded as a (J U #(Z'))-residue of &, and let 74 be the restriction of &~ ! to
X UE<¥YeR,let si{ be the inclusion embedding of &4 in &%. Then the triple

S#(6) = {6z} yrem {tatren {gg}zyeu/zza/)

is an I-sheaf, defined over the same diagram as &. We call it the sheaf induced by & on
. Clearly, the isomorphism type of S,(&) does not depend on the particular choice
of the isomorphism o : Tr; (&) — 4. Also, if & = &, then Sy(&) = Sx(&”).

3.2 The completion of a sheaf with reliable support. For the rest of this section D
is a given diagram over I, # is a reliable family of proper residues of ¥ and S =
{2} yen {tatwen {€r v wen vew) is a D-sheaf over 2. We firstly state some
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notation. Given Z',% € # with % < Z and a chamber x € ¢ (&), we denote by (x),,
the preimage of x by ¢;. Given 2 € # and a chamber x € &7, the preimage by 74 of
the J-cell [x]” of x in & is a chamber of % and belongs to %, as Z is reliable. We will
denote that preimage by the symbol ¢(x).

Let E be the set of pairs (2, x) where 4 € # and x is a chamber of &,. We say
that two pairs (271,x1), (Z2,x2) € E are equivalent when 21 N %> # & and we can
choose a residue 4 € # and a chamber x € & such that 4 < %; and e? (x) = x; for
i =1,2. Note that if such a pair (2, x) exists, then we can replace it with any pair
(%, y) where % € #, % < % and ¢, (y) = x. In particular, modulo replacing (2, x)
with (¢(x), (X)), we may always assume that 2" is a chamber. When (%7, x1) and
(%2, x,) are equivalent, we write (27, x1) = (22, x2).

Lemma 3.1. The relation = is an equivalence relation.

Proof. Let (21,x1) = (%2,x2) = (23, X3). So, there are pairs (2, x) and (2, x’) such
that ¢/ (x) = x; for i = 1,2 and 8_?,()6’) =x; for i=2,3. As &)’ (x) = 8;{2,(x’) = X2,
(S3) implies that ¢(x) = ¢(x') = ¢(x;). Therefore Z N 2"’ contains the chamber ¢ :=
¢(x) = ¢(x") = ¢(x2). In view of (S3), for i = 1,3 the embedding ¢’ maps &, onto
the J-cell [x;]” of &, and we have &1 ((x1),) = x; and &% ((x3),) = x3. Consequently,
(x), = (x1), and (x"), = (x3), by (S4) and since x = (x1), and x" = (x3),,. On the
other hand, x = (x2), and x’ = (x2), . Hence (x),= (x2), = (x’),. So, for y =
(x). = (x"),, we have ¢"1(y) = x; and &"(y) = x3. Therefore, (271,x1) = (23, x3).

O

Lemma 3.2. Every class of = admits a unique representative of the form (c, x), where c
is a chamber of € and x € &.. The members of the class of = containing (c,x) are the
pairs (¥, y) where y = &”(x) and ¥ is any member of R containing c. In other words,
(&, x) = (c(x), (X)) for every pair (2, x) € E.

In the sequel, we denote by E the set of equivalence classes of = and we take the
pairs (c,x) (c € €,x € &) as canonical representatives of the classes of =. For two
classes C1, C; € E, let (¢;, x;) be the canonical representative of C; (i = 1,2). Given
a type jeJ, we declare C; and C, to be j-adjacent when ¢; = ¢; and x| ~; x; in
é.. If ke K, then we say that C; and C, are k-adjacent when ¢; ~; ¢; in 4 and
el (x1) ~k el (x2) in &y, where 2 is the k-panel of % containing ¢; and c¢,. (Recall
that Z € #, as Z is reliable.) If C; and C, are i-adjacent for i e [ (=K UJ), then we
write C; ~F G (also Cy ~; Gy, for short). The following is obvious:

E

Lemma 3.3. The relation ~;* is an equivalence relation for any i € I.

Lemma 3.4. For Cy, C; € E and distinct types i, j € 1, if Cy ~; Cy ~; Cy, then C; = C,.

Proof- When i, j € J or i, j € K, the claim is obvious. (Recall that, according to (CS)
of Section 2, no two distinct chambers of a chamber system are both i- and j-adjacent
for distinct types 7, j.) Let ie K and jeJ. As C| ~; C;, we have ¢ = ¢; = ¢, say.
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So, x1,x; € &.. On the other hand, x; ~; x, in &, and ¢ ~; ¢; in €. Let Z be the
i-panel of % containing ¢; and ¢;. Then &/ (x1) ~;&’ (x2) ~;&X (x1). This forces
el (x1) = & (x2), whence x; = x,. Therefore, C; = C,. O
Lemma 3.5. For every type i € I, every class of ~E contains at least two members.

Proof. Let C € E with (c, x) as its canonical representative. Suppose firstly that i € J.
By (CS) on &, the i-panel [x]' of &, contains at least one chamber x’ # x. If C’ is
the =-class of (¢,x’), then C' ~; C # C’. Let now i € K and Z be the i-panel of ¢
containing ¢. Then & (&,) is a J-cell of & and contains y = &’ (x). & contains a
chamber y’ # y with y’ ~; y. The =-class of (%, y’) is i-adjacent to C and different
from C. U

Definition. We call the coloured graph &(S) := (E,{~F},.;) the completion of the
sheaf S.

Proposition 3.6. &(S) is a chamber system over the set of types I.

Proof. In view of Lemmas 3.3, 3.4 and 3.5, we only must prove that &(S) is con-
nected. For C, C' € E, let (¢, x) and (¢, x’) be their canonical representatives. Take a
gallery of & from c to ¢’: c=co ~j,¢c1 ~ c2- -+ ~i ¢ =c'. Fork=1,2,...,m, let
Z be the i-panel of € containing {ci_1, ¢} and, if k& < m, pick a chamber x; € &,.
Put xo = x, x,, = x" and, for k = 0,1,...,m, denote by C; the element of E repre-
sented by (c¢k,xx). So, Co=C and C, = C'. For k=1,2,...,m, the chambers
Vit = &% (xe1) and y; = % (x) of &y, are joined by a gallery (31 = veo,
Vidye s Vis, = Vi). For h=0,1,... 5, let Cy j, be the element of E represented by
(c(yien)s (Vi) ey ,)- Then (Cro, Ci1s - - -, C ) Is @ path of &(S) from Cy g to Cy, .
However, Cy o = Cr—1 and Cy 5, = Ci. Thus, Cx_; and C; are joined by a path y; of
&(S). The join 7, ...y, of those paths is a path from C to C’. O

Proposition 3.7. Tr;(&(S)) = €.

Proof. For a chamber C of & = &(S), let (¢, xo) be its canonical representative in D.
Then the chambers of the J-cell [C]J containing C are precisely those represented by
pairs (c, x) for x € &.. So, we can put «([C]”) = ¢, thus obtaining a bijection o from
the set of chambers of Tr; (&) to the set of chambers of €. We shall prove that o is an
isomorphism.

Let ¢ = any, where 7y is the projection of & onto Tr,(&). Forie K, let U, U’ be
two i-adjacent chambers of Tr; (&) and put ¢ := a(U) and ¢’ := «(U’). Regarding U
and U’ as J-cells of &, pick two chambers C € U and C’ € U'. Then & contains a
gallery y = (C=Co ~;, Ci ~;, Cy--- ~;, C,, = C') of type #(y) = JU {i} from C to
C'. If jred, then ¢p(Cx_1) = ¢(Cy) whereas, if jp =i, then ¢(Cix_1) ~;p(Ck).
Therefore, p(C) ~; ¢p(C’). However, ¢(C) = ¢ and ¢(C’) = ¢’. Hence ¢ ~;¢’. Con-
versely, suppose that ¢ ~;¢’ and let & be the i-panel of % containing both ¢ and

¢'. Given yee’(6.) and y' € el (8x), let (¥ = yo, ¥1,-.., ym = »') be a gallery of



S86 Antonio Pasini

&y from y to ' and, for k =0,1,...,m, let C; be the chamber of & represented by
(c(¥), (Vi) e(yy))- Then y = (Co, Ci,..., Cy) is a gallery of & of type #(y) = JU{i}.
Moreover, Co e U and C,, e U'. So, U ~; U’. O

Proposition 3.8. S =~ S;(&£(S)).

Proof. Let ¢ be the function mapping every chamber x € & to the =-class of
(Z,x). We shall prove that ¢ is an isomorphism from &4 to a (#(Z)UJ)-residue
of & =6(S). For x,yedéyq, let x~;p. If ieJ, then clearly ¢(x) ~;¢(y). Sup-
pose that ie#(Z) (cK). Then [x]” ~;[y]’, hence 7;'([x]7) ~iz;'([y]7), namely
¢(x) ~;¢(y) by (S1) on 74. Denoting by % the i-panel of Z containing ¢(x) and
e(y), we have &4 (s7 (X)) = x and e} (e (¥),(,) = ». by (S4). Hence
et (X)) ~il ) ((x)y(y))s as x ~; y. Therefore p(x) ~; p(y), according to the def-
inition of the i-adjacency relation ~ £ of &.

So far, we have proved that ¢ preserves adjacencies. Hence ¢(&7) is contained in a
(((X)UJ)-residue of &, say Z. Let C ~;¢(x) forie (Z)UJ, Ce & and x € &y. Let
(¢; yc) be the canonical representative of C. If i € J, then ¢ = ¢(x) and yc¢ ~; (x),y)
in & = &.(y. Therefore y:=ef  (yc) ~ix and C = g(y). On the other hand, let
iet(Z). Then ¢ ~;c¢(x) and, if ¥ is the i-panel of € containing ¢ and c¢(x), then
e (ve) ~iel (%)) However, # <. Hence y:=e!(yc) ~iely((x)) =X
and C = ¢(y). It follows that ¢(&y) = Z and that, for every i e {(Z)UJ = t(%),
every i-adjacent pair of chambers of % is the image by ¢ of an i-adjacent pair of
chambers of &y .

To finish, we need to prove that ¢ in injective. Suppose that ¢(x) = ¢(y). Then
¢(x) = ¢(y) and (x).) = (¥)(,), by the uniqueness of canonical representatives. On

the other hand, x = E?Ex)((x)c(x)) and y = sf< ((P)e(y)- Therefore, x = . O

Clearly, if S’ = S for another sheaf S’ supported by %, then &(S') = &(S). It is
also clear from its construction that &(S) only depends on the subsheaf of S induced
on the collection %y, of panels and chambers of %. As a consequence:

Theorem 3.9. Let S’ be another D-sheaf for € with reliable support and suppose that S
and S' induce isomorphic sheaves on R . Then &(S') = &£(S).

The following is also obvious:
Proposition 3.10. &(S4(&)) = & for every I-extension & of €.
Lemma 3.11. If # is fully reliable, then &(S) belongs to D.

Proof. As Z is fully reliable, for any two types 7, j € I we can find a residue 2 € #
such that #(%Z) = {i, j}. The conclusion follows from Proposition 3.8. |

By Lemma 3.11, Proposition 3.7 and Theorem 3.9 we immediately obtain the fol-
lowing:



Extending locally truncated chamber systems by sheaves S87

Theorem 3.12. Without assuming that R is fully reliable, suppose that there exists a
D-sheaf S’ for €, with fully reliable support and such that S' and S induce isomor-
phic sheaves on the collection Rmin of chambers and panels of €. Then &(S) is a D-
extension of €.

3.3 Sheaves for chamber systems of rank 2. So far, we have assumed |K| > 3, but the
definitions of Subsection 3.1 can be stated for the case of |K| = 2 as well. Everything
said in Subsection 3.2 remains true for that case. However, when |K| =2 proper
residues have rank < 1. As a consequence, if a target diagram D has been chosen (for
instance, inherited from a larger chamber system of which & is a truncation, as in the
examples of Section 5), the rank 2 residues of £(S) of type K might be quite different
from those allowed by the K-stroke of D. In other words, we cannot keep K-residues
under control.

We can also describe this situation as follows: a chamber system over the set of
types K = {0, 1} might admit both a D-extension and a D'-extension for two differ-
ent diagrams D and D" over I = {0,1} UJ, where D and D’ have the same {i, j}-
stroke for every pair {i, j} = I but for {i, j} = {0,1}.

Example 3.1. The vertex-edge system of a 3-dimensional simplex is also the vertex-
edge system of the quotient of a 3-dimensional cube by the antipodal relation. In this
case, D and D’ are the Coxeter diagrams 43 and C;:

0 1 2 0 1 2
(A3) [ S (C3) ————9 o

Example 3.2. The point-line system of PG(3,2) can also be regarded as the plane-line
system of the flat Cs;-geometry I'(Alt(7)) for the alternating group Alt(7) (see [16,
6.4.2]). The diagrams D and D’ of PG(3,2) and I'(Alt(7)) are the Coxeter diagrams
Az and Cs, with types 0, 1,2 as in Example 3.1, planes and lines of T'(Alt(7)) being
given the types 0 and 1, respectively.

In view of the above, when |K| = 2, relating S with a diagram D as we do when we
call S a D-sheaf, is an abuse. Nevertheless, we will not scruple to commit that abuse
sometimes in the sequel, when that will help us to avoid awkward circumlocutions.

3.4 A few remarks on the geometric case. Suppose that 4 is geometric, ¥ = €(I") for
a geometry I'. Then we say that a sheaf

S={ér}ream 2t ren {Slg ;'},”,?Ve?).{}’<??/)

for € is geometric if the chamber system & is geometric for every & € 4.

In general, the completion &(S) of a geometric sheaf S is non-geometric. This often
happens when % has rank 2 (see Examples 5.1, 5.2, 5.3), but it also may happen when
% has rank > 3 (see below, Example 3.3). Regretfully, I have not been able to find
any general sufficient condition for &(S) to be geometric.
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Example 3.3. Let A be a Coxeter complex of type D,, n > 4, regarded as a geometry.
With 7 ={0,1,...,n— 1}, put J :={3,4,...,n— 1}, where types are given as fol-
lows:

It is well known that Aut(A) = V4S where V} is the subgroup of the additive group
of V= V(n,2) formed by the vectors of even weight and S =~ Sym(n), acting on V'
as the group of permutational matrices. Let G be a non-trivial subgroup of ¥V, such
that all non-zero vectors of G have weight at least 4. Then G defines a 2-quotient
& :=%(A)/G of €(A). It also defines a 2-quotient I' := Tr;(A)/G of Tr,(A), and
%(I') = Tr;(&). Moreover, for every residue of €(A) of type JU {i} or JU{i, j},
i,j€{0,1,2}, the projection 7 : ¥(A) — & induces an injective mapping on that
residue. So, those residues form a geometric sheaf S for € := ¢(I') and we have
&(S) = &. However, the geometry A does not admit any proper 2-quotient. That is,
none of the proper 2-quotients of #(A) is geometric. Hence &(S) is non-geometric.

4 The back-and-forth trick

In this section we consider the following situation: Given a chamber system % over a
set of types K and a diagram D over / > K, suppose that we look for a sheaf for ¥
but, on the spot, we do not see how to define it. Suppose that, however, we can easily
find a D-sheaf Sy for a suitable truncation Try (%) of €. We shall show that, under
certain conditions, Sy can be extended to a D-sheaf of . In short, we firstly step
backward from K to K\ H, next we move forward, regaining K.

Given I, D, K and % as above and a nonempty subset H of K such that |[K\H| > 2,
we put J :=I\K, Jo =JUH and K, := K\H = I\Jy. Assuming that % admits the
H-truncation, we denote by 7z the projection of % onto %, := Tr,(%). Every residue
Z of %y is the projection by 7 of a unique (#(2) U H)-residue 7n~!(Z’) of . We also
denote by 74 the projection of 7!(2') onto 2 induced by z. Without assuming any
sheaf for %, suppose that a D-sheaf So = ({4} s s {0 ey {67 Y ey ) 18
given for %), with reliable support %y. As in Section 3, &(Sy) is the completion of Sy.
(As noticed in Subsection 3.3, £(Sy) exists and is an extension of %, even if |Ky| = 2.)
We also assume that Sy satisfies the following:

(T1) for every 2 € #o, & admits the J-truncation and an isomorphism 7,- is given
from v := 7~ 1(Z) to Tr;(&y) such that 47y = g, 7y, where g, is the pro-
jection of Tr; (&%) onto Try, (&7);

(T2) for X', % € Ry, if X <% then Try(e7)ty = ty1)-, where i/ is the inclusion
mapping of V" =71 (Z) in W =7~ (¥).

Theorem 4.1. Tr,(6(Sy)) = 4.
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Proof. Given a chamber C of &, let (¢,x¢) (x¢ € &.) be its canonical representa-
tive (see Lemma 3.2). The chambers of [C]” are represented by the pairs (c, x), for
x e [xc]”. In view of (T1), if ¢:=7"'(c) then rgl([xc]‘]) is a chamber of 4. We
denote it by «([C]”). The function « defined in this way is a bijection from the set of
J-cells of & to the set of chambers of ¥. We shall prove that « is an isomorphism. It
will be useful to consider the composition ¢ = ang, where 7s stands for the projection
of & onto Tr;(&).

Let Uy, U, be chambers of Tr;(&). For s = 1,2, put a, := a(U;) and, given a cham-
ber C; of & in the J-cell Uy, let (cy, x;) be its canonical representative. Note that
@(Cy) = a,. Suppose that U; and U, are i-adjacent in Try(&). Then there is a gallery
y = (X0, X1,...,Xim) of & from C; = X to Cy = X, of type t(y) = JU{i}. For k =
0,1,...,m, put b, = p(Xy) and let (di, yx) be the canonical representative of Xj. In
particular, by = a; and b, = a>. If Xy_1 ~; X for jeJ, then by_; = by. Suppose
that X1 ~; Xi. If i € H, then dj_ = di and y_| ~; yx. In this case (T1) implies
that by_; ~; by. Let ie Ky. Then di_; ~;d;, and e{;f,’ﬂ(yk,l) ~; eji(yk), where &
is the i-panel of %, containing {dy_1,di}. Put ¥5 = '(di_1), 1 =n"'(d}) and
W =n ' (Z). Then by_y € ¥y, by e¥7 and ¥oU¥] < W . Since by_1, b€ W', we
have &] (yi-1) € Ty (bx—1) and &7 (i) € Ty-(be) by (T2). As &f (yi-1) ~i el (i),
(T1) implies that by_; ~; by. Thus, bx_; ~; by in any case. Hence ¢(y) is contained in
an i-panel of €. As a consequence, a; ~; ;.

Conversely, suppose that a; ~; ay. If i € H, then ¢; = ¢; = ¢, say. By (T1) applied
to ' (c) we see that the cells [x;]” and [x]” of &, are i-adjacent. Hence x; and x, are
joined by a gallery of &, of type contained in J U {i}. So, C| ~; C,. Finally, let i € K.
Then ¢; and ¢, are i-adjacent, hence they are contained in the same i-panel 2 of .
Again, a;,a € W =7 1 (Z), el (x1) € Ty (a)) and &/ (x2) € Ty (a2). As a1 ~; ay, (T1)
implies that the cells [¢/ (x1)]” and [¢(x2)]” of &7 are i-adjacent, namely &7 (x1) and
& (x2) are joined by a gallery of &7 of type =J U {i}. Again, Cy ~; Cs. O

By Lemma 3.11 and Theorem 4.1 we immediately obtain the following:

Theorem 4.2. Let |Ky| = 3 and suppose that Ry is fully reliable. Then &(Sy) is a D-
extension of €.

Theorem 4.3. Suppose that H separates Ky from J in D. Given an isomorphism o from

Tr;(&(So)) to €, let ¢ .= ang, where g is the projection of & := &(Sy) onto Try(&).

Then, for every residue U of & of type & # t(U) < Ko, p(U) is a Ko-residue of € and

@ induces a full epimorphism ¢, : U — o(U). Moreover:

(1) If the (JU(U))-residue ' (U) of & containing U splits as a direct product of U
and a J-subresidue, then ¢, is an isomorphism.

Q) If (U) = (%) for some X € Ry and Ex is geometric for every X € Ry of type
X)) =t(U), then ¢,, is an isomorphism.

(3) If U has rank at least 3, Ry is fully reliable and &y is geometric for every residue X
of € of rank 2 and type t(X) < t(U), then ¢, is a 2-covering.
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(4) If U has rank at least 2 and &y is geometric for every panel X of € of type
HX) e t(U), then ¢y is a 1-covering.

Proof. Assume that ¥ = Tr;(&) and « is the identity mapping, to avoid unnecessary
complications. So, ¢ = ms. As H separates K, from J, the equality ®'®7 = & 7@’
holds in & for any T < K| (see Subsection 2.4). Accordingly, if 75(C) ~; ng(C>) for
chambers Ci,C, € % and a type i € Ko, then C; ~; C; for a chamber C; e [Ca]”.
However, C; belongs to %, as it is i-adjacent to C; € %. This shows that the restric-
tion 7y of mg to % is a full epimorphism onto 7g(%). Claim (1) is obvious and (2)
follows from (1). We shall now prove (3).

Assume the hypotheses of (3). We must prove that, for i, j € ¢(%) and every {i, j}-
subresidue ¥~ of %, ns induces an isomorphism from ¥~ to ¥~ := ng(¥"). Clearly, ¥~
is a {i, j}-subresidue of % = ng(%). Put 4 := n(¥") (recall that we have assumed
that ¢ = 7¢). As %y is fully reliable, {i, j} € %y and, by (T1), we recognize ¥~ in &z
as a J-truncation of a suitable J U {i, j}-residue W of &x. By the hypotheses made
on &y in (3), we have W =" x ¢ for subresidues 7~ and # of type {i,j} and J
respectively. Therefore, 7~ =~ Tr;(#") =~ 7"'. However, by Proposition 3.8, an iso-
morphism exists from #" to an ({i, j} UJ)-residue #" of & contained in %, which
maps 7' onto ¥~ and such that s induces an isomorphism from Tr;(#) to 7.
Therefore 75 induces an isomorphism from ¥~ to . Claim (3) is proved. Claim (4)
can be proved in a similar way. We leave its proof for the reader. O

In view of (T1) and (T2), we may also regard Sy as a sheaf for % over n~ (%) :=
{n= Y (x )} 2 c 2, The family 7Y (A,) is non-reliable, but it is contained in several reli-
able families of residues of €. We call such families reliable €-extensions of Zy. (For
instance, 7! (R) U Bmin 1s a reliable ¥-extension of %,.) We say that an I-sheaf S
over a reliable @-extension # of % is an extension of Sy over Z (also, an Z-extension
of Sp) if it induces on 7' (Zy) a sheaf isomorphic to Sy.

Theorem 4.4. Let X be a reliable €-extension of Ry. Then Sy admits an R-extension S.
The extension S is uniquely determined up to isomorphisms, it is defined over the same
diagram as &(So) and we have &(S) = &(So).

Proof. The sheaf Sy (&) induced by & = &(Sp) on Z is defined over the same diagram
as & and extends Sy (Proposition 3.8). Suppose that Sy admits another extension S =
U} vea{0r}yrea Any Yo wem v o) Put &' = &(S). Then S = S(&"), by Prop-
osition 3.8. Thus, if &’ =~ & then S =~ S(&), and the proof of the theorem will be com-
plete. So, we must only prove that &' = &.

Without loss, we may assume that, for 2 € %y, ¥ =n"(Z) and 7, as in (T1)
and (T2), #, = &z and 0, = 1. Also, if W = p~(¥) for ¥ € Ry with ¥ > X, we
assume that 7/~ = &7. Let Ey be the set of pairs (2, x) with 2 € %y and x € & and
E; be the set of pairs (77, v) with ¥~ € # and v € ;. The equivalence relation = of
Subsection 3.2 will be denoted by = if we refer to pairs (Z, x) € Ey and by = if we
refer to Ey. Clearly, if (2, x) =¢ (%, y), then (z~1(Z),x) = (= 1(#), y). Conversely,
suppose that (7", x) =1 (#",y) for v = (X), W =n(¥),xe F = Erand y e
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Fy = &y. Then i) (z) = x and 5} (z) = y, where (d, z) is the canonical representa-
tive of the = -class of (7", x) and (#, y). Put ¢ := n(d) = [d]"". Then, regarding ¢
as a H-residue of %, we have ! (n5(z)) =5} = x and n” (n5(z)) = n/ (z) = y. Put
' =n5(z) € # = 6. Then ¢/ (z') = x and ¢/(z') = y. Therefore the function, say y,
that maps the =g-class of (%, x) onto the =-class of (z!(Z), x), is well-defined and
injective. As every chamber d of % is contained in the chamber [d]” of %, y is also
surjective. That is, y is a bijection from the set of chambers of & to the set of cham-
bers of &'.

It is not difficult to see that y~!' preserves i-adjacencies for every ie I. (Note
that, when i € H, every i-panel of ¢ is contained in a chamber of %, and, when
i € Ky, every i-panel of € is contained in the preimage by = of a panel of %,.) We
shall now prove that y preserves i-adjacencies. The statement is obvious when i ¢ K.
Let i € K and, given an i-panel 2" of %y, let ¢;,c2 € Z and Xy, x; € &, be such that
el (x1) ~i &l (x2). For k = 1,2, let Cy be the =o-class of (¢, x;). Then C; and C, are
i-adjacent as chambers of &. Let d; and d, be the chambers of % corresponding to
[C1]7 and [C,)” by the isomorphism constructed in the proof of Theorem 4.1. Then
dy ~; d». Moreover, [a’l]H = ¢ and [dz}H = ¢5. So, for k = 1,2 there exists a unique
chamber z; € 7 such that (dy,zx) is the canonical representative of the =-class of
(¢k, xk), namely g (zx) = xx. Let W be the i-panel of % containing di and d>. Then
W <V = p (&) and, for k = 1,2, we have () (z«)) = n} (g (k) = ), (xx) =
el (xi). As el (x1) ~;i &/ (x2), we obtain that n},-(n} (z1)) ~iny-(n}, (z2)). However,
1y~ induces an isomorphism from %y to 5,.(%y). Therefore, ;7:{1(21) ~,'77;’2"(zz).
That is, the chambers of &’ represented by (d;,z1) and (d,,z;) are i-adjacent. O

According to Theorems 4.2 and 4.4,

Corollary 4.5. If R is fully reliable (whence |Ko| = 3), then the R-extension of Sy is
defined over D. On the other hand, if R is not fully reliable (as when |Ky| = 2) and
&(So) does not belong to D, then there is no way to extend Sy to a D-sheaf of €.

5 Some applications of the back-and-forth trick

5.1 Preliminaries. In all cases to be considered in the sequel, ¥ = ¢ (I") for a geom-
etry I over K and %, = €(I) for Iy := Try(I"). We will freely switch from % and %
to I and I'y whenever this will be convenient, regarding a residue Z of ¢ (or %) as a
residue of I" (or T'), hence as a geometry. When |Ky| > 2, the support %, of the D-
sheaf Sy to be constructed is the minimal fully reliable family of proper residues of I,
namely the collection of all residues of Iy of rank <2. When |Ky| = 2, %, is just the
collection of all chambers and panels of I'y. The diagram D, which we call the target
diagram, is suggested by a diagram of I'. In all examples of this section but that of
Theorem 5.1, the sheaf Sy is geometric (Subsection 3.4): for every % € %,
Ex = €(Ay) for a given geometry Ay. We may also assume to have chosen Ay in
such a way that 2, regarded as a geometry, is just the Jy-truncation of Ay (namely,
74 1s induced by the inclusion embedding of 2 in Ay). Thus, we can regard Sy as a
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pair formed by a family of geometries {Az}, ., and a family {&}}, 4 cp 2cn Of
embeddings satisfying properties (S1), (S2),...,(S5) of Subsection 3.1, but with (S1)
and (S3) rephrased as follows:

(S1) JU(Z) is the type-set of Ay and & = Tr,,(Az);
(S3) &% induces the identity mapping on Z.

For 4 € A, we put 7~ (Z) = Resr(Fy), where Fy is the flag of Ty such that ' =
Resr, (Fz). We also assume to have chosen the elements of Ay and the embeddings
¢y in such a way that Tr;(Ay) = 7~ (Z) and &%(x) = x for every element x € 7~ (%)
(= 1(#)). These conditions correspond to (T1) and (T2) of Section 4 (take the iden-
tity mapping on ¥ := n~ (%) as 7,-). Moreover, if ' < % (namely, Fz > Fy), then
Fy\Fy is a flag of Ay and Resp, (Fy\Fy) = a'j{(Az) For a flag F of Ay, let o4 (F) be
the set of H-flags of z~!(Z) that, regarded as flags of Ay, are incident to F.

In each of the geometric examples to be discussed in the sequel but that of Sub-

section 5.6, the following is satisfied:

(x) |H| =1 and D induces a string on J U H, with the element of H as the leftmost
node. Moreover, for every Z € %y, up to isomorphisms, there is exactly one
geometry Ay for Dyyguya) such that Tryup(Ay) = %, and the following holds
for every flag F of Ay of type t(F) < t(Z) (possibly, F = ) and any two ele-
ments &1, & of Ay of type 1(&y), (&) € J:

1) if o7 (FU{{1}) = o2 (FU{,}) then &) = &;

2) a4 (FU{&}) € o9 (FU{&,}) if and only if & and &, are incident and #(&;) is
closer to H than ¢(&,) in the string JU H.

Thus, given 2,% € Ay with 4 < %, the embedding & is uniquely determined: for
an element & of Ay of type jeJ, ¢7(&) is the unique j-element v of Ay such that
oy(F U{v}) = g2(&). (Compare the example discussed in the Introduction of this
paper.) The above remarks imply that, if (%) holds,

(%%) there exists a unique geometric D-sheaf Sy over .

When |Ky| = 3, then % is fully reliable, the completion &(Sy) of Sy is a D-extension
of € = ¢(I') and each of its Kj-residues is a 2-cover of a Ky-residue of I" (Theorem
4.3(3)). When |Ky| = 2, &(So) is still an extension of €, but it might not belong to
the target-diagram D. We only know that, for i, j € I, if {i, j} # Ky then the {i, j}-
residues of &(Sy) are as in D whereas, when {i, j} = Ky, they are 1-covers of corre-
sponding Ky-residues of I' (Theorem 4.3(4)). However, if the class Dg, of rank 2 geo-
metries associated to the Ky-stroke of D has been chosen wisely, then some relations
still exist between the Ky-residues of &(Sy) and Dg,. For instance, if D, is the class
of all Ky-residues of I', then the Ko-residues of &(Sy) are 1-covers of members of D, .

We are not going to survey locally truncated geometries in this section. We will
only choose a few examples, as illustrations of the theory developed in Sections 3 and
4. Some of them can be given a more general setting than we will do here, but we
leave these generalizations for the interested reader. We will consider truncated C,,-
and D,,-diagrams first, although nearly all one can say on them has already been said
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by Ronan [22]. However, as we have chosen a truncated C,,-diagram in the Introduc-
tion for our remarks on sheaves, we must firstly turn back to diagrams of that kind.
Moreover, the detailed discussion we will do of truncated C,,-diagrams of rank n > 3
can be repeated almost word-by-word for most of the cases considered in this section.
In those cases, we will feel free to skip details.

5.2 Geometries of truncated C,,-type. Let I" belong to the following truncated dia-
gram (compare Introduction):

0 1 2 n—2 n—1 n m—1
((Cn)y) o o~ —o R 0.0

where 3 < n < m. We recall that black circles represent types of elements that actu-
ally exist in I', whereas the boxes represent ‘virtual elements’. Accordingly, K =
{0,1,...,n—1} and J={n,n+1,...,m—1}. We take H = {n— 1} and choose
the Coxeter diagram C,, as a target-diagram. So, Ko = {0,1,...,n—2} and Sy =
(A2} g emy (€7 v wen, w<w) is the geometric C,,-sheaf on the collection 2, of all
residues of Ty = Try(T) of rank <2 (when n > 3) or <1 (when n = 3). For Z € Ry,
Ay is either a projective geometry over a set of types T'= J U H, or it contains such
a projective geometry as a direct summand. Condition (x) holds. Hence Sy is the
unique geometric C,,-sheaf over %, by ().

When n > 3, then &£(Sy) belongs to C,,. If furthermore all Ky-residues of I are 2-
covered by buildings, then &(Sy) is a 2-quotient of a C,,-building, by Theorem 2.1.
We should check that all rank 3 residues of &(Sy) are 2-covered by buildings before
to apply Theorem 2.1, but this is quickly done: Let Z be a residue of £(Sy) of rank 3.
If t(Z) ¢ Ky, then we can recover Z inside Ay for a suitable 2 € %. In that case
there is nothing to prove. If #(Z) = K then, by Theorem 4.3(3), Z is a 2-cover of a
t(Z)-residue of I'y. The latter is 2-covered by a building, by assumption. Hence Z is
also 2-covered by a building. (See Ronan [22] for a slightly different version of this
argument; also Brouwer and Cohen [5].)

When n = 3, all residues of &(S) but those of type {0, 1} are as in the target dia-
gram C,,, whereas the {0, 1}-residues of &(Sy) are 1-covers of {0, 1}-residues of T’
(Theorem 4.3(4)). No more can be said in general: the structure of those residues
depends on particular properties of I'y. Here are some examples:

Example 5.1. Let I" be the near-hexagon for My, equipped with its quads as 2-
elements (Shult and Yanushka [23]; also Ronan [21] and [22]). Then I belongs to
(C4); and its {0, 1}-residues are isomorphic to the generalized quadrangle W (2) of
order 2. On the other hand, it is known that ¥(I") admits an extension & belonging to

the following diagram, where e——=—=» stands for the so-called tilde geometry (a
double 1-cover of W (2)): 2 2

0 o~ 1 2 3

2 2 2 2

(see Ceccherini and Pasini [7, Proposition 4.8]). Furthermore, Sy, (&) is geometric.
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Hence Sy, (&) = So, by (xx). By Theorem 4.4, £(Sp) = &. As & does not belong to
C4, no Cy-sheaf exists for I' (see Corollary 4.5). Note that & is transitive, with
Aut(&) = My, but it is non-geometric (compare Theorem 4.3(1)). In fact, it is tight
at the type 3. Its {0, 1, 2}-residue is the well known tilde-geometry for My, (see Iva-
nov [10, 3.3]). Notice that the parabolic system associated to & satisfies all hypotheses
of Fukshansky and Stroth [9] but the first one, which just rules out tight chamber
systems.

Example 5.2. Let n = 3 and suppose that all {0, 1}-residues of T" are ordinary quad-
rangles. Namely, I' is a C,.c-geometry with orders (1,1,¢), t = m — 2. By Theorem
4.3(4), the completion & := &(Sp) is thin and belongs to the following diagram,
where the label 4 on the {0, 1}-stroke means that, for a given set W of positive
integers, possibly enriched with the symbol oo, every {0, 1}-residue of & is an ordinary
4w-gon for a w € W and, for every w € W, at least one {0, 1}-residue of & is a 4w-gon.

0o 4w 1 2 m-2 m—1
(4mw),,) e . T SR °

I conjecture that W is just the set of wrapping numbers w(a) of configurations o =
(X, x0,x1) of ', where 2 is a {0, 1}-residue and {xo,x;} is a {0,1}-flag of I" with
Xo € 2 but x; ¢ 2 (see Pasini and Pica [18, Section 3] for the definition of w(a)). If so,
W is finite, it does not contain the symbol co and its maximal element is the wrap-
ping number w(I') of T'.

Note that (4W),, is a Coxeter diagram precisely when W is a singleton. Suppose
that W is a singleton, W = {w}. Then the universal 2-cover & of & is a Coxeter com-
plex (Corollary 2.2). If w = 1, then (4W), = C,, and & is an m-dimensional cube.
Suppose w > 1. Then & is infinite, whereas I is finite (Pasechnik [15]). In view of
Theorem 2.3, for some & # X < {3,4,...,m — 1} some of the {0, 1} U X-residues
of & do not split as a direct product of a {0, 1}- and an X-residue. As a consequence,
& cannot be geometric. The reader may see Ceccherini and Pasini [7, Proposition
4.9] for a discussion of a particular example related to L3(2)2, where m = 4 and
W = {2}. In that case both & and its {0, 1, 3}-residues are tight at the type 3.

An ordinary quadrangle is a grid of order s = 1. Many (C,,);-geometries are also
known where {0, 1}-residues are grids of order s > 1. Some of them are very inter-
esting, as the (Cj7);-geometry for J3 mentioned by Tits [25]. It is likely that what
we have said above for the case of s =1 can be repeated for s > 1. In particular,
some relations are likely to exist between wrapping numbers and gonalities of {0, 1}-
residues of &(Sy).

5.3 Geometries of truncated D,-type. The following diagram is strictly related to
(Cm)n:

E

(D))

1
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where 3 < n < m. The target-diagram is now D,,. It is well known that every geom-
etry I' belonging to (D,,), can be ‘folded’ in order to obtain a geometry for (C,),,.
So, it is not surprising that things go for (D,,),, just as for (C,,),: When n > 3, &(Sy)
is a 2-quotient of a D,,-building. According to Theorem 4.3(4), when n = 3 the {0, 1}-
residues of &(Sy) are 1-covers of generalized digons, whereas all remaining residues
of &(Sy) are as in D,,.

Example 5.3. Geometries of type (D,,); with order 1 at both types 0 and 1 are called
c.c*-geometries. The ‘folding’ of a c.c*-geometry is a (C,,);-geometry with ordinary
quadrangles as {0, 1 }-residues, as considered in Example 5.2. Accordingly, if T is a
c.c*-geometry, the completion & = &(Sy) of Sy is thin and belongs to the following
diagram, where the label 21 at the side of the {0, 1}-stroke means that the {0,1}-
residues of & are ordinary 2w-gons for some w e W.

1
(CW),) 2w

0

2 3 m—2 m—1

When W = {1}, then (2W),, = D,, and & is covered by a Coxeter complex of type
D,,. However, many examples and even infinite families of c.c*-geometries are
known that do not arise from a Coxeter complex of type D,, (see Baumeister [3]; also
Baumeister and Pasechnik [4], Pasini and Yoshiara [19]). Clearly, W # {1} in those
cases.

5.4 Geometries admitting two non-isomorphic extensions. As shown in Examples 3.1
and 3.2, some geometries of rank 2 exist that can be regarded as truncations of dif-
ferent geometries of the same rank » > 2. When such a geometry occurs as a residue
of a geometry I' of larger rank, and we look for an extension of I', it might happen
that different sensible choices are possible for the target diagram. In this subsection,
we discuss a few examples of this kind.

Example 5.4. It is known (Meixner [13]) that only two simply connected geometries
exist for the following diagram, where P* denotes the dual of the Petersen graph and
¢ stands for the class of circular spaces:

—_

P 2

0 c
(c.P*) o

[ ]

The automorphism group of one of those two geometries, say I'}, is an extension of
26 : Sym(5) by a torsion-free group. Denoting by I, the other geometry, Aut(T) is
an extension of 3'Sym(6) by a torsion-free group.

The Petersen graph can be regarded as the vertex-edge system of the quotient of
a dodecahedron by the antipodal relation. So, we can also depict ¢.P* as a truncated
diagram, as follows:
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: :5 1 3

0
For I' =T or I' =I5, put Iy := Tr(I'). Condition (x) holds. So, I'y admits a geo-
metric sheaf Sy and & := &(Sy) is an extension of I'. Clearly, & is thin. It follows

from the presentations given for Aut(I'}) and Aut(I;) by Meixner [13] that & has
diagram as follows:

2: 5 | 3 2[ 5 1 X
0 (whenI' =T17) 0 (when I' = I+)

In both cases & is transitive and it is a proper quotient of a Coxeter complex. How-
ever, as the {0, 1}-residues of T" are circular spaces with four points, we may also
regard them as truncations of the quotient of a cube by the antipodal relation
(Example 3.1). Accordingly, we can also depict diagram c.P* as follows:

2 ;5 1 3
0

We now get another extension &’ for I'. Comparing the presentation of Aut(I'}) and
Aut(T) by Meixner [13], one can see that & has diagram as follows:

? ;5 ! 3 ? ;5 1 3
0 (when T =T7) 0 (when T =T3)

Example 5.5. Aschbacher and Smith [2] describe two flag-transitive geometries A
and A, for O;(3) with diagrams as follows:

1 i 1 :
2 3 2 3
0 (A1) 0 (A7)
The residues of A; of type {0,2,1} and {3,2, 1} are isomorphic to the polar space for
S6(2). The {0,2,3}-residues of A; are copies of PG(3,2). The {3,2, 1}-residues of A,
are also isomorphic to the polar space for Ss(2) but those of type {3,2,0} are iso-
morphic to the C3-geometry I'(Alt(7)) (see Example 3.2).

Modulo permuting the types 0 and 3 in A;, the geometries A; and A, have the
same 3-truncation. Thus, we may assume to have given those two types in such a way
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that Tr3(A;) = Tr3(A,). Thus, both A; and A, are extensions of I' := Tr3(A;) =
Tr3(A;). This fact can also be explained in terms of sheaves. Regarding I" as a trunca-
tion of A, but recalling that the plane-line system of I'(Alt(7)) is the point-line sys-
tem of PG(3,2), we get the following truncated diagram for T,

! t 2 3

0
The diagram of A; is the most obvious completion of the above truncated diagram.
The completion of the geometric sheaf of Iy := Trp(I') built with the diagram of A,
as a target is indeed A;. Needless to say, if we choose the diagram of A, as a target,
then we go back to A,.

More geometries of rank 4 are known that belong to Coxeter diagrams and involve

I'(Alt(7)) as a residue (see Stroth [24] for a classification). Tricks as above can be
played for almost all of them, getting a new chamber system that shares a rank 3

truncation with the considered geometry. Regretfully, so far, the structures of those
new chamber systems remain mysterious to me.

Example 5.6. Let I' be the geometry for Mj4 considered in Example 5.1. In that
example we took the Coxeter diagram Cy as a target diagram for an extension of I
However, in view of Example 3.2, we may choose the following one as well, but with
the restriction that {1, 2, 3}-residues should be copies of T'(Alt(7)):

0 1 2 3

With the above as a target, we can build a sheaf Sy on the 2-truncation of I". The
completion & of Sy is an extension of I with diagram like the above but possibly for
{0, 1}-residues, which might be proper covers of the generalized quadrangle W (2)
rather than copies of it. Perhaps, M»4 acts transitively on &, but I guess that & is tight
at some type.

5.5 The diagram (D, ), o- In this and the next subsection we take the following
Coxeter diagram as a target. We denote it by D, ,,, for convenience of reference.

(m—1)" m-

n* (n—1)* 2+ 1 2"
(D,,’m) Q—Q——Q—I—o——o—o
0

(Note that D, ,, and D, , are the same, but for a switching of the diagram; note also
that D, » is the Lie diagram D, and, for n = 3,4, 5, D, 3 is the Lie diagram E,,3.)
Let I be a geometry for the following truncation of D, ,,, where we assume n > 2:
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(n—=1)" (m—1)"

((Dn,m), Q) D H—I—D— —D—D

K =1{0,1,2%,... ,n"} is the type-set of [ and J = {27,37,...,m™ } is the set of types
for ‘virtual objects’.

Theorem 5.1. Suppose that all {0,1,2% }-residues of T are (possibly non-proper) 2-
quotients of truncations of buildings of type Dy, 2. Then €(T") admits a D, n-extension
&, and & is 2-covered by a building.

Proof. We firstly prove that I'y = Tr{(I") admits a D, ,-sheaf. By assumption, for any
{2%,0}-residue 2 of I'y, we have 7N Z) = Try(Ay/G) for a D, 2-building Ay and a
suitable subgroup G < Aut(Ay). So, €(n '(Z)) = Tr;(¢(Ax)/G). Put &y :=
%(Ay)/G. For a residue % of Iy of type {i, j} # {2",0}, we put & = €(Ay), where
the geometry Ay is defined as in Subsection 5.1. Similarly for panels and cham-
bers. However, we must show how to relate chambers of &» to chambers of &4 for
a subresidue 2 of & when % has type {2%,0}. In view of that, we need some pre-
liminaries.

For {h,k} = {27,0}, let x be a h-element of the geometry 2. In view of the dia-
gram of T, the rank 2 geometry X, 4 := Res,1(4(x) is an (m + 1)-dimensional pro-
jective space. Let (»,S1,...,S,) be a complete chain of subspaces of Z, 4. In partic-
ular, y is a point, namely a k-element of z~!(Z) incident to x, S is a line on y, S, a
plane containing Si, and so on. For j =1,2,...,m, let L; be the set of lines of X, »
contained in S; and incident to y. (In particular, L, is a 1-element of 7~! (%) incident
to the flag {x, y} ) The sequence (y, Ly, ..., L,) may be regarded as a chamber of the
geometry Ay, associated to the panel 2 := Resy(x) of 2. We call (L ) ", a maximal
virtual flag of Z on y.

Given a chamber C of &4, we pick a chamber Cen'(C), where 7 is the
projection of %(Ay) onto %(Ay)/G = &z. Let F(C) be the {2*,0}-subflag of C
and Xi,X,...,X, be the elements of C of type 1,2~ ,m~, respectively. Put

a(C,1) =X and for j=1,2,...,m, let a(C, j) be the set ofl -elements of A, that
are incident with F(C)U {x]} Then nc maps the pair (F(C), (o(C, 7))j1) onto a
pair p(C) := (F(C) (a(C, ));L;) where F(C) = {x,y} is a {2*,0}- ﬂag of Z and
a(C) = (a(C, ])) T isa max1mal virtual flag of Z, on y as well as a maximal vir-
tual ﬂag of 2, on x. The pair p(C) does not depend on the particular choice of
Cen'(C). We call p(C) the track of C in T, o(C) the 1-shadow of C and F(C) the
{2%,0}-support of C.

It is now clear that, given a {2%,0}-flag F = {x, y} of Z, the maximal virtual flags
of . on y, regarded as chains of distinguished sets of 1-elements of I', are the same
as those of %, on x and bijectively correspond to the 1-shadows of the chambers of
&y supported by F. We should now prove the following:

(1) If p(C) = p(C") then C = C".
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(2) If i e {2%,0}, then we have C ; C' if and only if F(C) ~; F(C') and ¢(C, j) =
a(C',j) forall j=1,2,.

(3) If ie{1,2,...,m}, then C~,~C/ if and only if F(C) = F(C’) and o(C,j) =
a(C’,j) forall je{1,2,...,mH\{i}.

We shall only prove (1), leaving the rest for the reader. Let p(C) = p(C’). Then,
modulo replacing C’ with g(C’) for a suitable g € G, we may assume to have picked
Ceng'(C) and C'eng!'(C') in such a way that F(C) = F(C') = F, say. On the
other hand, for x e F, the residue of x = nG(X) in &y is isomorphic to the residue
of X in Ay, as both those residues are projective spaces. Hence no two chambers of
Resy  (F F) belong to the same orbit of G. However, o(C) = o(C’) by assumption.
Therefore (a(C, Nty = (o (C’, 7))j~1- This forces C = C’, hence C = C'.

It is now clear that, for an element x of 2 of type 2 or O the function &7 7, Mapping
every chamber (y 7(L])"i ) of Az, onto the chamber C of &7 with p(C) = ({x, y},
(L ) i—1) is an 1somorph1sm from &, to a residue of &4 . The existence of the sheaf Sy
is proved.

By Theorem 4.2, the chamber system & := &(Sy) is a D, ,-extension of €(T"). It
remains to prove that & is 2-covered by a building. If we prove that all residues of &
of rank 3 are 2-covered by buildings, then Theorem 2.1 will yield the conclusion. Let
% be a residue of & of rank 3. If #(%) ¢ K, then, by Proposition 3.8, % is a residue
of & for some % € %y, and % is covered by a building, by our choice of the local
extensions &y. Suppose that #(%) < K. By our choice of local extensions, if Z is a
panel then &4 is geometric. Hence the full epimorphism ¢, considered in Theorem
4.3 is a 1-covering, by Claim (4) of that theorem. However, it is well known that no
proper 1-coverings exist between projective planes or generalized digons. Therefore
@4 18 a 2-covering, as the rank 2-residues of % are either projective planes or gener-
alized digons. On the other hand, ¢(U) is either a projective 3-space or a direct product
of two chamber systems of rank 1 and 2 or of three chamber systems of rank 1. In
any case, ¢(%) is simply connected, and it is a building. Accordingly, ¢, is an iso-
morphism. Hence % is a building. O

Corollary 5.2. Suppose that I is flag-transitive, thick and locally finite (namely, all rank
2 residues of T are finite). Then €(I') admits a D, ,-extension & and & is 2-covered by
a building.

Proof. By Cardinali and Pasini [6], the {0, 1,2 }-residues of T" are truncations of
buildings of type D,,1>. The conclusion follows from Theorem 5.1. O

Remark. The hypothesis made on {0, 1,2% }-residues in Theorem 5.1 is not superflu-
ous, as shown by the classification of flag-transitive ¢”.c*-geometries. We recall that a
¢"!.c*-geometry is a geometry I belonging to the diagram (Dn,m)n,g with
order 1 at all types but 1. By Theorem 5.1, if all {0, 1,2%}-residues of T" are 2-
quotients of truncated D,,.,-buildings (in this case, Coxeter complexes of type
Dy12), then I' admits a (Dy, ), y-extension, which is a truncated quotient of a
Coxeter complex. However, five flag-transitive ¢"~!.c*-geometries exist where
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{0,1,2% }-residues are not quotients of truncated Coxeter complexes (Meixner [12]
and Ceccherini and Pasini [7, 3.3]).

5.6 One more truncation of D, ,,. In this subsection I' is a geometry belonging to the
following truncation of D,

nt 3t 2+ 1 2~ 3 m-
((Dnm)y,) O —0O

T
!

Theorem 5.3. The chamber system €(T') admits a D, ,,-extension & and & is 2-covered
by a building.

Proof. If we define a sheaf Sy on I'y = Try(T) (H = {27,27}), we do get an exten-
sion of €(I'), by Theorem 4.1. However, as Iy has rank 2, we loose control over
{0, 1}-residues. So, we must proceed differently.

We consider Iy := Trp+(I') and Ty := Trp- (') and, for ¢ € {+, —}, we take a sheaf
S; over the collection Z;; of all residues of I'; of rank <2. In view of the hypothesis
made on {2*,1,2 }-residues of I', we may assume that S{ is geometric. So, Si is the
unique geometric sheaf for I'j with the following as the target-diagram:

n* 3+ 2t 1 2- 3- m-
*— - & & @ & +— .- —
((Dn.m)y 2, fore = +) I
0
nt 3t 2t 1 2- 3 m-
Oo0—-:.- —1 @ @ Y Ty cee—@
((Dn.,m)z,mv fore=—) I
0

(We warn that the type-set of (Dn,m), , is {n",...,2%,1,0,27} and the type set of
(Dum)a 18 {27,0,1,27,...,m™ }.) By Theorem 4.2, the chamber system &° := &(S;)
is an extension of ¢(I"), with diagram as above. We shall construct a D, ,,-extension
& of €(I") by pasting & and &~ together. We fix some notation before defining &.
We put Jt ={37 4" ... n"} and J- ={37,47,...,m }. For ee{+,—}, let a,:
Try:(6%) — €(I') be an isomorphism as in the proof of Theorem 4.1. In the sequel,
given a chamber C¢ of &%, we put ,(C?) := ,([C?]”"). The chamber system & is
defined as follows:

(1) The chambers of & are the pairs C = (C*, C~) where C* is a chamber of &° for
ee{+,—}tand y (C") =y_(C).

(2) For {&,n} ={+,-} and jeJ*, we declare (C{,Cy) and (C;,C5) to be j-
adjacent if C{ ~; C5 in &* and C| = C;.
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(3) Forie K :={0,1,2",27}, we declare (C/", Cy) and (Cy,¢;) to be i-adjacent if
Ci~;Ciforee{+,—}.

It is straightforward to check that & is a chamber system over the set of types I =
{0,1,n",...,2%,27,...,m™}. We shall prove that & is indeed a D, ,,-extension of I".
We split our proof in a series of steps.

(4) For {&,n} = {+,—}, the function 7, mapping C = (C*, C™) onto C* induces an
isomorphism from

Proof. Let ¢ = + and = —, to fix ideas. By (2), n,.(C{") contains the J~-cell [
of Cy=(C{,Cy) in &. Conversely, let C, = (Cy,Cy) with CJ = C{. Then
Y_(Cr) =y, (C), by (1). Hence [C]” = [Cy]” and (2) implies that C; € [C]” .
So, the fibers of n,. are the J™-cells of & and = induces a bijection, say S, from
the set of J -cells of & to the set of chambers of &*. Clearly, 8, preserves
adjacencies. It remains to prove that [)’11 also preserves adjacencies. Let C; and
C5 be i-adjacent chambers of &*. If i e J*, then C|, CJ belong to the same J*-
cell of &%, hence ., (C}) = ¥, (CS). Pick C~ e y~' (. (C})). Then C; = (C/,C")
and G, = (Cy, C™) are chambers of & and C) ~; C,. Claim (4) is proved.

(5) Tr;(&) = €(I).
This follows from (4), recalling that Try.(&*) =~ €(T).

(6) For {e,n} = {+,—} and {i, j, k} = {0,1,2%}, every residue & of & of type J*U
{i,j}UJ~ 1is the direct product & = Z*x ¢#" of a subresidue Z° of type
JeU{i, j} and a subresidue #" of type J”. Moreover, the function 7, defined in
(4) induces an isomorphism from Z° to a (J¢U{i, j})-residue of &*.

Proof. Let ¢ = +, to fix ideas. According to (2) and (3), the following equality holds
in & @V = @/ @/ "Vt In order to prove the first part of (6), we must
show that @’ Y} N’ = @2, namely: Given a chamber Cy = (Cy,Cy) € Z, if
ot =[Co)” " and g~ =[Co]” , then 2+ N g~ = {Cp}. Let C = (C*,C) be a
chamber of N _¢~. Then either of ™ and ¢~ contains a gallery from Cy to C.
As C and C are joined by a gallery of #~, (2) forces C* = CJ and C~ € [Cg]r. On
the other hand, as Cy and C are joined by a gallery of 2", (2) and (3) imply that the
chambers Cj and C~ are joined by a gallery of ™ contained in a residue ¥~ of §~ of
type {i, j}. Let ¥~ be the ({i, j} UJ™)-residue of & containing ¥". By Proposition
3.8, 7" is isomorphic to &, € S, for an {i, j}-residue Z of T’y . However, the sheaf S;
is geometric. Hence the chamber system & is geometric. Therefore, ¥~ is geometric
and, as 2~ separates {i, j} from J~ in (D,m),,,, 7 splits as a direct product of ¥~
and [Cy]” . So, C~ = Cj, since C~ belongs to [Cy]” and is joined with Cy by a
gallery of ¥". Accordingly, C = Cj.

We now turn to the second claim of (6). In view of the first claim, 7, induces
an injective morphism from Z* to a residue # of &% of type J™ U {i, j}. We shall
now prove that n;l preserves adjacencies. Given chambers Cy = (Cj, Cy) and C =
(Ct,C) of 27, suppose that C§ ~, C* for k e JTU{i, j}. Note firstly that, by
(2) and (3), C;, and C~ belong to the same {7, j}-residue ¥~ of &~ and we have
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V_(Cy) =¥, (C) and y_(C™) =, (C*) by (1). Tk € J*, then y, (C}) = ¥, (C*),
namely y_(Cy) =y_(C). So, C™ € [Ca]" and we get C~ = C, as in the previous
part of the proof. Hence C ~; Co. Let now k € {i, j}. Then Y, (C{) ~cy (C"),
namely _(Cy) =y_(C~). As 2~ separates k from J~ in (Dy,m), ,, We can pick a
chamber C; €[Cy]” such that C; ~; C~. So, Cj € [C;]” belongs to the same
residue 7" containing C; and C~. By the previous part of the proof, C; = C; . Hence
Cy ~k C~. Consequently, Cy ~ C. Claim (6) is proved.

(7) For ieJTU{2"} and jeJ U{27}, all {i,j}-residues of & are generalized
digons.

Proof. In the sequel, when dealing with a residue 2" of I'j, it will be more conve-
nient to refer to the flag F = Fy of I'j such that 2" = Resr;(F), denoting the
extension of 2 in S by the symbol &} instead of &;.. We recall that the type of 2 is
the cotype of F. When i € J© and j e J, (7) immediately follows from (2). Suppose
that at most one of 7, j belongs to {27,27} and let Cy = (C{,Cy), Ci1 = (C{, Cy)
and C, = (C5,C;y) be chambers of ¢ such that Cy ~; C; ~; C;. We shall prove
that Cy ~; C3 ~; C; for a suitable chamber C3;. We firstly consider the case where
only one of i or j belongs to {2¥,27}. Let i =2% and jeJ~, to fix ideas. Then
Cy ~iCf =Cf and Cj ~;Cy ~;Cy. As 27 separates i = 2" from jeJ ™ in the
diagram of &7, there exists a chamber C5 € & such that Cj ~; C5 ~; Cy. Clearly,
C; := (Cy, Cy) is a chamber of & and Cy ~; C3 ~; Cy.

Finally, let i = 2" and j = 2. Then, for ¢ € {+, —}, C{ and C} are chambers of
the same {2%,27 }-residue Z°° of &%, for a given {0, 1}-flag F of I';. Thus, we can
find a chamber Cj§ of Z such that C§j ~; C§ ~; C{. The isomorphism o, : Try:(6*) —
I' induces an isomorphism from Tr;: (&%) to Resr(F) which maps C§, Cf, C3 and Cj
onto {2%,27 }-flags Fy = {x0, yo}, Fi = {x1, m}, F> = {x1, yo} and F;3 = {xo, y1} of
. As Y (CF)=y_(C;)=FUF; for k=0,1,2, the flags Fy, F; and F> do not
depend on whether ¢ = 4+ or ¢ = —. Hence F3 does not depend on that either. As a
consequence, ¥, (Cy) = y_(Cy) = FUF;. So, C3 := (C5, Cy) is a chamber of & and
Cy ~j C3 ~; Cy. Claim (7) is proved.

It follows from (6), (7) and the diagrams of " and &~ that & belongs to D,, ,,. By
(5), & is a D, ,,-extension of I'. It remains to prove that & is covered by a building.
This will follow from Theorem 2.1 as soon as we have proved the following:

(8) All residues of & of rank 3 are 2-covered by buildings.

Proof. Let % be a residue of & of rank 3. If #(%) is not contained in {0,1,27,27},
then % is a subresidue of a residue Z as considered in (6). Accordingly, # splits as a
direct product of a geometry of rank 1 and a geometry of rank 2 or two geometries of
rank 1. In any case, % is a building. When #(%) < {0,1,27,27}, then we can apply
an argument similar to that used in the proof of Theorem 5.1, exploiting (6) to regard
panels of % as panels of & or &~ . We leave the details for the reader. O

Remark. Theorem 5.3 has been suggested to me by the reading of a paper of Onofrei
[14]. Onoftei aims to construct a D, ,-extension of a geometry I of type (Dy,m), 2,
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m =3 or 4. In her paper, I' is a parapolar space with point-residues isomorphic
to projective grassmannians and with maximal singular subspaces as elements of
type 2" and 2. Instead of defining a sheaf directly on T', she firstly constructs new
objects, of type 3T, called symps, which are isomorphic to half-spin geometries of
type Dyii2.m+2. S0, she gets an extension I'” of T" belonging to the following diagram:

nt 4+ 3* 2+ 1 2" 3 m-
Oo—:.- —3 7Y @ & @ +—-..-—

At that stage, she considers a sheaf for I'’, the completion of which is the required
D,, m-extension. However, as Onofrei wants a complete sheaf for I’ too, namely a
sheaf defined over the set of all proper residues of I'’; including those of cotype con-
taining 3% or 27, one can hardly understand why defining such a sheaf on I'’ should
be easier than on I'. In fact it isn’t. We should rather play the back-and-forth game,
going back to I" and defining a sheaf S on it. As Onofrei assumes that the {2%, 1,27 }-
residues of I" are truncations of projective geometries, we can define S geometrically,
hanging it at the new elements (the symps), as we have got them. Otherwise, we can
proceed as in the proof of Theorem 5.3.
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