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On ovoids of O(5,q)
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Abstract. This article is about ovoids of the generalised quadrangle Oð5; qÞ and, equivalently,
spreads of the generalised quadrangle Spð4; qÞ. In a less than conventional way the quadrangles
are represented in the field GFðq4Þ which allows some amount of computation to be done. It is
shown that an ovoid of Oð5; qÞ meets an elliptic quadric in 1 modulo p points.

1 Introduction

A generalised quadrangle is a polar space of rank 2 and consists of points and lines
which have the following properties.

(Q1) Two points lie on at most one line.

(Q2) If L is a line, and p a point not on L, then there is a unique point of L collinear
with p.

(Q3) No point is collinear with all others.

The axioms (Q1)–(Q3) are self-dual; the dual of a generalised quadrangle is a gen-
eralised quadrangle.

Let Q be a finite generalised quadrangle. Each line is incident with 1þ s points and
each point is incident with 1þ t lines, for some s and t, and we say Q is a generalised
quadrangle of order ðs; tÞ. If s ¼ t then Q is said to have order s. An ovoid of a gen-
eralised quadrangle is a set of points O such that each line contains exactly one point
of O. A spread of a generalised quadrangle is a set S of lines such that each point is
incident with exactly one line of S. An ovoid O and a spread S of Q satisfy

jOj ¼ jSj ¼ stþ 1:

The set of lines dual to the ovoid O form a spread in the generalised quadrangle dual
to Q. The set of points dual to the spread S forms an ovoid in the generalised
quadrangle dual to Q.
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Let q ¼ ph for some prime p and integer h. Let Spð4; qÞ denote the symplectic
generalised quadrangle of order q. The points of Spð4; qÞ are the points of PGð3; qÞ
and the lines are the totally isotropic lines of a symplectic polarity. Recall that a sym-
plectic polarity is induced by an alternating bilinear form b. An alternating bilinear
form on a vector space V satisfies bðv; vÞ ¼ 0 for all v in V . This implies

bðv;wÞ ¼ �bðw; vÞ

for all v;w in V . (Expand bðvþ w; vþ wÞ ¼ 0.) Hence if the characteristic is 2 then
any alternating form is symmetric.

Let Oð5; qÞ denote the generalised quadrangle of order q whose points are the
points of a non-singular quadric in PGð4; qÞ and whose lines are the lines contained
in that quadric. The generalised quadrangle Oð5; qÞ is also denoted Qð4; qÞ elsewhere.

These notes are concerned with ovoids in Oð5; qÞ. To give the known ovoids ex-
plicitly we use the quadratic form QðxÞ ¼ x0x4 þ x1x3 þ x2

2 on Vð5; qÞ and note that
any ovoid containing ð0; 0; 0; 0; 1Þ may be written in the form

Oð f Þ ¼ fð0; 0; 0; 0; 1ÞgU fð1; x; y; f ðx; yÞ;�y2 � xf ðx; yÞÞ : x; y A GFðqÞg:

The only known ovoids in Oð5; qÞ are listed in the following table which comes from
[3] where they also calculate the stabilisers. In the table n is a non-square of GFðqÞ
and a is an automorphism of GFðqÞ.

name f ðx; yÞ q restrictions

elliptic quadrics �nx all
Kantor I [2] �nxa ph, h > 1, p odd a2 ¼ 1
Kantor II [2] 00 00 a2 0 1
Penttila–Williams [3] �x9 � y81 35

Ree–Tits slice [2] �x2aþ3 � ya 32hþ1, h > 0 a ¼
ffiffiffiffiffi
3q

p
Thas–Payne [4] �nx� 1

n
x

� �1=9 � y1=3 3h, h > 2

Tits [5] xaþ1 þ ya 22hþ1 a ¼
ffiffiffiffiffi
2q

p

In fact, due to the following lemma, ovoids in Oð5; qÞ are dual to spreads in Spð4; qÞ.

Lemma. Oð5; qÞ is the dual of Spð4; qÞ.

Proof. Let Oþð6; qÞ be the Klein quadric of lines of PGð3; qÞ. The image of the lines
of Spð4; qÞ is the intersection of Oþð6; qÞ with a hyperplane PGð4; qÞ, which is
Oð5; qÞ. The lines of Spð4; qÞ incident with a given point form a pencil of lines in a
plane and therefore their images on Oð5; qÞ lie on a line. r

This article contains a proof of the following.
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Theorem. An ovoid in Oð5; qÞ meets an elliptic quadric in 1 modulo p points.

This result was proved for q even in [1] where they prove that an ovoid meets not
only an elliptic quadric but also a Tits ovoid in an odd number of points.

2 The geometry PG(3, q) in GF(q4)

Let Vð4; qÞ be the 4-dimensional vector space over GFðqÞ (from now on we shall
refer to vector space dimension as rank), and let PGð3; qÞ be the 3-dimensional pro-
jective space whose k-dimensional subspaces are the subspaces of Vð4; qÞ of rank
k þ 1; for example a point of PGð3; qÞ is a 0-dimensional subspace which is a sub-
space of rank 1 in Vð4; qÞ. The finite field GFðq4Þ can be viewed as a 4-dimensional
vector space over GFðqÞ and we shall begin by examining the link between this field
and the geometry PGð3; qÞ.

Given a set of indeterminates fXi j i ¼ 0; . . . ; 3g the planes (hyperplanes) of
PGð3; qÞ are given by linear homogeneous equations of the form

X3

i¼0

ciXi ¼ c0X0 þ c1X1 þ c2X2 þ c3X3 ¼ 0; (*)

where ðc0; c1; c2; c3Þ is a point of PGð3; qÞ. The points of PGð3; qÞ are subspaces of
rank 1 in Vð4; qÞ which in GFðq4Þ are given by the sets of zeros of equations of the
form

X q ¼ uX

where uq3þq2þqþ1 ¼ 1. This is a necessary and su‰cient condition on u for the poly-
nomial X q � uX to divide X q4 � X and hence to be a polynomial that splits com-
pletely into distinct linear factors over GFðq4Þ. Hence it makes sense to refer to the
points of PGð3; qÞ as ðq3 þ q2 þ qþ 1Þ-st roots of unity in GFðq4Þ.

Let Tr be the trace function from GFðq4Þ to GFðqÞ. In GFðq4Þ the polynomial

Trðaqi

XÞ ¼ aqi

X þ aqiþ1

X q þ aqiþ2

X q2 þ aqiþ3

X q3

splits completely into distinct linear factors over GFðq4Þ, has degree q3 and is linear
over GFðqÞ. Hence we choose a to be a fixed primitive element of GFðq4Þ and con-
sider the hyperplane (plane) of PGð3; qÞ (subspace of Vð4; qÞ of rank 3)

Xi ¼ 0 as the equation Trðaqi

XÞ ¼ 0;

over GFðq4Þ, and in general the hyperplane (*) as the equation

Tr

��X3

i¼0

cia
qi

�
X

�
¼ 0:
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The lines of PGð3; qÞ in GFðq4Þ are obtained by looking at the set of zeros of poly-
nomials whose zeros are zeros of two such hyperplane polynomials and we conclude
that these have the form

LðXÞ :¼ X q2 þ cX q þ eX

for some c and e in GFðq4Þ. These polynomials must have q2 distinct zeros in GFðq4Þ
and hence divide X q4 � X . The polynomial

Lq2 � cq
2

Lq � ðeq2 � cq
2þqÞL ðmodX q4 � XÞ

has degree q and q2 zeros and is therefore identically zero. Equating coe‰cients gives
the following necessary and su‰cient conditions that

cqþ1 ¼ eq � eq
2þqþ1 and eq

3þq2þqþ1 ¼ 1: (**)

3 The geometry Sp(4, q) in GF(q4)

Let G be an element of GFðq4Þ satisfying Gq2�1 ¼ �1. Let b be the alternating bilinear
form defined by

bðX ;YÞ :¼ TrðGY q2

X Þ ¼ GY q2X þ GqY q3X q � GYX q2 � GqY qX q3

and note that

bðX ;YÞ ¼ �bðY ;X Þ:

The map

y ! bðX ; yÞ ¼ TrðGyq2

X Þ ¼ 0

maps y to its symplectic hyperplane and defines a symplectic polarity. Let x and y be
two orthogonal elements of GFðq4Þ, bðx; yÞ ¼ 0, and let LðXÞ ¼ X q2 þ cX q þ eX be
the line that joins them. By elimination from the equations LðxÞ ¼ 0 and LðyÞ ¼ 0
we can deduce that

ðxqy� yqxÞe ¼ xq2yq � yq2

xq and ðxqy� yqxÞc ¼ �ðxq2y� yq2xÞ

and

ðGcþ GqecqÞðxqy� yqxÞ ¼ bðx; yÞ ¼ 0:

The totally isotropic lines of the polarity defined by bðX ;YÞ have �gc ¼ ecq where
g ¼ G1�q, as well as the restrictions (**). In the case when c ¼ 0 there are q2 þ 1 lines
where each line is given by the set of zeros of an equation of the form
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X q2 þ eX ¼ 0

where eq
2þ1 ¼ 1. In the case c is non-zero let d ¼ c�1 and we find that e ¼ �gd q�1

and

gd q3þq � g�1d q2þ1 þ 1 ¼ 0: ðyÞ

For each d satisfying this equation there is a totally isotropic line which is given by
the set of zeros of an equation of the form

dX q2 þ X q � gd qX ¼ 0:

The points of Spð4; qÞ are the points of PGð3; qÞ and for this reason we take as
before the points to be the ðq3 þ q2 þ qþ 1Þ-st roots of unity (alternatively the non-
zero ðq� 1Þ-st powers) in GFðq4Þ. Therefore we replace the indeterminate X by U

where U ¼ X q�1. It now follows that the lines of Spð4; qÞ are given by the zeros (all
ðq3 þ q2 þ qþ 1Þ-st roots of unity) of equations

U qþ1 þ e ¼ 0;

for each e satisfying eq
2þ1 ¼ 1 and

dU qþ1 þU � gd q ¼ 0 ðyyÞ

for each d satisfying ðyÞ.

Remark. The geometry PGð1; q2Þ has as points the subspaces of rank 1 in Vð2; q2Þ. In
GFðq4Þ they are the given by sets of zeros of equations of the form

X q2 þ eX ¼ 0

where eq
2þ1 ¼ 1. Hence the lines defined by the sets of zeros of equations of the form

U qþ1 þ e ¼ 0 are skew and together they form a Desarguesian spread R of Spð4; qÞ.
A Desarguesian spread is equivalent to a regular spread. The set of points in the
generalised quadrangle Oð5; qÞ dual to a regular spread of Spð4; qÞ is an elliptic
quadric. Hence we need to prove that a spread of Spð4; qÞ meets the spread R in 1
modulo p lines.

Remark. The equations (**) and �gc ¼ ecq imply that

c2 ¼ g�1eqþ1ðeq2þ1 � 1Þ:

When q is even we can take square roots and parameterize the lines using ðq3 þ q2 þ
qþ 1Þ-st roots of unity. Moreover when q is even we can assume that g ¼ 1 since the
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alternating form is also symmetric. Thus we have that the totally isotropic lines of
Spð4; qÞ are given by the zeros of equations of the form

U qþ1 þ ðeðq2þqþ2Þ=2 þ eðqþ1Þ=2ÞU þ e ¼ 0

and one can check that if the point x lies on the line parameterized by e then e lies on
the line parameterized by x2q. Hence we see that Spð4; qÞ is self-dual when q is even, a
fact first noted in [5].

4 An ovoid of O(5, q) meets an elliptic quadric in 1 modulo p points

Recall that q ¼ ph for some prime p and integer h. In this section we prove that a
spread of Spð4; qÞ has 1 modulo p lines in common with the regular spread R. This
regular spread is entirely arbitrary.

Proof of the theorem. Let S be a spread of Spð4; qÞ and let the sets D and E be such
that for d A D the line

dU qþ1 þU � gd q ¼ 0

is in S and for e A E the line

U qþ1 þ e ¼ 0

is in S. Clearly

jDj þ jEj ¼ q2 þ 1:

The aim will be to show that jDj ¼ 0 modulo p and then the result will follow.
The bilinear form bðX ;Y Þ can be rewritten for the points of PGð3; qÞ by replacing

X q�1 by U and Y q�1 by V . Hence for a fixed point u in PGð3; qÞ the zeros of the
polynomial

ðu;VÞ :¼ guqþ1 � gV qþ1 þ uq2þqþ1V � uV q2þqþ1

are the points that are orthogonal to u, i.e. lie on the symplectic hyperplane through
u. Let v be the point of Spð4; qÞ (i.e. PGð3; qÞ) that is the intersection of the line of
Spð4; qÞ of the form

dV qþ1 þ V � gd q ¼ 0

with the plane ðu;VÞ ¼ 0, assuming that the line is not contained in the plane. We
can calculate directly or check by substitution that

vq ¼ �uðduqþ1 þ u� gd qÞq�1:
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Similarly if v is the point of intersection of the line of Spð4; qÞ of the form

V qþ1 þ e ¼ 0

with the plane ðu;VÞ ¼ 0 then

vq ¼ g�1ueðuqþ1 þ eÞq�1:

The coe‰cient of V q2þq in ðu;VÞ is minus the sum of all the points in the plane
ðu;VÞ ¼ 0 and is zero. Likewise the sum of all the points on any line is minus the
coe‰cient of V q in the equation of this line which is also zero. Hence the sum of all
points lying in an a‰ne plane is also zero. Thus the sum of all the points of inter-
section of the spread S with the plane ðu;VÞ ¼ 0 is zero and we have

0 ¼
X

v ¼
X

vq ¼ �
X
d AD

uðduqþ1 þ u� gd qÞq�1 þ
X
e AE

g�1ueðuqþ1 þ eÞq�1:

Note that of course one of the lines of the spread contains the point u and the term in
the sum corresponding to this line will be zero. The polynomial

X
d AD

UðdU qþ1 þU � gd qÞq�1 �
X
e AE

g�1UeðU qþ1 þ eÞq�1

is zero for all points of PGð3; qÞ and since it’s degree is only q2 it is identically zero.
However the coe‰cient of U q is jDj and hence jDj ¼ 0 modulo p. r
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