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On the automorphism groups of convex domains in Cn
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Abstract. We establish that every bounded convex domain in Cn with an automorphism orbit
accumulation at a boundary point at which the domain has a sphere contact from inside admits
a non-compact 1-parameter subgroup of automorphisms. Notice that this in particular implies
that no Teichmüller domain of a Riemann surface of genus g > 1 can be holomorphically im-
bedded as a convex domain in C3g�3.

1 Introduction

The primary goal of this article is to give a rigorous proof of the following:

Theorem 1.1. If a bounded convex domain in Cn possesses a non-compact automor-

phism orbit accumulating at a boundary point with sphere contact inside, then the au-

tomorphism group contains a non-compact 1-parameter subgroup.

This statement and even more general ones were mentioned, more often than not,
rather casually as a corollary to S. Frankel’s widely known work in Acta Mathema-
tica ([3]). However, several experts pointed out that Frankel’s method alone does
not easily imply the statement above. (In the smooth boundary case for instance, it
does; even if Frankel’s theorem on convergence of Frankel scaling does not require
smoothness, deriving the above result from it seems to require certain extra condi-
tions such as smoothness of the boundary at least locally. For instance, the final re-
mark of this article may be relevant for this point.) What is proved in Frankel’s paper
actually is the special case in which the bounded convex domain covers holomorph-
ically a compact complex variety. In such a case, there is an advantage of being able
to choose a non-tangential automorphism orbit accumulating at a boundary point
which admits a sphere contact from inside, and Frankel’s method of producing a
non-compact 1-parameter subgroup of automorphisms relies upon this advantage.

In general, the non-compactness of the holomorphic automorphism group with
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respect to the compact-open topology cannot ensure the existence of such a special
orbit. The main point of the proof of the above stated theorem in fact lies in the
fact that the automorphism orbit may not be non-tangential to the boundary at the
accumulation point. (We use the terminology ‘‘an automorphism orbit being non-
tangential to the boundary’’ in the sense that the automorphism orbit stays in an
acute cone contained in the domain with its apex at the accumulation point.) None-
theless, we do not preclude the possibility that a precise proof is already known and
published somewhere, in which case we hope that this paper may serve as an alter-
native proof of this useful fact, and furthermore as yet another article which presents
one of the very useful scaling methods in detail.

In this note, we also use the scaling method, but of Pinchuk. Even though it is
now known that Pinchuk’s scaling method on convex domains is in fact equivalent
to Frankel’s scaling method (e.g. [5]) in terms of convergence, Pinchuk’s formulation
appeals to us as more descriptive and straightforward in many applications.

Notice however that our theorem is presented here not only in order to produce
merely a formal generalization of Frankel’s theorem. It in particular has a relevance
to the following well-known problem: if a bounded domain in Cn has a smooth bound-

ary and if its automorphism group is non-compact, is its automorphism group positive-

dimensional?
Furthermore, our theorem also implies the following result.

Proposition 1.2. The Bers embedding of the Teichmüller space of a compact Riemann

surface of genus 2 or higher cannot be a convex domain.

Even if detailed arguments appear in the last section of this article, we briefly state
the proof here. H. L. Royden’s work (together with results that precede in the Teich-
müller theory) implies that the holomorphic automorphism group of the Teichmüller
domain (we mean Bers’ embedding, in this context) is discrete and non-compact. See
[9]. It is further known that the automorphism orbits of this domain can accumulate
at every boundary point. As a result, if the Teichmüller domain were realized as a
bounded convex domain, we may have an automorphism orbit accumulating at a
point with a sphere contact from inside. Then, the domain must admit a non-compact
one-parameter subgroup, according to our main theorem. This discrepancy yields the
proof.

While this proposition may not be a surprising one, we point this out because this
is in contrast with the recent articles by M. Abate and G. Patrizio (see [1] and the
references therein), which demonstrate that the Teichmüller domains have several
important special properties that seem shared only with the bounded convex do-
mains. However, we point out here that our proposition above does not exclude
the possibility that a new embedding of the Teichmüller space might turn out to be
convex.
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that each automorphism orbit of a point accumulates at every boundary point of the
Teichmüller domain of a compact Riemann surface of genus g > 1. A brief explica-
tion for this is added in the final section of this paper in a remark.

2 Line types and scaling of convex domains

Let W be a bounded convex domain in Cn. Notice that we do not assume any further
boundary regularity.

Given a sequence Q :¼ fqj A W j j ¼ 1; 2; . . .g that converges to a boundary point
p A qW, we will now describe the associated Pinchuk scaling sequence ([8]) which is a
divergent sequence of C-a‰ne linear mappings of Cn.

2.1 Centering of the sequence Q. Fix a point qj A Q and its index j. Then choose a
boundary point pj A qW satisfying

kqj � pjk ¼ min
x A qW

kqj � xk:

Such pj is not uniquely determined in general, and hence we simply choose one. On
the other hand, the choice of pj implies the uniqueness of the supporting real hyper-
plane to W at pj. Now, we may choose a unitary transformation Tj : Cn ! Cn such
that the complex a‰ne transformation cj : C

n ! Cn defined by cjðzÞ :¼ Tjðz� pjÞ,
for each z A Cn, satisfies the relation

cjðWÞH fðz1; . . . ; znÞ A Cn jRe zn > 0g;

where Re z denotes the real part of the complex number z as usual. Needless to say,
the supporting hyperplane to cjðWÞ is defined by the equation Re zn ¼ 0.

We call the sequence fcjgj ‘‘the centering maps’’ throughout the rest of this note.

2.2 Line types and stretching factors. We now introduce correct coordinate changes
and scaling factors to build a version of Pinchuk’s scaling process.

We again fix an index j and the point qj A Q. Then we consider the complex or-

thogonal complement V
ð jÞ

n�1 in Cn of the line joining the origin and the point cjðqjÞ,
and the ‘‘projected slice’’

W
ð jÞ
n�1 ¼ fz A Vn�1 j zþ cjðqjÞ A cjðWÞg:

Equip V
ð jÞ

n�1 with the Hermitian inner product inherited from Cn. Then, W
ð jÞ
n�1 is

a domain in V
ð jÞ

n�1 containing the origin. Choose a point in qW
ð jÞ
n�1 that is closest to

the origin. It is not unique in general, and hence we select one. Let us denote it by
x
ð jÞ
n�1.
We continue this process as long as it is possible to proceed. V

ð jÞ
n�2 will denote the

complex orthogonal complement in V
ð jÞ

n�1 of the vector x
ð jÞ
n�1. We consider
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W
ð jÞ
n�2 ¼ W

ð jÞ
n�1 VV

ð jÞ
n�1:

Again, x
ð jÞ
n�2 will be a point in qW

ð jÞ
n�2 that is one of the closest points to the origin.

By an induction on this process, we obtain mutually orthogonal vectors
x
ð jÞ
1 ; . . . ; x

ð jÞ
n�1. Let x

ð jÞ
n ¼ cjðqjÞ. Then the vectors

e
ð jÞ
l :¼ x

ð jÞ
l

kxð jÞl k
ðl ¼ 1; . . . ; nÞ

form an orthonormal basis for Cn. We now denote by

l
ð jÞ
l ¼ 1

kxð jÞl k

for every l ¼ 1; . . . ; n. Here the superscript ð jÞ emphasizes the dependence of each
l
ð jÞ
l on j.
We now consider, for each j, the complex linear mapping Lj : Cn ! Cn defined by

Ljðeð jÞl Þ ¼ l
ð jÞ
l e

ð jÞ
l ðl ¼ 1; . . . ; nÞ:

Then the Pinchuk stretching sequence we are going to use throughout this paper is the
sequence of complex a‰ne linear mappings given by

sj :¼ Lj � cj : C
n ! Cn ð j ¼ 1; 2; . . .Þ;

which is the ‘‘stretching’’ followed by the ‘‘centering’’ of the sequence Q.

2.3 Scaling with the automorphism orbits. Now we consider the case when the se-

quence Q above is in particular given as qj ¼ jjðq0Þ, where q0 A W and jj A AutðWÞ.
Then we exploit the following convergence theorems for the scaling sequence

ojðzÞ ¼ sj � jjðzÞ:

(Notice that this is the ‘‘normalization’’ of Pinchuk’s stretching sequence by the non-
compact automorphism sequence jj. This was again first introduced by S. Pinchuk.)

Proposition 2.1. The scaling sequence oj : W ! Cn ð j ¼ 1; 2; . . .Þ introduced above has

the following convergence property: every subsequence of ðojÞj admits a subsequence

that converges uniformly on compact subsets to a biholomorphic embedding, say ôo of

W into Cn.

Then we also have information on the set convergence of ojðWÞ as j tends to y. In
order to explain this as plainly as possible, we remark that

Kang-Tae Kim36



ôojðq0Þ ¼ ð1; 0; . . . ; 0Þ for j ¼ 1; 2; . . .

Let us introduce the notation

tðz1; . . . ; znÞ ¼ ðz1 � 1; 0; . . . ; 0Þ : Cn ! Cn

and let Bð0;RÞ represent the open ball in Cn with radius R centered at the origin
ð0; . . . ; 0Þ. Then, we have the following result which we usually call the local Haus-

dor¤ set-convergence of ojðWÞ to ôoðWÞ.

Proposition 2.2. Let R > 0 be arbitrarily given. Then, for every e > 0 there exists

N > 0 such that for every j > N we have

ð1� eÞ½ðt � ojðWÞÞVBð0;RÞ�H ðt � ôoðWÞÞVBð0;RÞ

H ð1þ eÞ½ðt � ojðWÞÞVBð0;RÞ�:

For the proof of this precise version of statements, we would like to refer to Kim–
Krantz ([5]). We remark however that estimates for the Kobayashi metric on convex
domains also prove the same result, which was observed by E. Bedford and S. Pin-
chuk presumably before the writing of [5].

2.4 An analysis of scaled limit domains. In this section, we focus on the geometric
shape of the local Hausdor¤ set limit of the sequence sjðWÞ introduced above. First of
all, the Banach selection theorem implies that one can always extract a subsequence
of sjðWÞ that converges to a convex (in general unbounded) domain in Cn, in the
sense of local Hausdor¤ set convergence. (See the last proposition of the preceding
subsection for this terminology.)

Let us momentarily forget the automorphism sequences here, and simply take a
point sequence Q ¼ fqj j j ¼ 1; 2; . . .g in the domain W that converges to a boundary
point p A qW as j tends to y. Then, for each j ¼ 1; 2; . . . we choose a boundary point
pj A qW that is one of the closest points to qj among the boundary points of W, re-
peating the same process as we constructed the Pinchuk stretching sequences earlier
in this article.

Then we consider the sets

Sj ¼ fz A W j z� pj ¼ lðqj � pjÞ for some l A Cg

which we call the j-th principal slice of W. We are now interested in the sequence
sjðSjÞ. Again, for an arbitrary R > 0, we restrict ourselves to the closed ball Bð0;RÞ,
and consider the usual Hausdor¤ limit of the sequence sjðSjÞVBð0;RÞ there. In the

case when p is a smooth point in the sense that there is a sphere contact from inside W,
the Hausdor¤ limit in this coincides with the set

fðz1; 0; . . . ; 0Þ A Cn jRe z1 d 0gVBð0;RÞ:
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Since R > 0 is arbitrary, we may now conclude: if p A qW is a smooth boundary point

in the sense that it admits a sphere contact from inside W, the local Hausdor¤ limit

domain, say ŴW, of the sequence sjðWÞ has a real one-dimensional straight line in its

boundary.

2.5 Proof of Theorem 1. We use the arguments of the preceding section with the
sequence of automorphisms jj of W and a point q0 A W such that jjðq0Þ converges
to p A qW, where p admits a sphere contact from inside W. Now, we consider Q ¼
fjjðq0Þ j j ¼ 1; 2; . . .g. We use the notation of stretching sequences and scaling se-
quences of the preceding section. Then, we see that

ojðWÞ ¼ sj � jjðWÞ ¼ sjðWÞ

for every j, because jjðWÞ ¼ W. Therefore, the scaled limit domain ôoðWÞ ¼ ŴW. In
particular, ôoðWÞ has a straight line, say l, in its boundary.

Now, recall that the convex hull of a straight line and a point away from this line
is a parallel strip. Due to the convexity and this fact, we see immediately that every
point of the domain ŴW admits a line contained in W through that point, which is in
fact a parallel translation of l. Let v A Cn be a direction vector of l. Then, it is now
evident that the map

gtðzÞ ¼ zþ tv

defines an automorphism of ŴW ¼ ôoðWÞ for every t A R. Since W is biholomorphic to
ôoðWÞ, this shows that AutðWÞ now admits a non-compact one parameter subgroup.

3 Remarks

3.1 Orbit accumulating boundary points of Teichmüller domains. Now, we would
like to explain briefly the following well known fact in the Teichmüller theory: let R
be a Riemann surface of genus g > 1, and let TgðRÞ be the Bers imbedding of the

Teichmüller space in C3g�3. Then, for every boundary point of TgðRÞ, there exists an

automorphism orbit accumulating at it. Now, we explain how this is obtained. In this
setting, one first takes 3g� 3 simple closed geodesics which are maximal and not
homotopically trivial, which in turn give rise to a Dehn twist, say j. Then consider
the sequence fj j j j ¼ 1; 2; . . .g consisting of iterates of j, which is a holomorphic
automorphism of TgðRÞ. For each point p A TgðRÞ, the point sequence fj jðpÞg con-
verges to a boundary point q of TgðRÞ. It is known also that q is independent of the
choice of p. Moreover, it is also known that q is a ‘‘maximal cusp’’. Conversely, to
every maximal cusp on the boundary of TgðRÞ, there correspond 3g� 3 geodesics
which have the properties just described. Therefore, the automorphism orbit accu-
mulating boundary points of the Teichmüller domain include cusp boundary points.
Finally, a theorem of McMullen states that maximal cusps are dense in the boundary
of Teichmüller space. This establishes the claim above.
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3.2 The case that orbit accumulating boundary points are singular. We discuss the
case when a bounded convex domain W admits a sequence fjjgj of automorphisms
and whose automorphism orbit fjjðqÞ j j ¼ 1; 2; . . .g (for every q A W) accumulates at
a boundary point p at which qW is not smooth. Non-smoothness again means that
the tangent cone to W at p is not a half space bounded by a hyperplane. (Or equiv-
alently, the supporting hyperplane is not unique at p.) In this case, what matters most
is the sequence of principal slices which we defined in Section 2.4. Recall that the
scaled limit domain contains the real 2-dimensional tangent cone, say G, of the limit

of the principal slices in its closure. Then, by the aforementioned convex hull argu-
ments, the scaled limit domain must satisfy the property that for everyone of its in-
terior point, say x, the domain contains fzþ x j z A Gg sharing the boundary with it.
This seems very similar to the case of smooth accumulation points. However, notice
here that it is possible that G is not a half plane, and that in such a case, there seem to
be no obvious ways to conclude that the scaled limit domain contains a non-compact
one-parameter family of automorphisms. (The set G does have homothety automor-
phisms for instance; yet it does not seem likely that they extend immediately to au-
tomorphisms of the scaled limit domain.) At this point, it may be fair to say that this
is a limitation of this version of scaling, but it may be possible to show that this case
also dispenses with the existence of one-parameter families of automorphisms. We do
have some progress in a di¤erent direction which has relevance to this problem.
Nevertheless, we choose not to include it here lest the coherence of this article may be
a¤ected.
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