A FUNCTIONAL MODEL FOR A FAMILY OF OPERATORS INDUCED BY LAGUERRE OPERATOR

HATAMLEH RA'ED

Abstract. The paper generalizes the instruction, suggested by B. Sz.-Nagy and C. Foias, for operatorfunction induced by the Cauchy problem

$$
T_{t}:\left\{\begin{array}{l}
t h^{\prime \prime}(t)+(1-t) h^{\prime}(t)+A h(t)=0 \\
h(0)=h_{0}\left(t h^{\prime}\right)(0)=h_{1}
\end{array}\right.
$$

A unitary dilatation for T_{t} is constructed in the present paper. then a translational model for the family T_{t} is presented using a model construction scheme, suggested by Zolotarev, V., [3]. Finally, we derive a discrete functional model of family T_{t} and operator A applying the Laguerre transform

$$
f(x) \rightarrow \int_{0}^{\infty} f(x) P_{n}(x) e^{-x} d x
$$

where $P_{n}(x)$ are Laguerre polynomials $[6,7]$. We show that the Laguerre transform is a straightening transform which transfers the family T_{t} (which is not semigroup) into discrete semigroup $e^{-i t n}$.

Introduction

Functional models for contraction semigroups $Z_{t}=\exp ($ itA $)$ and $T^{n},(t \geq$ $0, n \in \mathbb{Z}^{+}$) have been constructed by B. Sz.-Nagy and C. Foias [2] at the beginning of 70 -s. The bases of this method is a significant concept of dilatation of contraction semigroup. A spectral realization of the dilatation and subsequent narrowing upon the original space leads to a functional model of the contraction semigroup. As a result an operator $A(T)$ in this case is realized by operators which carry out multiplication by independent variable in a specific functional space. The basis of the concept is the Fourier transform of space L^{2}.

[^0]
1. Preliminary information on the functional model in a Fourier representation

1.1. We recall [1] that operator collegation Δ,

$$
\begin{equation*}
\Delta=(A, H, \phi, E, \sigma) \tag{1}
\end{equation*}
$$

is a collection of Hilbert spaces H and E and of linear operators $A: H \rightarrow H$, $\phi: H \rightarrow E, \sigma: E \rightarrow E \quad\left(\sigma^{*}=\sigma\right)$ where the collegation condition holds:

$$
\begin{equation*}
A-A^{*}=i \phi^{*} \sigma \phi \tag{2}
\end{equation*}
$$

It is customary to associate with the collegation (1) an open system [1] which is defined by relations

$$
\begin{align*}
& \left\{\begin{array}{l}
i \frac{d}{d t} h(t)+A h(t)=\phi^{*} \sigma u(t) \\
h(0)=h_{0},(t \geq 0)
\end{array}\right. \\
& v(t)=u(t)-i \phi h(t) \tag{3}
\end{align*}
$$

where $h(t), u(t), v(t)$ are vector functions from Hilbert spaces H and E respectively. An important role in the further construction of the model representation plays the conservation Law [1].

Theorem 1.1. For the open system (3) associated with the collegation Δ (1) the conservation Law holds

$$
\begin{equation*}
\left\|h_{0}\right\|^{2}+\int_{0}^{T}\langle\sigma u(\zeta), u(\zeta)\rangle d \zeta=\|h(T)\|^{2}+\int_{0}^{T}\langle\sigma v(\zeta), v(\zeta)\rangle d \zeta \tag{4}
\end{equation*}
$$

for any $T, 0 \leq T \leq \infty$.
If operator A is selfadjoint then $\phi=0, \sigma=0$, and Cauchy problem (3) in induced by the semigroup

$$
Z_{t}=\exp (i t A), \quad \text { i.e. } \quad h(t)=Z_{t} h_{0}
$$

and the conservation Law (4) yields Z_{t}.
1.2. Let us consider a contractive semigroup $Z_{t}=\exp (i t A)(t \geq 0)$, which has a property $\left\|Z_{t} h\right\| \leq\|h\|$ for all $h \in H$.

A unitary dilatation of contractive semigroup Z_{t} in H is said to be a unitary semigroup U_{t} in \mathcal{H} [2] such that the following relation holds:

$$
\begin{equation*}
\mathcal{H} \supseteq H ;\left.P_{H} U_{t}\right|_{H}=Z_{t} \quad(t \geq 0) \tag{5}
\end{equation*}
$$

where P_{H} is an orthoprojector on H. The dilatation U_{t} in H is said to be minimal if

$$
\begin{equation*}
\mathcal{H}=\operatorname{span}\left\{U_{t} h ; t \in \mathbb{R}, h \in H\right\} \tag{6}
\end{equation*}
$$

where span in (6) denotes a closed linear span of the vectors $U_{t} h$ for any $t \in \mathbb{R}$ and any $h \in H$.

A significant role in the theory of dilatation of contractive semigroup Z_{t} plays the following Theorem 1.2.

Theorem 1.2. Any contracting semigroup Z_{t} in H has a unitary dilatation U_{t} in H. Moreover the minimal dilatation U_{t} is defined up to isomorphism.

We present a construction of the dilatation U_{t} according to the paper [3]. A contractibility of the semigroup Z_{t} means $[2,3]$ that A is dissipative, i.e. $-i\left(A-A^{*}\right) \geq 0$. Consequently including A into the collegation $\Delta(1)$ we can assume that $\sigma=I$. Therefore the conservation law (4) has the form

$$
\begin{equation*}
\left\|h_{0}^{2}\right\|+\int_{0}^{T}\|u(\zeta)\|^{2} d \zeta=\|h(T)\|^{2}+\int_{0}^{T}\|v(\zeta)\| d \zeta \tag{7}
\end{equation*}
$$

We defined [3] a dilatation space \mathcal{H}, which forms vector-functions $f(\zeta)=$ $\left(u_{+}(\zeta), h, u_{-}(\zeta)\right)$ so that $u_{ \pm}(\zeta) \in E$ and Supp $u_{ \pm}(\zeta) \in \mathbb{R}_{\mp}$ for a finite norm

$$
\begin{equation*}
\|f\|^{2}=\int_{-\infty}^{0}\left\|u_{+}(\zeta)\right\|^{2} d \zeta+\|h\|^{2}+\int_{0}^{\infty}\left\|u_{-}(\zeta)\right\|^{2} d \zeta<\infty \tag{8}
\end{equation*}
$$

We define a dilatation U_{t} in \mathcal{H} by the formula

$$
\begin{equation*}
\left(U_{t} f\right)(\zeta)=\left(u_{+}(t, \zeta), h_{t}, u_{-}(t, \zeta)\right) \tag{9}
\end{equation*}
$$

where $u_{-}(t, \zeta)=P_{\mathbb{R}_{+}} u_{-}(\zeta+t) ; h_{t}=y_{t}(0)$, and $y_{t}(\zeta)$ is a solution of the Cauchy problem

$$
\left\{\begin{array}{l}
i \frac{d}{d \zeta} y_{t}(\zeta)+A y_{t}(\zeta)=\phi^{*} u_{-}(\zeta+t) \\
y_{t}(-t)=0, \quad \zeta \in(-t, 0)
\end{array}\right.
$$

and at last $u_{+}(t, \zeta)=u_{+}(t+\zeta)+P_{(-t, 0)}\left\{u_{-}(\zeta+t)-i \phi y_{t}(\zeta)\right\}$ where $P_{\mathbb{R}_{+}}$and $P_{(-t, 0)}$ are operators of narrowing (projection operators at set \mathbb{R}_{+}and $(-t, 0)$ respectively), $t \geq 0$.

It is not difficult to show that unitary of $U_{t}(9)$ in \mathcal{H} is a consequence of the conservation law (1). By the dilatation construction U_{t} one can see that the space \mathcal{H} has the form

$$
\begin{equation*}
\mathcal{H}=D_{+} \oplus H \oplus D_{-} \tag{10}
\end{equation*}
$$

where the subspace D_{+}is found by vector-function of the form $\left(u_{+}(\zeta), 0,0\right) \in \mathcal{H}$ and the subspace D_{-}is formed by vector-function $\left(0,0, u_{-}(\zeta)\right)$ from \mathcal{H}, respectively.

The subspaces $D_{ \pm}$have the following properties:

$$
\begin{array}{ll}
U_{t} D_{+} \subseteq D_{+} & (t \geq 0) \\
U_{t} D_{-} \subseteq D_{-} & (t \leq 0) \tag{11}
\end{array}
$$

Thus D_{+}is outgoing subspace and D_{-}is incomming subspace in the sense of P. D. Lax and R. S. Phillips [4]. In accordance with the paper [3], we define a free unitary group V_{t} in the space $L_{\mathbb{R}}^{2}(E)$, which will act as

$$
\begin{equation*}
\left(V_{t} g\right)(\zeta)=g(\zeta+t) \tag{12}
\end{equation*}
$$

and vector-function $g(\zeta) \in E, \zeta \in \mathbb{R}$ is such that

$$
\int_{-\infty}^{\infty}\|g(\zeta)\|^{2} d \zeta<\infty
$$

It is evidently that $D_{ \pm}$after identification belongs to $L_{\mathbb{R}}^{2}(E)$ also.
Wave operators $W_{ \pm}$play a significant role in the scattering theory. They are defined $[3,4]$ as

$$
\begin{equation*}
W_{ \pm}=s-\lim _{t \rightarrow \mp \infty} U_{+} P_{D_{ \pm}} V_{-t} \tag{13}
\end{equation*}
$$

where $P_{D_{ \pm}}$are orthoprojectors on subspaces $D_{ \pm}$. The following theorem holds [3].
Theorem 1.3. The wave operators $W_{ \pm}$exist as strong limits (13) are isometries from $L_{\mathbb{R}}^{2}(E)$ to \mathcal{H}, and the relations

$$
\begin{equation*}
W_{ \pm} V_{t}=U_{t} W_{ \pm}, \quad(\forall t), \quad W_{ \pm} P_{D_{ \pm}}=P_{D_{ \pm}} \tag{14}
\end{equation*}
$$

are valid.
The scattering operator S is defined by the wave operator $W_{ \pm}$in a conventional way $[3,4]$:

$$
\begin{equation*}
S=W_{+}^{*} W_{-} \tag{15}
\end{equation*}
$$

From Theorem 1.3 there follows a proposition.
Theorem 1.4. The operator $S(15)$ is a contraction, i.e. $\|S\| \leq 1$ and has the properties:

$$
\begin{align*}
& S V_{t}=V_{t} S ; \quad S L_{\mathbb{R}_{+}}^{2} \subseteq L_{\mathbb{R}_{+}}^{2}(E) \\
& \overline{S L_{\mathbb{R}}^{2}(E)}=L_{\mathbb{R}}^{2}(E) \tag{16}
\end{align*}
$$

1.3. We recall that the collegation $\Delta(1)$ is simple $[1-3]$ if $H=\operatorname{span}\left\{A^{n} \phi^{*} g ; n \in\right.$ $\left.\mathbb{Z}_{+}, g \in E\right\}$. Let us define the following subspaces in \mathcal{H},

$$
\Re_{ \pm}=\overline{W_{ \pm} L_{\mathbb{R}}^{2}(E)}
$$

The following theorem gives a sufficient condition for the completeness of the wave operators $W_{ \pm},[3]$.
Theorem 1.5. If the collegation Δ is simple then the relation $\mathcal{H}=\operatorname{span}\left\{f_{+}+\right.$ $\left.f_{-} ; f_{ \pm} \in \Re_{ \pm}\right\}$holds.

Now we construct a translational model [3]. Let $f_{k}(\zeta) \in L_{\mathbb{R}}^{2}(E),(k=1,2)$. We define a mapping

$$
\binom{f_{1}(\zeta)}{f_{2}(\zeta)} \rightarrow \Psi_{p}(\zeta)=W_{-} f_{1}(\zeta)+W_{+} f_{2}(\zeta) \in \mathcal{H}
$$

Then using isometry of $W_{ \pm}$and the form of operator $S(15)$ it is not difficult to show that

$$
\left\|\Psi_{p}(\zeta)\right\|^{2}=\int_{-\infty}^{\infty}<\left[\begin{array}{ll}
I & S^{*} \tag{17}\\
S & I
\end{array}\right]\binom{f_{1}(\zeta)}{f_{2}(\zeta)},\binom{f_{1}(\zeta)}{f_{2}(\zeta)}>d \zeta
$$

Using Theorem 1.5 we may assert, that space H is isomorphic to the space $L^{2}\left(\begin{array}{ll}1 & S^{*} \\ S & 1\end{array}\right)$ which is formed by vector-functions $f(\zeta)=\binom{f_{1}(\zeta)}{f_{2}(\zeta)}$ for which the norm (17) is finite. By virtue of conditions (14) the dilatation U_{t} on Ψ_{p} will act as a shift. Therefore if $f(\zeta) \in L^{2}\left(\begin{array}{ll}1 & S^{*} \\ S & 1\end{array}\right)$ then the dilatation U_{t} is transformed into

$$
\begin{equation*}
\widehat{U}_{t} f(\zeta)=f(\zeta+t) \tag{18}
\end{equation*}
$$

Applying again (14), one can easily deduce that the spaces $D_{ \pm}$are realized now in the form

$$
\begin{equation*}
\widehat{D}_{-}=\binom{L_{\mathbb{R}_{+}}^{2}(E)}{0}, \quad \widehat{D}_{+}=\binom{0}{L_{\mathbb{R}_{-}}^{2}(E)} \tag{19}
\end{equation*}
$$

Thus the initial space H acquires such model form

$$
\begin{align*}
\widehat{H}_{p} & =L^{2}\left(\begin{array}{ll}
1 & S^{*} \\
S & 1
\end{array}\right) \ominus\binom{L_{\mathbb{R}_{+}}^{2}(E)}{L_{\mathbb{R}_{-}}^{2}(E)} \tag{20}\\
& =f=\left(\binom{f_{1}}{f_{2}} \in L^{2}\left(\begin{array}{ll}
1 & S^{*} \\
S & 1
\end{array}\right) ; \begin{array}{c}
f_{1}+S^{*} f_{2} \in L_{\mathbb{R}_{-}}^{2}(E) \\
S f_{1}+f_{2} \in L_{\mathbb{R}_{+}}^{2}(E)
\end{array}\right)
\end{align*}
$$

and in the virtue of the dilatation the action of semigroup Z_{t} is transformed to the shift semigroup

$$
\begin{equation*}
\widehat{Z} f(\zeta)=P_{\widehat{H}_{P}} f(\zeta+t) \tag{21}
\end{equation*}
$$

where $f(\zeta) \in \widehat{H}_{p}(20)$. Thus the following theorem is proved.
Theorem 1.6. A minimal unitary dilatation U_{t} in \mathcal{H} of the contraction semigroup $Z_{t}=\exp (i t A)$ in H, where A is dissipative operator of a simple collegation Δ is unitary equivalent to a translation group $\widehat{U}_{t}(18)$ in the space $L^{2}\left(\begin{array}{ll}1 & S^{*} \\ S & 1\end{array}\right)$, and the contraction semigroup Z_{t} is unitary equivalent to the shift semigroup $\widehat{Z}_{t}(21)$ in the space \widehat{H}_{p} respectively.

The Fourier transform by formula

$$
\begin{equation*}
\tilde{f}(\lambda)=\int_{-\infty}^{\infty} f(\zeta) e^{-i \lambda \zeta} d \zeta \tag{22}
\end{equation*}
$$

in the virtue of Plancherel theorem [2,3] is a unitary operator in $L_{\mathbb{R}}^{2}(E)$. By the virtue of Wiener-Paley theorem

$$
\widetilde{L}_{\mathbb{R}_{+}}^{2}(E)=H_{-}^{2}(E) ; \quad \widetilde{L}_{\mathbb{R}_{-}}^{2}(E)=H_{+}^{2}(E)
$$

where $H_{ \pm}^{2}(E)$ are Hardy spaces of E-value function from $L_{\mathbb{R}}^{2}(E)$ which are holomorphically continued into lower (upper) half-plane. Let us apply the Fourier transform (22) to translational model (18) - (21) and take advantage of the following Theorem 1.7
Theorem 1.7. The Fourier transform of the scattering operator S (15) transfers the operator S into operator performing multiplication by characteristic function

$$
\begin{align*}
& S_{\Delta}(\lambda)=I-\phi(A-\lambda I)^{-1} \phi^{*}, \quad \text { i.e. } \\
& (\widetilde{S f})(\lambda)=S_{\Delta}(\lambda) \widetilde{f}(\lambda) \tag{23}
\end{align*}
$$

As it is known $\widetilde{f}(\lambda+t)=e^{i \lambda t} \widetilde{f}(\lambda)$, therefore we derive such functional model.
Theorem 1.8. A minimal unitary dilatation U_{t} in H of the contraction semigroup $Z_{t}=\exp ($ it $A)$ in H, where A is dissipative operator of a simple collegation Δ is unitary equivalent to the group

$$
\begin{equation*}
\widetilde{U}_{t} f(\lambda)=e^{i \lambda t} f(\lambda) \tag{24}
\end{equation*}
$$

where $f(\lambda) \in L^{2}\left(\begin{array}{cc}I & S_{\Delta}^{*}(\lambda) \\ S_{\Delta}(\lambda) & I\end{array}\right)$ and contraction semigroup Z_{t} is unitary equivalent to semigroup $\widetilde{Z}_{t} f(\lambda)=P_{\widetilde{H}_{p}} e^{i \lambda t} f(\lambda)$, where $f(\lambda)$ belongs to the space

Here the main operator \widetilde{A} in \widetilde{H}_{p} act as multiplication operator by independent variable

$$
\begin{equation*}
\widetilde{A} f(l a)=P_{\widetilde{H}_{p}} \lambda f(\lambda), f(\lambda) \in \widetilde{H}_{p} \tag{26}
\end{equation*}
$$

In the next section we will generalize this construction on the case of the Laquerre transform.

2. A functional model for the Laguerre representation

2.1. Let us consider a differential operator

$$
\begin{equation*}
\ell=t \frac{d^{2}}{d t^{2}}+(1-t) \frac{d}{d t} \tag{27}
\end{equation*}
$$

in what follows called the Laguerre operator; it acts on functions form $C^{2}=\left(\mathbb{R}_{+}\right)$. We denote by $L_{\mathbb{R}_{+}}^{2}\left(e^{-t} d t\right)$ the following space:

$$
\begin{equation*}
L_{\mathbb{R}_{+}}^{2}\left(e^{i t} d t\right)=\left\{f(t), t \in \mathbb{R}_{+} ; \int_{0}^{\infty}|f(t)|^{2} e^{-t} d t<\infty\right\} \tag{28}
\end{equation*}
$$

Proposition 2.1. An operator ℓ is symmetric in the space $L_{\mathbb{R}_{+}}^{2}\left(e^{-t} d t\right)$ under the self-adjoint boundary conditions, i.e. $\langle\ell x, y\rangle=\langle y, \ell y\rangle$ for all $x, y \in \mathbb{C}^{2}\left(\mathbb{R}_{+}\right)$such that $\left.t x(t)\right|_{t=0}=0,\left.t y(t)\right|_{t=0}=0$ and $\left.t y^{\prime}(t)\right|_{t=0}<\infty,\left.t x^{\prime}(t)\right|_{t=0}<\infty$.
Proof. We calculate

$$
\begin{aligned}
\langle\ell x, y\rangle-\langle x, \ell y\rangle & =\int_{0}^{\infty}\left\{\left(t x^{\prime \prime}+(1-t) x^{\prime}\right) \bar{y}-x\left(t \bar{y}^{\prime \prime}+(1-t) \bar{y}^{\prime}\right)\right\} e^{-t} d t \\
& =\int_{0}^{\infty}\left\{t e^{-t}\left(x^{\prime} \bar{y}-\bar{y}^{\prime} x\right)\right\}^{\prime} d t=\left.\left\{t e^{-t}\left(x^{\prime} \bar{y}-\bar{y}^{\prime} x\right)\right\}\right|_{0} ^{\infty}=0
\end{aligned}
$$

by virtue of the boundary conditions.
Let us consider now an open system of special form, generated by the Laguerre operator (27) and corresponding to the collegation $\Delta(1)$:

$$
\left\{\begin{array}{l}
\ell h(t)+A h(t)=\phi^{*} \sigma u(t) \tag{29}\\
h(0)=h_{0}\left(t h^{\prime}\right)(0)=h_{1} \\
v(t)=u(t)-i \phi h(t)
\end{array}\right.
$$

The following assertion is valid, similar to Theorem (1.1).
Theorem 2.1. For the open system (29) associated with collegation Δ the law of conservation of energy is valid, i.e.

$$
\begin{align*}
& \int_{0}^{T}\langle\sigma u(\zeta), u(\zeta)\rangle e^{-\zeta} d \zeta+\left\langle I \widehat{h}_{0}, \widehat{h}_{0}\right\rangle \tag{30}\\
= & \int_{0}^{T}\langle\sigma v(\zeta), v(\zeta)\rangle e^{-\zeta} d \zeta+\left\langle\widehat{h}_{T}, \widehat{h}_{T}\right\rangle
\end{align*}
$$

where $I=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right)$ and $h_{0}=\binom{h_{0}}{h_{t}}, h_{T}=\binom{h(T)}{e^{-T} T h^{\prime}(T)}$ for any finite $T>0$.
Proof. We calculate

$$
\begin{aligned}
\langle\ell h, h\rangle-\langle h, \ell h\rangle & =\left\langle\phi^{*} \sigma u-A h, h\right\rangle-\left\langle h, \psi^{*} \sigma u-A h\right\rangle \\
& =\left\langle\sigma u, \frac{u-v}{i}\right\rangle-\left\langle\frac{u-v}{i}, \sigma u\right\rangle-\left\langle\left(A-A^{*}\right) h, h\right\rangle \\
& =i\langle\sigma u, u-v\rangle+i\langle u-v, \sigma u\rangle-i\left\langle\phi^{*} \sigma \phi h, h\right\rangle \\
& =i\langle\sigma u, u-v\rangle+i\langle u-v, \sigma u\rangle-i\langle\sigma(u-v), u-v\rangle \\
& =i\langle\sigma u, u\rangle-i\langle\sigma v, v\rangle .
\end{aligned}
$$

Now we integrate the derived equality:

$$
\begin{aligned}
\int_{0}^{T} & \langle\sigma v, v\rangle e^{-t} d t-\int_{0}^{T}\langle\sigma u, u\rangle e^{-t} d t \\
& =i \int_{0}^{T}[\langle\ell h, h\rangle-\langle h, \ell h\rangle] e^{-t} d t \\
& =\left.i\left\{e^{-t} t\left[\left\langle h^{\prime \prime}, h\right\rangle-\left\langle h, h^{\prime}\right\rangle\right]\right\}\right|_{0} ^{T} \\
& =\left\langle I \widehat{h}_{0}, \widehat{h}_{0}\right\rangle-\left\langle I \widehat{h}_{T}, \widehat{h}_{T}\right\rangle
\end{aligned}
$$

which proves our assertion.
2.2. Let us make use of the energy conservation law (30) to construct a dilatation for operator T_{t} generated by the Cauchy problem

$$
\left\{\begin{array}{l}
\ell h(t)+A h(t)=0 \tag{31}\\
h(0)=h_{0} ;\left(t h^{\prime}\right)(0)=h_{1}
\end{array}\right.
$$

where $T_{t}\left(h_{0}, h_{1}\right)=\left(h(t), t h^{\prime}(t)\right)$. We will call an unitary operator-function U_{t} in \mathcal{H} a dilatation of family T_{t} in H, if $\mathcal{H} \supseteq H, T_{t}=\left.P_{H} U_{t}\right|_{H}$.

Here we do not suppose that T_{t} and U_{t} is semigroup. Moreover, the unitary property of U_{t} may hold not necessarily in Hilbert metric but in indefinite one. The following analog of Theorem 1.2 is valid.

Theorem 2.2. The operator-function T_{t} generated by the Cauchy problem (31) with dissipative operator A of collegation $\Delta(1)$ (i.e. $\sigma=I$) possesses the unitary (in indefinite metric) dilatation U_{t}, where the minimal dilatation is determined up to isomorphism.

Proof. To prove the theorem we bring a construction of dilatation U_{t} by analog with (8), (9).

Let us consider a Hilbert space

$$
\begin{align*}
\mathcal{H}= & \left\{f=(u(\zeta), \widehat{h}, v(\zeta)) ; u(\zeta), v(\zeta) \in E, \operatorname{supp} v \in \mathbb{R}_{-}, \operatorname{supp} u \in \mathbb{R}_{+},\right. \\
\widehat{h}= & \binom{h_{0}}{h_{1}}, h_{k} \in H ;\|f\|^{2}=\int_{-\infty}^{0}\|v(\zeta)\|^{2} e^{-\zeta} d \zeta+\|\widehat{h}\|^{2} \tag{32}\\
& \left.+\int_{0}^{\infty}\|u(\zeta)\|^{2} e^{-\zeta} d \zeta<\infty\right\}
\end{align*}
$$

We set indefinite metric \mathcal{H}

$$
\begin{equation*}
\langle f\rangle_{I}^{2}=\int_{-\infty}^{0}\|v(\zeta)\|^{2} e^{-\zeta} d \zeta+\langle I \widehat{h}, \widehat{h}\rangle+\int_{0}^{\infty}\|u(\zeta)\|^{2} e^{-\zeta} d \zeta \tag{33}
\end{equation*}
$$

where I has the form indicated in Theorem 2.1.
We construct the dilatation U_{t} in \mathcal{H},

$$
\begin{equation*}
U_{t} f=f_{t}\left(u(t, \zeta), \widehat{h}_{t}, v(t, \zeta)\right) \tag{34}
\end{equation*}
$$

Let us consider further the Cauchy problem

$$
\left\{\begin{array}{l}
\left(i \frac{\partial}{\partial t}+\ell_{\zeta}\right) \widehat{u}(t, \zeta)=0 \tag{35}\\
\widehat{u}(0, \zeta)=u(\zeta) ; \zeta \in \mathbb{R}_{+}
\end{array}\right.
$$

where ℓ_{ζ} is operator ℓ (27) with respect to ζ.

Solution of the problem is easily obtained. In fact, let

$$
\widehat{u}(t, \zeta)=\sum_{n \in z_{+}} e^{-i t n} C_{n} g_{n}(\zeta)
$$

where $g_{n}(\zeta)$ are the Laguerre polynomials [5] which are the solutions of equation $\ell_{\zeta} g_{n}(\zeta)+n g_{n}(\zeta)=0$ and have the form

$$
g_{n}(\zeta)=\frac{1}{n!} e^{\zeta} \frac{d^{n}}{d \zeta^{n}}\left(\zeta e^{-\zeta}\right)
$$

and make a complete system of orthogonal polynomials in $L_{\mathbb{R}_{+}}^{2}\left(e^{-\zeta} d \zeta\right)$. The coefficients C_{n} are obtained from the initial condition $\sum C_{n} g_{n}(\zeta)=u(\zeta)$.

Therefore $\widehat{u}(t, \zeta)$ possesses the property $\operatorname{supp} \widehat{u}(t, \zeta)=\operatorname{supp} \widehat{u}(\zeta) \subseteq \mathbb{R}_{+}$. Now we determine $u(t, \zeta)$ in (34) by the formula

$$
\begin{equation*}
u(t, \zeta)=P_{\mathbb{R}_{+}} \widehat{u}(t, \zeta+t) e^{-\frac{t}{2}} \tag{36}
\end{equation*}
$$

To set $\widehat{h}_{t}(34)$, we consider the following Cauchy problem

$$
\left\{\begin{array}{l}
\ell_{\zeta} y(\zeta)+A y(\zeta)=\phi^{*} \widehat{u}(t, \zeta+t) e^{-\frac{t}{2}} ; \zeta \in(-t, 0) \tag{37}\\
y(-t)=h_{0} \\
(-t) e^{t} y(-t)=h_{1}
\end{array}\right.
$$

and put $\widehat{h}_{t}=\binom{y(0)}{\left(t y^{\prime}\right)(0)}$.
Finally, to set $v(t, \zeta)(34)$ we consider the similar equation

$$
\left\{\begin{array}{l}
\left(i \frac{\partial}{\partial t}+\ell_{\zeta}\right) \widehat{v}(t, \zeta)=0 \tag{38}\\
\widehat{v}(0, \zeta)=v(\zeta) ; \zeta \in \mathbb{R}_{-}
\end{array}\right.
$$

and put $v(t, \zeta)=e^{-\frac{t}{2}} \widehat{v}(t, \zeta+t)+P_{\mathbb{R}_{-}}\left\{\widehat{u}(t, \zeta+t) e^{-\frac{t}{2}}-i \phi y(\zeta)\right\}$. We show that U_{t} (34) has property of isometry in the metric (33). To this end we calculate,

$$
\begin{aligned}
\left\langle f_{t}\right\rangle_{I}^{2}= & \int_{-\infty}^{0}\|v(t, \zeta)\|^{2} e^{-\zeta} d \zeta+\left\langle I \widehat{h}_{t}, \widehat{h}_{t}\right\rangle+\int_{0}^{\infty}\|u(t, \zeta)\|^{2} e^{-\zeta} d \zeta \\
= & \int_{-\infty}^{-t}\|\widehat{v}(t, \zeta+t)\|^{2} e^{-\zeta-t} d \zeta+\int_{-t}^{0}\left\|\widehat{u}(t, \zeta+t) e^{-\frac{t}{2}}-i \phi y(\zeta)\right\|^{2} e^{\zeta} d \zeta \\
& +\left\langle I \widehat{h}_{t}, \widehat{h}_{t}\right\rangle+\int_{0}^{\infty}\|u(t, \zeta+t)\|^{2} e^{-\zeta-t} d \zeta \\
= & \int_{-\infty}^{-t}\|\widehat{v}(t, \zeta+t)\|^{2} e^{-\zeta-t} d \zeta+\left\langle I \widehat{h}_{0}, \widehat{h}_{0}\right\rangle+\int_{-t}^{\infty}\|\widehat{u}(t, \zeta+t)\|^{2} e^{-\zeta-t} d \zeta \\
= & \int_{-\infty}^{0}\|\widehat{v}(t, \zeta)\|^{2} e^{-\zeta} d \zeta+\left\langle I \widehat{h}_{0}, \widehat{h}_{0}\right\rangle+\int_{0}^{\infty}\|\widehat{u}(t, \zeta)\|^{2} e^{-\zeta} d \zeta \\
= & \langle f\rangle_{I}^{2}
\end{aligned}
$$

In this calculation we have made use of the conservation law (30) and of the fact that norms of solutions of Cauchy problems $\widehat{u}(t, \zeta), \widehat{v}(t, \zeta)$ (35) and (38) coincide with norms of initial data $u(\zeta)$ and $v(\zeta)$ in the spaces $L_{\mathbb{R}_{+}}^{2}\left(e^{-t} d t\right)$ and $L_{\mathbb{R}_{-}}^{2}\left(e^{-t} d t\right)$ by virtue of selfadjointness of operators ℓ_{ζ} in the spaces.

In order to prove that U_{t} has the property of being unitary, it is necessary to ascertain that from $U_{t}^{*} f=0$ implies $f=0$. It is easy to show that U_{t}^{*} will act by the formula

$$
\begin{equation*}
U_{t}^{*} f=\left(u(t, \zeta), \widehat{h}_{t}, v(t, \zeta)\right) \tag{39}
\end{equation*}
$$

Here $v(t, \zeta)=P_{\mathbb{R}_{-}} \widehat{v}(t, \zeta-t) e^{\frac{t}{2}}$ where $\widehat{v}(t, \zeta)$ is a solution of problem (38).
In order to obtain \widehat{h}_{t}, it is necessary to consider dual to (37) problem

$$
\left\{\begin{array}{l}
\ell_{\zeta} y(\zeta)+A^{*} y(\zeta)=\phi^{*} \widehat{v}(\zeta, \zeta-t) e^{\frac{t}{2}} \tag{40}\\
y(t)=h_{0} \\
e^{-t} t y^{\prime}(t)=h_{1}
\end{array}\right.
$$

and put $\widehat{h}_{t}=\binom{y(0)}{\left(t y^{\prime}\right)(0)}$. Finally,

$$
u(t, \zeta)=\widehat{u}(t, \zeta-t) e^{\frac{t}{2}}+P_{\mathbb{R}_{+}}\left\{\widehat{v}(t, \zeta-t) e^{\frac{t}{2}}+i \phi y(\zeta)\right\}
$$

where $\widehat{u}(t, \zeta)$ is the solution of Cauchy problem (35).
Thus let $U_{t}^{*} f=0$, then $\widehat{u}(t, \zeta)=0$ and so $\widehat{u}(t, \zeta)=0$ and $\widehat{v}(t, \zeta-t) e^{\frac{t}{2}}+i \phi y(\zeta)=$ 0 therefore $u(\zeta) \equiv 0$. Now, by substituting $\widehat{v}(t, \zeta-t)=-i \phi y(\zeta) e^{-\frac{t}{2}}$ in (40) we obtain a homogeneous equation

$$
\ell_{\zeta} y+A^{*} y+i \phi^{*} \phi y=0
$$

with zero condition in the origin $\widehat{h}_{t}=0$. By virtue of uniqueness of Cauchy problem solution, this yields that $y(\zeta) \equiv 0$, therefore $\widehat{v}(t, \zeta-t)=0$ on interval $(0, t)$. Accounting that $\widehat{v}(t, \zeta-t)=0$ with $(-\infty, 0)$, finally we conclude that $v(\zeta)=0$. Thus $f=0$. This proves the property of being unitary for $U_{t}(34)$ and completes the proof of the theorem.
2.3. Let us pass to constructing wave operators. To this end we define a "free" group by analogy with (38)

$$
\begin{equation*}
V_{t} g(\zeta)=g(t, \zeta) \tag{41}
\end{equation*}
$$

where $g(t, \zeta)$ is a solution of Cauchy problem

$$
\left\{\begin{array}{l}
\left(i \frac{\partial}{\partial t}+\ell_{\zeta}\right) g(t, \zeta)=0 \tag{42}\\
g(0, \zeta)=g(\zeta) \in L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)
\end{array}\right.
$$

It is evident that V_{t} (41) is unitary. Now we define the operators

$$
\begin{align*}
& W_{-}=s-\lim _{t \rightarrow+\infty} U_{t} P_{\mathbb{R}_{+}} V_{-t} \\
& W_{+}=s-\lim _{t \rightarrow-\infty} U_{t}^{*} P_{\mathbb{R}_{-}} V_{-t}^{*} \tag{43}
\end{align*}
$$

By analogy with Theorem 1.3 we have

Theorem 2.3. The wave operators $W_{ \pm}$exist as strong limits (43), are isometries from $L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)$ to \mathcal{H}, and the following relations are valid:

$$
\begin{align*}
& U_{t} W_{-}=W_{-} V_{t}, U_{t}^{*} W_{+}=W_{+} V_{t}^{*}, \quad(t \geq 0) \\
& W_{ \pm} P_{\mathbb{R}_{\mp}}=P_{\mathbb{R}_{\mp}} \tag{44}
\end{align*}
$$

Proof. We prove the assertion of the theorem for W_{-}(for W_{+}the proof is similar). The main matter of the theorem consists of existence proof of W_{-}since the relation (44) is proved by analogy with arguments given in Section 1; sec [2, 3]. Let

$$
f_{t}=U_{t} P_{\mathbb{R}_{+}} V_{-t} g=\left(v(t, \zeta), h_{t}, u(t, \zeta)\right)
$$

then $u(t, \zeta)=P_{\mathbb{R}_{+}} g(\zeta)$. We consider the Cauchy problem

$$
\left\{\begin{array}{l}
\ell_{\zeta} y(\zeta)+A y(\zeta)=\phi^{*} g(\zeta) \tag{45}\\
y(-t)=0 ; y^{\prime}(-t)=0, \zeta \in(-t, 0)
\end{array}\right.
$$

Then $\widehat{h}_{t}=\binom{y(0)}{\left(t y^{\prime}\right)(0)}$.
We denote by $K(\zeta, \eta)$ a Cauchy function of the problem (45) (i.e. $K(\zeta, \zeta)=0$, $\left.K^{\prime}(\zeta, \zeta)=I\right)$, then a solution $y(\zeta)$ of (45) has the form

$$
y_{t}(\zeta)=\int_{-t}^{\zeta} K(\zeta, \eta) \phi^{*} g(\eta) d \eta
$$

Therefore $V(t, \zeta)$ has the form

$$
V(t, \zeta)=P_{(-t, 0)}\{g(\zeta)-i \phi y(\zeta)\}
$$

Thus,
$f_{t}=\left(P_{(-t, 0)}\left\{g(\zeta)-i \phi \int_{-t}^{0} K(\zeta, \eta) \phi^{*} g(\eta) d \eta\right\},\binom{\int_{-t}^{0} K(0, \eta) \phi^{*} g(\eta) d \eta}{\int_{-t}^{0} K^{\prime}(0, \eta) \phi^{*} g(\eta) d \eta}, P_{\mathbb{R}_{+}} g(\zeta)\right)$.
We show that f_{t} is a Cauchy sequence, i.e $\left\|f_{t+\Delta}-f_{t}\right\|^{2} \rightarrow 0$ as $t \rightarrow \infty$. Since

$$
\begin{equation*}
\left\|f_{t+\Delta}-f_{t}\right\|^{2}=\int_{-\infty}^{0}\left\|v_{t}(t+\Delta, \zeta)-v(t, \zeta)\right\|^{2} e^{-\zeta} d \zeta+\left\|\widehat{h}_{t+\Delta}-\widehat{h}_{t}\right\|^{2} \tag{46}
\end{equation*}
$$

It is sufficient to show that each summand approaches to zero as $t \rightarrow \infty$. We show that $\left\|\widehat{h}_{t+\Delta}-\widehat{h}\right\| \rightarrow 0$ when $t \rightarrow \infty$ and we will prove this property component by component. It is obvious that

$$
\begin{aligned}
& \left\|\widehat{h}_{t+\Delta}-\widehat{h}\right\|^{2}-\left\|\int_{(-t-\Delta)}^{-t} K(0, \eta) \phi^{*} g(\eta) d \eta\right\|^{2} \\
& \quad \leq \int_{-t-\Delta}^{-t}\|K(0, \eta)\|^{2} e^{\eta} d \eta \cdot \int_{-t-\Delta}^{-t} e^{-\eta}\left\|\phi^{*}\right\|^{2}\|g(\eta)\|^{2} d \eta
\end{aligned}
$$

and since the function $K(0, \eta) e^{\eta}$ is bounded (see $[6,7]$), we obtain that

$$
\left\|h_{t+\Delta}-h_{t}\right\|^{2} \leq \Delta C\left\|\phi^{*}\right\|^{2} \int_{-t-\Delta}^{-t}\|g(\eta)\|^{2} e^{-\eta} d \eta \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

since $g(\eta) \in L_{\mathbb{R}}^{2}\left(e^{-\eta} d \eta\right)$.
The convergence of second components $\widehat{h}_{t+\Delta}-\widehat{h}_{t}$ to zero is proved in a similar way. We show that the first summand in (46) approaches to zero too.

In fact,

$$
\begin{aligned}
A= & \int_{-\infty}^{0} \| P_{(-t-\Delta,-t)} g(\zeta)-i P_{(-t-\Delta, 0)} \phi \int_{-t-\Delta}^{\zeta} K(\zeta, \eta) \phi^{*} g(\eta) d \eta \\
& +i \int_{-t}^{\zeta} \phi K(\zeta, \eta) \phi^{*} g(\eta) d \eta \|^{2} e^{-\zeta} d \zeta \\
= & \int_{-t-\Delta}^{-t}\|g(\zeta)\|^{2} e^{-\zeta} d \zeta+\int_{-\infty}^{0}\left\|P_{(-t-\Delta, 0)} \phi y_{t+\Delta}(\zeta)-P_{(-t, 0)} \phi y_{t}(\zeta)\right\|^{2} e^{-\zeta} d \zeta \\
& +2 \operatorname{Im} \int_{-t-\Delta}^{-t}\left\langle g(\zeta), P_{(-t-\Delta, 0)} \phi y(\zeta)-P_{(-t, 0)} \phi y(\zeta)\right\rangle e^{-\zeta} d \zeta
\end{aligned}
$$

It is obvious that the first and third summands in the given sum approaches to zero as $t \rightarrow \infty$ because $g(\zeta) \in L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)$. We evaluate the second summand:

$$
\begin{aligned}
B & \left.=\int_{-\infty}^{0} \| P_{(-t-\Delta, 0)} \phi y_{t+\Delta}(\zeta)-P_{(-t, 0)}\right) \phi y_{t}(\zeta) \|^{2} e^{-\zeta} d \zeta \\
& =\int_{-\infty}^{0}\langle\phi \Delta y, \phi \Delta y\rangle e^{-\zeta} d \zeta,
\end{aligned}
$$

where

$$
\Delta y=P_{(-t-\Delta, 0)} y_{t+\Delta}(\zeta)-P_{(-t, 0)} y_{-t}(\zeta) .
$$

Then

$$
\begin{aligned}
A & =\int_{-\infty}^{0}\left\langle\phi^{*} \phi \Delta y, \Delta y\right\rangle e^{-\zeta} d \zeta=\int_{-\infty}^{0}\left\langle\frac{A-A^{*}}{i} \Delta y, \Delta y\right\rangle e^{-\zeta} d \zeta \\
& =2 \operatorname{Im} \int_{-\infty}^{0}\left\langle\phi^{*} g-\ell \Delta y, \Delta y\right\rangle e^{-\zeta} d \zeta \\
& =2 \operatorname{Im} \int_{-\infty}^{0}\left\langle\phi^{*} g, \Delta y\right\rangle e^{-\zeta} d \zeta+2 \operatorname{Im} \int_{-\infty}^{0}\langle\ell \Delta y, \Delta y\rangle e^{-\zeta} d \zeta
\end{aligned}
$$

the first summand approaches to zero again on account of $g(\zeta) \in L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)$, and the second one yields after integration by parts

$$
\left.\left\|\zeta e^{-\zeta} \Delta y\right\|\right|_{\zeta=0} \rightarrow 0 \quad(t \rightarrow \infty)
$$

since $\Delta \widehat{h}_{t} \rightarrow 0$. The theorem is proved.
As before, we define the operator S by the formula (15). Then the following theorem holds.

Theorem 2.4. The operator $S(15)$ is a contraction from $L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)$ to $L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)$ and possesses the following properties:

$$
\begin{aligned}
& S V_{t}=V_{t} S ; S L_{\mathbb{R}_{+}}^{2}\left(e^{-\zeta} d \zeta\right) \subset L_{\mathbb{R}_{+}}^{2}\left(e^{-\zeta} d \zeta\right) \\
& \overline{S L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)}=L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)
\end{aligned}
$$

2.4. Further we suppose that the collegation $\Delta(1)$ is simple and as in subsection 1.3 we set a mapping

$$
\Psi_{p}\left(\zeta=W_{-} f_{1}(\zeta)\right)+W_{+} f_{2}(\zeta)
$$

from $L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)+L_{\mathbb{R}}^{2}\left(e^{-\zeta} d \zeta\right)$ to \mathcal{H}. It is obvious that

$$
\Psi_{p}(\zeta) \in L^{2}\left(\left(\begin{array}{ll}
I & S^{*} \\
S & I
\end{array}\right), e^{-\zeta} d \zeta\right)
$$

Action of dilatation in this space again reduces to a translation

$$
\begin{equation*}
\widehat{U}_{t} f(\zeta)=f(\zeta+t) \tag{47}
\end{equation*}
$$

since

$$
\begin{aligned}
U_{t} \Psi_{p}(\zeta) & =W_{-} f_{1}(\zeta+t)+U_{t} W_{+} f_{2}(\zeta) \\
& =W_{-} f_{1}(\zeta+t)+U_{t} W_{+} V_{t}^{*} V_{t} f_{2}(\zeta) \\
& =W_{-} f_{1}(\zeta+t)+U_{t} U_{t}^{*} W_{+} V_{t} f_{2}(\zeta)=\Psi_{P}(\zeta+t)
\end{aligned}
$$

As earlier, it is obvious that

$$
D_{-}=\binom{L_{\mathbb{R}_{+}}^{2}\left(e^{-\zeta} d \zeta\right)}{0}, \quad D_{+}=\binom{0}{L_{\mathbb{R}_{-}}^{2}\left(e^{-\zeta} d \zeta\right)}
$$

and the model space H_{p} has the form

$$
H_{p}=L^{2}\left(\left(\begin{array}{ll}
1 & S^{*} \tag{48}\\
S & 1
\end{array}\right) e^{-\zeta} d \zeta\right) \ominus\binom{L_{\mathbb{R}_{+}}^{2}\left(e^{-\zeta} d \zeta\right)}{L_{\mathbb{R}_{-}}^{2}\left(e^{-\zeta} d \zeta\right)}
$$

and in addition T_{t} passes to shift semigroup

$$
\begin{equation*}
\widehat{T}_{t} f(\zeta)=f(\zeta+t) \tag{49}
\end{equation*}
$$

Now we consider a Laguerre transform

$$
\begin{equation*}
L_{n}=\int_{0}^{\infty} e^{-x} P_{n}(x) f(x) d x \tag{50}
\end{equation*}
$$

where $P_{n}(x)=\frac{1}{n!} e^{-x} \frac{d^{n}}{d x^{n}}\left(x e^{-x}\right)$ are a Laguerre polynomials, and $f(x) \in$ $L_{\mathbb{R}_{+}}^{2}\left(e^{-x} d x\right)$. The transform (50) ascertains isomorphism between $L_{\mathbb{R}_{+}}^{2}\left(e^{-x} d x\right)$ and ℓ^{2}.

We extend the Laguerre transform (50) on \mathbb{R}_{-}in a symmetric way. Then an image of this map yields a space ℓ_{-}^{2}. Let $\ell_{\mathbb{Z}}^{2}=\ell_{-}^{2}+\ell_{+}^{2}$ is a space of square summable two-sided sequences. Just as for the case of Fourier transform (see Theorem 1.7 in Section 1) a theorem the proof of which repeats the reasonings brought out in [3] holds.

Theorem 2.5. The Laguerre transform of scattering operator S transfers the operator S into an operator of multiplication by a characteristic function $S_{\Delta}(n)=$ $I-i \phi(A-n I)^{-1} \phi^{*}, n \in \mathbb{Z}$, i.e.

$$
\begin{equation*}
L_{n}(S g)=S_{\Delta}(n) g_{n} \tag{51}
\end{equation*}
$$

where $g_{n}=L_{n}(g)$.
After realizing the Laguerre transform, the space $L^{2}\left(\left(\begin{array}{ll}I & S^{*} \\ S & I\end{array}\right) e^{-\zeta} d \zeta\right)$ passes into the space $\ell_{\mathbb{Z}}^{2}\left(\begin{array}{cc}I & S_{\Delta}^{*}(n) \\ S_{\Delta}(n) & I\end{array}\right)$ and dilatation $\widehat{U_{t}}(47)$ is converted into

$$
\begin{equation*}
\widehat{U}_{t}(n) f_{n}=e^{-i t n} f_{n} . \tag{52}
\end{equation*}
$$

Supspaces $D_{ \pm}$will have the form

$$
D_{-}=\binom{\ell_{-}^{2}}{0}, \quad D_{+}=\binom{0}{\ell_{+}^{2}}
$$

Therefore H_{p} is converted to the form

$$
\widetilde{H}_{p}=\left\{f_{n}=\binom{f_{n}^{1}}{f_{n}^{2}} \in \ell_{\mathbb{Z}}^{2}\left(\begin{array}{cc}
I & S_{\Delta}^{*}(n) \tag{53}\\
S_{\Delta}(n) & I
\end{array}\right) ; \begin{array}{c}
f_{n}^{1}+S_{\Delta}^{*}(n) f_{n}^{2} \in \ell_{+}^{2} \\
S_{\Delta}(n) f_{n}^{1}+f_{n}^{2} \in \ell_{-}^{2}
\end{array}\right\}
$$

and a "semigroup" T_{t} will have the form

$$
\begin{equation*}
\widetilde{T}_{t}(n) f_{n}=P_{\widetilde{H}_{p}} e^{-i t n} f_{n} \tag{54}
\end{equation*}
$$

Thus the following theorem is proved.

Theorem 2.6. The minimal unitary dilatation $U_{t}(34)$ in $\mathcal{H}(32)$ of the family of operators T_{t} (31) with a scattering operator A of collegation Δ (1) is unitary equivalent to $\widetilde{U}_{t}(n)(52)$ in the space $\ell_{\mathbb{Z}}^{2}\left(\begin{array}{cc}I & S_{\Delta}^{*}(n) \\ S_{\Delta}(n) & I\end{array}\right)$, and the family $T_{t}(31)$ is unitary equivalent to $\widetilde{T}_{t}(n)(54)$ in the space \widetilde{H}_{p}.

Acknowledgement. The author is grateful to V. A. Zolotarev for setting of the problem and his permanent interest in the work.

References

[1] Livshits, M. S., Yantsevich, A. A., Theory of operator colligation in Hilbert space, J. Wiley, N. Y. 1979, Eng. translation.
[2] Sz.-Nagy, B., Foias, C., Analyse harmonique des operateurs de l'espace de Hilbert, Mason, Paris and Akad. Kiado, Budapest 1967; Eng. translation North-Holland, Amsterdam and Akad. Kiado, Budapest 1970.
[3] Zolotarev, V. A., Time cones and a functional model on a Riemann surface, Mat. Sb. 181 (1990), 965-995; Eng. translation in Math. USSR sb. 70 (1991).
[4] Lax, P., Philips R.S., Scattering theory, Academic Press, New York 1967.
[5] Pavlov, B. S., Dilatation theory and spectral analysis of nonsefadjoint operators, Math. programming and Related Questions (Proc. Sevent Winter School, Drogolych, 1994); Theory of Operators in Linear Spaces, Tsentral. Ekonom.-Math. Inst. Akad. Nauk SSSR, Moscow 1976, 3-69; Eng. translation in Amer. Math. Soc. Transl. (2) 115 (1980).
[6] Mc. Cully J., The operational calculus of the Lagueree transform, Ph.D. University of Michigan (1957).
[7] Kamke, E., Differentialgleichungen. Lösungsmethoden und Lösungen, Leipzig 1974.

Department of Mathematics, Irbid National University
P.O.Box 2600, Irbid, Jordan

E-mail: raedhat@yahoo.com

[^0]: 2000 Mathematics Subject Classification: Primary: 47D06, 47A40; Secondary: 47A50, 47A48, 42A50.

 Key words and phrases: Laguerre operator, semigroup, Hilbert space, functional model.
 Received November 15, 1999.

