A FUNCTIONAL MODEL FOR A FAMILY OF OPERATORS INDUCED BY LAGUERRE OPERATOR

HATAMLEH RA'ED

ABSTRACT. The paper generalizes the instruction, suggested by B. Sz.-Nagy and C. Foias, for operatorfunction induced by the Cauchy problem

$$T_t: \begin{cases} th''(t) + (1-t)h'(t) + Ah(t) = 0\\ h(0) = h_0(th')(0) = h_1 \end{cases}$$

A unitary dilatation for T_t is constructed in the present paper. then a translational model for the family T_t is presented using a model construction scheme, suggested by Zolotarev, V., [3]. Finally, we derive a discrete functional model of family T_t and operator A applying the Laguerre transform

$$f(x) \to \int_0^\infty f(x) P_n(x) e^{-x} dx$$

where $P_n(x)$ are Laguerre polynomials [6, 7]. We show that the Laguerre transform is a straightening transform which transfers the family T_t (which is not semigroup) into discrete semigroup e^{-itn} .

INTRODUCTION

Functional models for contraction semigroups $Z_t = \exp(itA)$ and T^n , $(t \ge 0, n \in \mathbb{Z}^+)$ have been constructed by B. Sz.-Nagy and C. Foias [2] at the beginning of 70-s. The bases of this method is a significant concept of dilatation of contraction semigroup. A spectral realization of the dilatation and subsequent narrowing upon the original space leads to a functional model of the contraction semigroup. As a result an operator A(T) in this case is realized by operators which carry out multiplication by independent variable in a specific functional space. The basis of the concept is the Fourier transform of space L^2 .

²⁰⁰⁰ Mathematics Subject Classification: Primary: 47D06, 47A40; Secondary: 47A50, 47A48, 42A50.

Key words and phrases: Laguerre operator, semigroup, Hilbert space, functional model. Received November 15, 1999.

1. PRELIMINARY INFORMATION ON THE FUNCTIONAL MODEL IN A FOURIER REPRESENTATION

1.1. We recall [1] that operator collegation Δ ,

(1)
$$\Delta = (A, H, \phi, E, \sigma)$$

is a collection of Hilbert spaces H and E and of linear operators $A : H \to H$, $\phi : H \to E, \sigma : E \to E \quad (\sigma^* = \sigma)$ where the collegation condition holds:

(2)
$$A - A^* = i\phi^* \, \sigma\phi \,.$$

It is customary to associate with the collegation (1) an open system [1] which is defined by relations

(3)
$$\begin{cases} i\frac{d}{dt}h(t) + Ah(t) = \phi^* \sigma u(t); \\ h(0) = h_0, \ (t \ge 0); \\ v(t) = u(t) - i\phi h(t) \end{cases}$$

where h(t), u(t), v(t) are vector functions from Hilbert spaces H and E respectively. An important role in the further construction of the model representation plays the conservation Law [1].

Theorem 1.1. For the open system (3) associated with the collegation Δ (1) the conservation Law holds

(4)
$$\|h_0\|^2 + \int_0^T \langle \sigma u(\zeta), u(\zeta) \rangle \, d\zeta = \|h(T)\|^2 + \int_0^T \langle \sigma v(\zeta), v(\zeta) \rangle \, d\zeta$$

for any $T, 0 \leq T \leq \infty$.

If operator A is selfadjoint then $\phi = 0, \sigma = 0$, and Cauchy problem (3) in induced by the semigroup

$$Z_t = \exp(itA)$$
, i.e. $h(t) = Z_t h_0$

and the conservation Law (4) yields Z_t .

1.2. Let us consider a contractive semigroup $Z_t = \exp(itA)$ $(t \ge 0)$, which has a property $||Z_th|| \le ||h||$ for all $h \in H$.

A unitary dilatation of contractive semigroup Z_t in H is said to be a unitary semigroup U_t in \mathcal{H} [2] such that the following relation holds:

(5)
$$\mathcal{H} \supseteq H; P_H U_t|_H = Z_t \quad (t \ge 0)$$

where P_H is an orthoprojector on H. The dilatation U_t in H is said to be minimal if

(6)
$$\mathcal{H} = \operatorname{span}\{U_t h; \ t \in \mathbb{R}, \ h \in H\}$$

where span in (6) denotes a closed linear span of the vectors $U_t h$ for any $t \in \mathbb{R}$ and any $h \in H$.

A significant role in the theory of dilatation of contractive semigroup Z_t plays the following Theorem 1.2.

Theorem 1.2. Any contracting semigroup Z_t in H has a unitary dilatation U_t in H. Moreover the minimal dilatation U_t is defined up to isomorphism.

We present a construction of the dilatation U_t according to the paper [3]. A contractibility of the semigroup Z_t means [2, 3] that A is dissipative, i.e. $-i(A - A^*) \ge 0$. Consequently including A into the collegation Δ (1) we can assume that $\sigma = I$. Therefore the conservation law (4) has the form

(7)
$$\|h_0^2\| + \int_0^T \|u(\zeta)\|^2 d\zeta = \|h(T)\|^2 + \int_0^T \|v(\zeta)\| d\zeta$$

We defined [3] a dilatation space \mathcal{H} , which forms vector-functions $f(\zeta) = (u_+(\zeta), h, u_-(\zeta))$ so that $u_{\pm}(\zeta) \in E$ and Supp $u_{\pm}(\zeta) \in \mathbb{R}_{\mp}$ for a finite norm

(8)
$$||f||^2 = \int_{-\infty}^0 ||u_+(\zeta)||^2 d\zeta + ||h||^2 + \int_0^\infty ||u_-(\zeta)||^2 d\zeta < \infty.$$

We define a dilatation U_t in \mathcal{H} by the formula

(9)
$$(U_t f)(\zeta) = \left(u_+(t,\zeta), h_t, u_-(t,\zeta)\right)$$

where $u_{-}(t,\zeta) = P_{\mathbb{R}_{+}}u_{-}(\zeta+t)$; $h_{t} = y_{t}(0)$, and $y_{t}(\zeta)$ is a solution of the Cauchy problem

$$\begin{cases} i\frac{d}{d\zeta} y_t(\zeta) + Ay_t(\zeta) = \phi^* u_-(\zeta + t) \\ y_t(-t) = 0, \quad \zeta \in (-t,0); \end{cases}$$

and at last $u_+(t,\zeta) = u_+(t+\zeta) + P_{(-t,0)}\{u_-(\zeta+t) - i\phi y_t(\zeta)\}$ where $P_{\mathbb{R}_+}$ and $P_{(-t,0)}$ are operators of narrowing (projection operators at set \mathbb{R}_+ and (-t,0) respectively), $t \ge 0$.

It is not difficult to show that unitary of U_t (9) in \mathcal{H} is a consequence of the conservation law (1). By the dilatation construction U_t one can see that the space \mathcal{H} has the form

(10)
$$\mathcal{H} = D_+ \oplus H \oplus D_-$$

where the subspace D_+ is found by vector-function of the form $(u_+(\zeta), 0, 0) \in \mathcal{H}$ and the subspace D_- is formed by vector-function $(0, 0, u_-(\zeta))$ from \mathcal{H} , respectively.

The subspaces D_{\pm} have the following properties:

(11)
$$U_t D_+ \subseteq D_+ \qquad (t \ge 0), \\ U_t D_- \subseteq D_- \qquad (t \le 0).$$

Thus D_+ is outgoing subspace and D_- is incomming subspace in the sense of P. D. Lax and R. S. Phillips [4]. In accordance with the paper [3], we define a free unitary group V_t in the space $L^2_{\mathbb{R}}(E)$, which will act as

(12)
$$(V_t g)(\zeta) = g(\zeta + t)$$

and vector-function $g(\zeta) \in E, \zeta \in \mathbb{R}$ is such that

$$\int_{-\infty}^{\infty} \|g(\zeta)\|^2 \, d\zeta < \infty \, .$$

It is evidently that D_{\pm} after identification belongs to $L^2_{\mathbb{R}}(E)$ also.

Wave operators W_{\pm} play a significant role in the scattering theory. They are defined [3, 4] as

(13)
$$W_{\pm} = s - \lim_{t \to \pm \infty} U_{+} P_{D_{\pm}} V_{-t}$$

where $P_{D_{\pm}}$ are orthoprojectors on subspaces D_{\pm} . The following theorem holds [3].

Theorem 1.3. The wave operators W_{\pm} exist as strong limits (13) are isometries from $L^2_{\mathbb{R}}(E)$ to \mathcal{H} , and the relations

(14)
$$W_{\pm}V_t = U_t W_{\pm}, \quad (\forall t), \quad W_{\pm}P_{D_{\pm}} = P_{D_{\pm}}$$

are valid.

The scattering operator S is defined by the wave operator W_{\pm} in a conventional way [3, 4]:

(15)
$$S = W_+^* W_-$$
.

From Theorem 1.3 there follows a proposition.

Theorem 1.4. The operator S (15) is a contraction, i.e. $||S|| \leq 1$ and has the properties:

(16)
$$SV_t = V_t S; \quad SL^2_{\mathbb{R}_+} \subseteq L^2_{\mathbb{R}_+}(E);$$
$$\overline{SL^2_{\mathbb{R}}(E)} = L^2_{\mathbb{R}}(E)$$

1.3. We recall that the collegation Δ (1) is simple [1–3] if $H = \text{span}\{A^n \phi^* g; n \in \mathbb{Z}_+, g \in E\}$. Let us define the following subspaces in \mathcal{H} ,

$$\Re_{\pm} = \overline{W_{\pm}L_{\mathbb{R}}^2(E)} \,.$$

The following theorem gives a sufficient condition for the completeness of the wave operators W_{\pm} , [3].

Theorem 1.5. If the collegation Δ is simple then the relation $\mathcal{H} = \operatorname{span}\{f_+ + f_-; f_{\pm} \in \Re_{\pm}\}$ holds.

Now we construct a translational model [3]. Let $f_k(\zeta) \in L^2_{\mathbb{R}}(E)$, (k = 1, 2). We define a mapping

$$\begin{pmatrix} f_1(\zeta) \\ f_2(\zeta) \end{pmatrix} \to \Psi_p(\zeta) = W_- f_1(\zeta) + W_+ f_2(\zeta) \in \mathcal{H}.$$

Then using isometry of W_{\pm} and the form of operator S (15) it is not difficult to show that

(17)
$$\|\Psi_p(\zeta)\|^2 = \int_{-\infty}^{\infty} < \begin{bmatrix} I & S^* \\ S & I \end{bmatrix} \begin{pmatrix} f_1(\zeta) \\ f_2(\zeta) \end{pmatrix}, \begin{pmatrix} f_1(\zeta) \\ f_2(\zeta) \end{pmatrix} > d\zeta ,$$

Using Theorem 1.5 we may assert, that space H is isomorphic to the space $L^2\begin{pmatrix} 1 & S^*\\ S & 1 \end{pmatrix}$ which is formed by vector-functions $f(\zeta) = \begin{pmatrix} f_1(\zeta)\\ f_2(\zeta) \end{pmatrix}$ for which the norm (17) is finite. By virtue of conditions (14) the dilatation U_t on Ψ_p will act as a shift. Therefore if $f(\zeta) \in L^2\begin{pmatrix} 1 & S^*\\ S & 1 \end{pmatrix}$ then the dilatation U_t is transformed into

(18)
$$\widehat{U}_t f(\zeta) = f(\zeta + t) \,.$$

Applying again (14), one can easily deduce that the spaces D_{\pm} are realized now in the form

(19)
$$\widehat{D}_{-} = \begin{pmatrix} L^{2}_{\mathbb{R}_{+}}(E) \\ 0 \end{pmatrix}, \quad \widehat{D}_{+} = \begin{pmatrix} 0 \\ L^{2}_{\mathbb{R}_{-}}(E) \end{pmatrix}.$$

Thus the initial space H acquires such model form

(20)
$$\widehat{H}_{p} = L^{2} \begin{pmatrix} 1 & S^{*} \\ S & 1 \end{pmatrix} \ominus \begin{pmatrix} L^{2}_{\mathbb{R}_{+}}(E) \\ L^{2}_{\mathbb{R}_{-}}(E) \end{pmatrix}$$
$$= f = \left(\begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} \in L^{2} \begin{pmatrix} 1 & S^{*} \\ S & 1 \end{pmatrix}; \begin{array}{c} f_{1} + S^{*}f_{2} \in L^{2}_{\mathbb{R}_{+}}(E) \\ Sf_{1} + f_{2} \in L^{2}_{\mathbb{R}_{+}}(E) \end{array} \right)$$

and in the virtue of the dilatation the action of semigroup \mathbb{Z}_t is transformed to the shift semigroup

(21)
$$\widehat{Z}f(\zeta) = P_{\widehat{H}_P}f(\zeta+t)$$

where $f(\zeta) \in \widehat{H}_p$ (20). Thus the following theorem is proved.

Theorem 1.6. A minimal unitary dilatation U_t in \mathcal{H} of the contraction semigroup $Z_t = \exp(itA)$ in \mathcal{H} , where A is dissipative operator of a simple collegation Δ is unitary equivalent to a translation group \hat{U}_t (18) in the space $L^2\begin{pmatrix} 1 & S^* \\ S & 1 \end{pmatrix}$, and the contraction semigroup Z_t is unitary equivalent to the shift semigroup \hat{Z}_t (21) in the space \hat{H}_p respectively.

The Fourier transform by formula

(22)
$$\widetilde{f}(\lambda) = \int_{-\infty}^{\infty} f(\zeta) e^{-i\lambda\zeta} d\zeta$$

in the virtue of Plancherel theorem [2, 3] is a unitary operator in $L^2_{\mathbb{R}}(E)$. By the virtue of Wiener-Paley theorem

$$\widetilde{L}^2_{\mathbb{R}_+}(E) = H^2_-(E); \quad \widetilde{L}^2_{\mathbb{R}_-}(E) = H^2_+(E)$$

where $H^2_{\pm}(E)$ are Hardy spaces of *E*-value function from $L^2_{\mathbb{R}}(E)$ which are holomorphically continued into lower (upper) half-plane. Let us apply the Fourier transform (22) to translational model (18) – (21) and take advantage of the following Theorem 1.7

Theorem 1.7. The Fourier transform of the scattering operator S (15) transfers the operator S into operator performing multiplication by characteristic function

(23)
$$S_{\Delta}(\lambda) = I - \phi (A - \lambda I)^{-1} \phi^*, \quad i.e.$$
$$(\widetilde{Sf})(\lambda) = S_{\Delta}(\lambda) \widetilde{f}(\lambda).$$

As it is known $\tilde{f}(\lambda + t) = e^{i\lambda t}\tilde{f}(\lambda)$, therefore we derive such functional model.

Theorem 1.8. A minimal unitary dilatation U_t in H of the contraction semigroup $Z_t = \exp(itA)$ in H, where A is dissipative operator of a simple collegation Δ is unitary equivalent to the group

(24)
$$\widetilde{U}_t f(\lambda) = e^{i\lambda t} f(\lambda)$$

where $f(\lambda) \in L^2 \begin{pmatrix} I & S^*_{\Delta}(\lambda) \\ S_{\Delta}(\lambda) & I \end{pmatrix}$ and contraction semigroup Z_t is unitary equivalent to semigroup $\widetilde{Z}_t f(\lambda) = P_{\widetilde{H}_p} e^{i\lambda t} f(\lambda)$, where $f(\lambda)$ belongs to the space

$$\widetilde{H}_p = \left\{ f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} (\lambda) \in \begin{pmatrix} I & S^*_{\Delta}(\lambda) \\ S_{\Delta}(\lambda) & I \end{pmatrix} ; \begin{array}{c} f_1 + S^*_{\Delta}(\lambda) f_2 \in H^2_+(E) \\ ; S_{\Delta}(\lambda) f_1 + f_2 \in H^2_-(E) \end{array} \right\}$$

Here the main operator \widetilde{A} in \widetilde{H}_p act as multiplication operator by independent variable

(26)
$$\widetilde{A}f(la) = P_{\widetilde{H}_p}\lambda f(\lambda), \ f(\lambda) \in \widetilde{H}_p$$

In the next section we will generalize this construction on the case of the Laquerre transform.

2. A functional model for the Laguerre representation

2.1. Let us consider a differential operator

(27)
$$\ell = t \frac{d^2}{dt^2} + (1-t)\frac{d}{dt}$$

in what follows called the Laguerre operator; it acts on functions form $C^2 = (\mathbb{R}_+)$. We denote by $L^2_{\mathbb{R}_+}(e^{-t} dt)$ the following space:

(28)
$$L^{2}_{\mathbb{R}_{+}}(e^{it}dt) = \left\{ f(t), \ t \in \mathbb{R}_{+}; \int_{0}^{\infty} |f(t)|^{2} e^{-t} \, dt < \infty \right\}$$

Proposition 2.1. An operator ℓ is symmetric in the space $L^2_{\mathbb{R}_+}(e^{-t}dt)$ under the self-adjoint boundary conditions, i.e. $\langle \ell x, y \rangle = \langle y, \ell y \rangle$ for all $x, y \in \mathbb{C}^2(\mathbb{R}_+)$ such that $tx(t)|_{t=0} = 0$, $ty(t)|_{t=0} = 0$ and $ty'(t)|_{t=0} < \infty$, $tx'(t)|_{t=0} < \infty$.

Proof. We calculate

$$\begin{aligned} \langle \ell x, y \rangle - \langle x, \ell y \rangle &= \int_0^\infty \left\{ (tx'' + (1-t)x')\overline{y} - x(t\overline{y}'' + (1-t)\overline{y}') \right\} e^{-t} dt \\ &= \int_0^\infty \left\{ te^{-t} (x'\overline{y} - \overline{y}'x) \right\}' dt = \left\{ te^{-t} (x'\overline{y} - \overline{y}'x) \right\}|_0^\infty = 0 \end{aligned}$$

by virtue of the boundary conditions.

Let us consider now an open system of special form, generated by the Laguerre operator (27) and corresponding to the collegation Δ (1):

(29)
$$\begin{cases} \ell h(t) + Ah(t) = \phi^* \sigma u(t); \\ h(0) = h_0(th')(0) = h_1; \\ v(t) = u(t) - i\phi h(t). \end{cases}$$

The following assertion is valid, similar to Theorem (1.1).

Theorem 2.1. For the open system (29) associated with collegation Δ the law of conservation of energy is valid, *i.e.*

(30)
$$\int_{0}^{T} \langle \sigma u(\zeta), u(\zeta) \rangle e^{-\zeta} d\zeta + \langle I \hat{h}_{0}, \hat{h}_{0} \rangle$$
$$= \int_{0}^{T} \langle \sigma v(\zeta), v(\zeta) \rangle e^{-\zeta} d\zeta + \langle I \hat{h}_{T}, \hat{h}_{T} \rangle$$

where $I = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $h_0 = \begin{pmatrix} h_0 \\ h_t \end{pmatrix}$, $h_T = \begin{pmatrix} h(T) \\ e^{-T}Th'(T) \end{pmatrix}$ for any finite T > 0.

 ${\bf Proof.}\ {\rm We}\ {\rm calculate}$

$$\begin{split} \langle \ell h, h \rangle - \langle h, \ell h \rangle &= \langle \phi^* \sigma u - Ah, h \rangle - \langle h, \psi^* \sigma u - Ah \rangle \\ &= \langle \sigma u, \frac{u - v}{i} \rangle - \langle \frac{u - v}{i}, \sigma u \rangle - \langle (A - A^*)h, h \rangle \\ &= i \langle \sigma u, u - v \rangle + i \langle u - v, \sigma u \rangle - i \langle \phi^* \sigma \phi h, h \rangle \\ &= i \langle \sigma u, u - v \rangle + i \langle u - v, \sigma u \rangle - i \langle \sigma (u - v), u - v \rangle \\ &= i \langle \sigma u, u \rangle - i \langle \sigma v, v \rangle \,. \end{split}$$

Now we integrate the derived equality:

$$\begin{split} \int_0^T \langle \sigma v, v \rangle e^{-t} \, dt &- \int_0^T \langle \sigma u, u \rangle e^{-t} \, dt \\ &= i \int_0^T \left[\langle \ell h, h \rangle - \langle h, \ell h \rangle \right] e^{-t} \, dt \\ &= i \left\{ e^{-t} t \left[\langle h'', h \rangle - \langle h, h' \rangle \right] \right\} |_0^T \\ &= \langle I \hat{h}_0, \hat{h}_0 \rangle - \langle I \hat{h}_T, \hat{h}_T \rangle \end{split}$$

which proves our assertion.

2.2. Let us make use of the energy conservation law (30) to construct a dilatation for operator T_t generated by the Cauchy problem

(31)
$$\begin{cases} \ell h(t) + Ah(t) = 0; \\ h(0) = h_0; \ (th')(0) = h_1; \end{cases}$$

where $T_t(h_0, h_1) = (h(t), th'(t))$. We will call an unitary operator-function U_t in \mathcal{H} a dilatation of family T_t in H, if $\mathcal{H} \supseteq H$, $T_t = P_H U_t|_H$.

Here we do not suppose that T_t and U_t is semigroup. Moreover, the unitary property of U_t may hold not necessarily in Hilbert metric but in indefinite one. The following analog of Theorem 1.2 is valid.

Theorem 2.2. The operator-function T_t generated by the Cauchy problem (31) with dissipative operator A of collegation Δ (1) (i.e. $\sigma = I$) possesses the unitary (in indefinite metric) dilatation U_t , where the minimal dilatation is determined up to isomorphism.

Proof. To prove the theorem we bring a construction of dilatation U_t by analog with (8), (9).

Let us consider a Hilbert space

$$\mathcal{H} = \left\{ f = \left(u(\zeta), \widehat{h}, v(\zeta) \right); \ u(\zeta), v(\zeta) \in E, \ \text{supp} \ v \in \mathbb{R}_{-}, \ \text{supp} \ u \in \mathbb{R}_{+}, \\ (32) \qquad \widehat{h} = \binom{h_0}{h_1}, h_k \in H; \ \|f\|^2 = \int_{-\infty}^0 \|v(\zeta)\|^2 e^{-\zeta} \ d\zeta + \|\widehat{h}\|^2 \\ + \int_0^\infty \|u(\zeta)\|^2 e^{-\zeta} \ d\zeta < \infty \right\}.$$

We set indefinite metric ${\cal H}$

(33)
$$\langle f \rangle_I^2 = \int_{-\infty}^0 \|v(\zeta)\|^2 e^{-\zeta} \, d\zeta + \langle I \widehat{h}, \widehat{h} \rangle + \int_0^\infty \|u(\zeta)\|^2 e^{-\zeta} \, d\zeta$$

where I has the form indicated in Theorem 2.1.

We construct the dilatation U_t in \mathcal{H} ,

(34)
$$U_t f = f_t \left(u(t,\zeta), \widehat{h}_t, v(t,\zeta) \right).$$

Let us consider further the Cauchy problem

(35)
$$\begin{cases} \left(i\frac{\partial}{\partial t} + \ell_{\zeta}\right)\widehat{u}(t,\zeta) = 0;\\ \widehat{u}(0,\zeta) = u(\zeta); \ \zeta \in \mathbb{R}_{+}; \end{cases}$$

where ℓ_{ζ} is operator ℓ (27) with respect to ζ .

Solution of the problem is easily obtained. In fact, let

$$\widehat{u}(t,\zeta) = \sum_{n \in z_+} e^{-itn} C_n g_n(\zeta)$$

where $g_n(\zeta)$ are the Laguerre polynomials [5] which are the solutions of equation $\ell_{\zeta}g_n(\zeta) + ng_n(\zeta) = 0$ and have the form

$$g_n(\zeta) = \frac{1}{n!} e^{\zeta} \frac{d^n}{d\zeta^n} \left(\zeta e^{-\zeta}\right)$$

and make a complete system of orthogonal polynomials in $L^2_{\mathbb{R}_+}(e^{-\zeta} d\zeta)$. The coefficients C_n are obtained from the initial condition $\sum C_n g_n(\zeta) = u(\zeta)$.

Therefore $\hat{u}(t,\zeta)$ possesses the property supp $\hat{u}(t,\zeta) = \operatorname{supp} \hat{u}(\zeta) \subseteq \mathbb{R}_+$. Now we determine $u(t,\zeta)$ in (34) by the formula

(36)
$$u(t,\zeta) = P_{\mathbb{R}_+} \widehat{u}(t,\zeta+t) e^{-\frac{t}{2}}.$$

To set \hat{h}_t (34), we consider the following Cauchy problem

(37)
$$\begin{cases} \ell_{\zeta} y(\zeta) + A y(\zeta) = \phi^* \widehat{u}(t, \zeta + t) e^{-\frac{t}{2}}; \ \zeta \in (-t, 0); \\ y(-t) = h_0; \\ (-t) e^t y(-t) = h_1; \end{cases}$$

and put $\hat{h}_t = \begin{pmatrix} y(0) \\ (ty')(0) \end{pmatrix}$.

Finally, to set $v(t,\zeta)$ (34) we consider the similar equation

(38)
$$\begin{cases} (i\frac{\partial}{\partial t} + \ell_{\zeta})\,\widehat{v}(t,\zeta) = 0\,;\\ \widehat{v}(0,\zeta) = v(\zeta)\,;\,\,\zeta \in \mathbb{R}_{-}\,; \end{cases}$$

and put $v(t,\zeta) = e^{-\frac{t}{2}} \hat{v}(t,\zeta+t) + P_{\mathbb{R}_{-}} \{ \hat{u}(t,\zeta+t)e^{-\frac{t}{2}} - i\phi y(\zeta) \}$. We show that U_t (34) has property of isometry in the metric (33). To this end we calculate,

$$\begin{split} \langle f_t \rangle_I^2 &= \int_{-\infty}^0 \|v(t,\zeta)\|^2 e^{-\zeta} \, d\zeta + \langle I \hat{h}_t, \hat{h}_t \rangle + \int_0^\infty \|u(t,\zeta)\|^2 e^{-\zeta} \, d\zeta \\ &= \int_{-\infty}^{-t} \|\hat{v}(t,\zeta+t)\|^2 e^{-\zeta-t} \, d\zeta + \int_{-t}^0 \|\hat{u}(t,\zeta+t)e^{-\frac{t}{2}} - i\phi y(\zeta)\|^2 e^{\zeta} \, d\zeta \\ &+ \langle I \hat{h}_t, \hat{h}_t \rangle + \int_0^\infty \|u(t,\zeta+t)\|^2 e^{-\zeta-t} \, d\zeta \\ &= \int_{-\infty}^{-t} \|\hat{v}(t,\zeta+t)\|^2 e^{-\zeta-t} \, d\zeta + \langle I \hat{h}_0, \hat{h}_0 \rangle + \int_{-t}^\infty \|\hat{u}(t,\zeta+t)\|^2 e^{-\zeta-t} \, d\zeta \\ &= \int_{-\infty}^0 \|\hat{v}(t,\zeta)\|^2 e^{-\zeta} \, d\zeta + \langle I \hat{h}_0, \hat{h}_0 \rangle + \int_0^\infty \|\hat{u}(t,\zeta)\|^2 e^{-\zeta} \, d\zeta \\ &= \langle f \rangle_I^2 \end{split}$$

H. RA'ED

In this calculation we have made use of the conservation law (30) and of the fact that norms of solutions of Cauchy problems $\hat{u}(t,\zeta)$, $\hat{v}(t,\zeta)$ (35) and (38) coincide with norms of initial data $u(\zeta)$ and $v(\zeta)$ in the spaces $L^2_{\mathbb{R}_+}(e^{-t} dt)$ and $L^2_{\mathbb{R}_-}(e^{-t} dt)$ by virtue of selfadjointness of operators ℓ_{ζ} in the spaces.

In order to prove that U_t has the property of being unitary, it is necessary to ascertain that from $U_t^* f = 0$ implies f = 0. It is easy to show that U_t^* will act by the formula

(39)
$$U_t^* f = \left(u(t,\zeta), h_t, v(t,\zeta) \right).$$

Here $v(t,\zeta) = P_{\mathbb{R}_{-}} \hat{v}(t,\zeta-t) e^{\frac{t}{2}}$ where $\hat{v}(t,\zeta)$ is a solution of problem (38).

In order to obtain \hat{h}_t , it is necessary to consider dual to (37) problem

(40)
$$\begin{cases} \ell_{\zeta} y(\zeta) + A^* y(\zeta) = \phi^* \widehat{v}(\zeta, \zeta - t) e^{\frac{t}{2}}; \\ y(t) = h_0; \\ e^{-t} t y'(t) = h_1; \end{cases}$$

and put $\hat{h}_t = \begin{pmatrix} y(0) \\ (ty')(0) \end{pmatrix}$. Finally,

$$u(t,\zeta) = \widehat{u}(t,\zeta-t)e^{\frac{t}{2}} + P_{\mathbb{R}_+}\{\widehat{v}(t,\zeta-t)e^{\frac{t}{2}} + i\phi y(\zeta)\},\$$

where $\hat{u}(t,\zeta)$ is the solution of Cauchy problem (35).

Thus let $U_t^* f = 0$, then $\hat{u}(t, \zeta) = 0$ and so $\hat{u}(t, \zeta) = 0$ and $\hat{v}(t, \zeta-t)e^{\frac{t}{2}} + i\phi y(\zeta) = 0$ therefore $u(\zeta) \equiv 0$. Now, by substituting $\hat{v}(t, \zeta - t) = -i\phi y(\zeta)e^{-\frac{t}{2}}$ in (40) we obtain a homogeneous equation

$$\ell_{\zeta}y + A^*y + i\phi^*\phi y = 0$$

with zero condition in the origin $\hat{h}_t = 0$. By virtue of uniqueness of Cauchy problem solution, this yields that $y(\zeta) \equiv 0$, therefore $\hat{v}(t, \zeta - t) = 0$ on interval (0, t). Accounting that $\hat{v}(t, \zeta - t) = 0$ with $(-\infty, 0)$, finally we conclude that $v(\zeta) = 0$. Thus f = 0. This proves the property of being unitary for U_t (34) and completes the proof of the theorem.

2.3. Let us pass to constructing wave operators. To this end we define a "free" group by analogy with (38)

(41)
$$V_t g(\zeta) = g(t, \zeta),$$

where $g(t, \zeta)$ is a solution of Cauchy problem

(42)
$$\begin{cases} \left(i\frac{\partial}{\partial t} + \ell_{\zeta}\right) g(t,\zeta) = 0;\\ g(0,\zeta) = g(\zeta) \in L^{2}_{\mathbb{R}}(e^{-\zeta} d\zeta) \end{cases}$$

It is evident that V_t (41) is unitary. Now we define the operators

(43)
$$W_{-} = s - \lim_{t \to +\infty} U_t P_{\mathbb{R}_+} V_{-t} ,$$
$$W_{+} = s - \lim_{t \to -\infty} U_t^* P_{\mathbb{R}_-} V_{-t}^* .$$

By analogy with Theorem 1.3 we have

Theorem 2.3. The wave operators W_{\pm} exist as strong limits (43), are isometries from $L^2_{\mathbb{R}}(e^{-\zeta} d\zeta)$ to \mathcal{H} , and the following relations are valid:

(44)
$$U_t W_- = W_- V_t, U_t^* W_+ = W_+ V_t^*, \quad (t \ge 0) W_{\pm} P_{\mathbb{R}_{\mp}} = P_{\mathbb{R}_{\mp}}$$

Proof. We prove the assertion of the theorem for W_- (for W_+ the proof is similar). The main matter of the theorem consists of existence proof of W_- since the relation (44) is proved by analogy with arguments given in Section 1; sec [2, 3]. Let

$$f_t = U_t P_{\mathbb{R}_+} V_{-t} g = \left(v(t,\zeta), h_t, u(t,\zeta) \right)$$

then $u(t,\zeta) = P_{\mathbb{R}_+}g(\zeta)$. We consider the Cauchy problem

(45)
$$\begin{cases} \ell_{\zeta} y(\zeta) + A y(\zeta) = \phi^* g(\zeta); \\ y(-t) = 0; \ y'(-t) = 0, \ \zeta \in (-t, 0) \end{cases}$$

Then $\widehat{h}_t = \begin{pmatrix} y(0) \\ (ty')(0) \end{pmatrix}$.

We denote by $K(\zeta, \eta)$ a Cauchy function of the problem (45) (i.e. $K(\zeta, \zeta) = 0$, $K'(\zeta, \zeta) = I$), then a solution $y(\zeta)$ of (45) has the form

$$y_t(\zeta) = \int_{-t}^{\zeta} K(\zeta, \eta) \phi^* g(\eta) \, d\eta$$

Therefore $V(t,\zeta)$ has the form

$$V(t,\zeta) = P_{(-t,0)} \{g(\zeta) - i\phi y(\zeta)\}.$$

Thus,

$$f_{t} = \left(P_{(-t,0)} \{ g(\zeta) - i\phi \int_{-t}^{0} K(\zeta,\eta) \phi^{*}g(\eta)d\eta \}, \left(\int_{-t}^{0} K(0,\eta) \phi^{*}g(\eta)d\eta \\ \int_{-t}^{0} K'(0,\eta) \phi^{*}g(\eta)d\eta \right), P_{\mathbb{R}_{+}}g(\zeta) \right)$$

We show that f_t is a Cauchy sequence, i.e $||f_{t+\Delta} - f_t||^2 \to 0$ as $t \to \infty$. Since

(46)
$$||f_{t+\Delta} - f_t||^2 = \int_{-\infty}^0 ||v_t(t+\Delta,\zeta) - v(t,\zeta)||^2 e^{-\zeta} d\zeta + ||\widehat{h}_{t+\Delta} - \widehat{h}_t||^2.$$

It is sufficient to show that each summand approaches to zero as $t \to \infty$. We show that $\|\hat{h}_{t+\Delta} - \hat{h}\| \to 0$ when $t \to \infty$ and we will prove this property component by component. It is obvious that

$$\begin{aligned} \|\widehat{h}_{t+\Delta} - \widehat{h}\|^2 &- \left\| \int_{(-t-\Delta)}^{-t} K(0,\eta) \phi^* g(\eta) \, d\eta \right\|^2 \\ &\leq \int_{-t-\Delta}^{-t} \|K(0,\eta)\|^2 e^{\eta} \, d\eta \, \cdot \int_{-t-\Delta}^{-t} e^{-\eta} \|\phi^*\|^2 \, \|g(\eta)\|^2 \, d\eta \end{aligned}$$

and since the function $K(0,\eta)e^{\eta}$ is bounded (see [6, 7]), we obtain that

$$\|h_{t+\Delta} - h_t\|^2 \le \Delta C \|\phi^*\|^2 \int_{-t-\Delta}^{-t} \|g(\eta)\|^2 e^{-\eta} \, d\eta \to 0 \quad \text{as} \quad t \to \infty$$

since $g(\eta) \in L^2_{\mathbb{R}}(e^{-\eta} d\eta)$.

The convergence of second components $\hat{h}_{t+\Delta} - \hat{h}_t$ to zero is proved in a similar way. We show that the first summand in (46) approaches to zero too.

In fact,

$$\begin{split} A &= \int_{-\infty}^{0} \|P_{(-t-\Delta,-t)}g(\zeta) - iP_{(-t-\Delta,0)}\phi \int_{-t-\Delta}^{\zeta} K(\zeta,\eta)\phi^{*}g(\eta) \,d\eta \\ &+ i \int_{-t}^{\zeta} \phi K(\zeta,\eta)\phi^{*}g(\eta) \,d\eta\|^{2} e^{-\zeta} \,d\zeta \\ &= \int_{-t-\Delta}^{-t} \|g(\zeta)\|^{2} e^{-\zeta} \,d\zeta + \int_{-\infty}^{0} \|P_{(-t-\Delta,0)}\phi y_{t+\Delta}(\zeta) - P_{(-t,0)}\phi y_{t}(\zeta)\|^{2} e^{-\zeta} \,d\zeta \\ &+ 2 \mathrm{Im} \ \int_{-t-\Delta}^{-t} \langle g(\zeta), P_{(-t-\Delta,0)}\phi y(\zeta) - P_{(-t,0)}\phi y(\zeta)\rangle e^{-\zeta} \,d\zeta \end{split}$$

It is obvious that the first and third summands in the given sum approaches to zero as $t \to \infty$ because $g(\zeta) \in L^2_{\mathbb{R}}(e^{-\zeta} d\zeta)$. We evaluate the second summand:

$$\begin{split} B &= \int_{-\infty}^{0} \|P_{(-t-\Delta,0)}\phi y_{t+\Delta}(\zeta) - P_{(-t,0)})\phi y_{t}(\zeta)\|^{2} e^{-\zeta} d\zeta \\ &= \int_{-\infty}^{0} \langle \phi \Delta y, \phi \Delta y \rangle e^{-\zeta} d\zeta \,, \end{split}$$

where

$$\Delta y = P_{(-t-\Delta,0)} y_{t+\Delta}(\zeta) - P_{(-t,0)} y_{-t}(\zeta)$$

Then

$$A = \int_{-\infty}^{0} \langle \phi^* \phi \Delta y, \Delta y \rangle e^{-\zeta} \, d\zeta = \int_{-\infty}^{0} \left\langle \frac{A - A^*}{i} \Delta y, \Delta y \right\rangle e^{-\zeta} \, d\zeta$$
$$= 2 \text{Im} \, \int_{-\infty}^{0} \langle \phi^* g - \ell \Delta y, \Delta y \rangle e^{-\zeta} \, d\zeta$$
$$= 2 \text{Im} \, \int_{-\infty}^{0} \langle \phi^* g, \Delta y \rangle e^{-\zeta} \, d\zeta + 2 \text{Im} \, \int_{-\infty}^{0} \langle \ell \Delta y, \Delta y \rangle e^{-\zeta} \, d\zeta$$

the first summand approaches to zero again on account of $g(\zeta) \in L^2_{\mathbb{R}}(e^{-\zeta} d\zeta)$, and the second one yields after integration by parts

$$\|\zeta e^{-\zeta} \Delta y\| |_{\zeta=0} \to 0 \qquad (t \to \infty)$$

since $\Delta \hat{h}_t \to 0$. The theorem is proved.

As before, we define the operator S by the formula (15). Then the following theorem holds.

Theorem 2.4. The operator S (15) is a contraction from $L^2_{\mathbb{R}}(e^{-\zeta} d\zeta)$ to $L^2_{\mathbb{R}}(e^{-\zeta} d\zeta)$ and possesses the following properties:

$$SV_t = V_t S; SL^2_{\mathbb{R}_+}(e^{-\zeta} d\zeta) \subset L^2_{\mathbb{R}_+}(e^{-\zeta} d\zeta);$$
$$\overline{SL^2_{\mathbb{R}}(e^{-\zeta} d\zeta)} = L^2_{\mathbb{R}}(e^{-\zeta} d\zeta).$$

2.4. Further we suppose that the collegation Δ (1) is simple and as in subsection 1.3 we set a mapping

$$\Psi_p(\zeta = W_- f_1(\zeta)) + W_+ f_2(\zeta)$$

from $L^2_{\mathbb{R}}(e^{-\zeta} d\zeta) + L^2_{\mathbb{R}}(e^{-\zeta} d\zeta)$ to \mathcal{H} . It is obvious that

$$\Psi_p(\zeta) \in L^2\left(\begin{pmatrix} I & S^*\\ S & I \end{pmatrix}, e^{-\zeta} d\zeta\right)$$

Action of dilatation in this space again reduces to a translation

(47)
$$\widehat{U}_t f(\zeta) = f(\zeta + t) \,,$$

since

$$\begin{aligned} U_t \Psi_p(\zeta) &= W_- f_1(\zeta + t) + U_t W_+ f_2(\zeta) \\ &= W_- f_1(\zeta + t) + U_t W_+ V_t^* V_t f_2(\zeta) \\ &= W_- f_1(\zeta + t) + U_t U_t^* W_+ V_t f_2(\zeta) = \Psi_P(\zeta + t) \,. \end{aligned}$$

As earlier, it is obvious that

$$D_{-} = \begin{pmatrix} L_{\mathbb{R}_{+}}^{2}(e^{-\zeta} d\zeta) \\ 0 \end{pmatrix}, \quad D_{+} = \begin{pmatrix} 0 \\ L_{\mathbb{R}_{-}}^{2}(e^{-\zeta} d\zeta) \end{pmatrix}$$

and the model space H_p has the form

(48)
$$H_p = L^2 \left(\begin{pmatrix} 1 & S^* \\ S & 1 \end{pmatrix} e^{-\zeta} d\zeta \right) \ominus \begin{pmatrix} L^2_{\mathbb{R}_+}(e^{-\zeta} d\zeta) \\ L^2_{\mathbb{R}_-}(e^{-\zeta} d\zeta) \end{pmatrix}$$

and in addition T_t passes to shift semigroup

(49)
$$\widehat{T}_t f(\zeta) = f(\zeta + t) \,.$$

Now we consider a Laguerre transform

(50)
$$L_n = \int_0^\infty e^{-x} P_n(x) f(x) \, dx$$

where $P_n(x) = \frac{1}{n!}e^{-x}\frac{d^n}{dx^n}(xe^{-x})$ are a Laguerre polynomials, and $f(x) \in L^2_{\mathbb{R}_+}(e^{-x}dx)$. The transform (50) ascertains isomorphism between $L^2_{\mathbb{R}_+}(e^{-x}dx)$ and ℓ^2 .

We extend the Laguerre transform (50) on \mathbb{R}_{-} in a symmetric way. Then an image of this map yields a space ℓ_{-}^2 . Let $\ell_{\mathbb{Z}}^2 = \ell_{-}^2 + \ell_{+}^2$ is a space of square summable two-sided sequences. Just as for the case of Fourier transform (see Theorem 1.7 in Section 1) a theorem the proof of which repeats the reasonings brought out in [3] holds.

H. RA'ED

Theorem 2.5. The Laguerre transform of scattering operator S transfers the operator S into an operator of multiplication by a characteristic function $S_{\Delta}(n) = I - i\phi(A - nI)^{-1}\phi^*$, $n \in \mathbb{Z}$, *i.e.*

(51)
$$L_n(Sg) = S_\Delta(n)g_n$$

where $g_n = L_n(g)$.

After realizing the Laguerre transform, the space $L^2 \begin{pmatrix} I & S^* \\ S & I \end{pmatrix} e^{-\zeta} d\zeta$ passes into the space $\ell_{\mathbb{Z}}^2 \begin{pmatrix} I & S_{\Delta}^*(n) \\ S_{\Delta}(n) & I \end{pmatrix}$ and dilatation \widehat{U}_t (47) is converted into

(52)
$$\widehat{U}_t(n)f_n = e^{-itn}f_n.$$

Supspaces D_{\pm} will have the form

$$D_{-} = \begin{pmatrix} \ell_{-}^{2} \\ 0 \end{pmatrix}, \quad D_{+} = \begin{pmatrix} 0 \\ \ell_{+}^{2} \end{pmatrix}$$

Therefore H_p is converted to the form

(53)
$$\widetilde{H}_{p} = \left\{ f_{n} = \begin{pmatrix} f_{n}^{1} \\ f_{n}^{2} \end{pmatrix} \in \ell_{\mathbb{Z}}^{2} \begin{pmatrix} I & S_{\Delta}^{*}(n) \\ S_{\Delta}(n) & I \end{pmatrix}; \begin{array}{c} f_{n}^{1} + S_{\Delta}^{*}(n) f_{n}^{2} \in \ell_{+}^{2} \\ S_{\Delta}(n) f_{n}^{1} + f_{n}^{2} \in \ell_{-}^{2} \end{array} \right\}$$

and a "semigroup" T_t will have the form

(54)
$$\widetilde{T}_t(n)f_n = P_{\widetilde{H}_n}e^{-itn}f_n$$

Thus the following theorem is proved.

Theorem 2.6. The minimal unitary dilatation U_t (34) in \mathcal{H} (32) of the family of operators T_t (31) with a scattering operator A of collegation Δ (1) is unitary equivalent to $\widetilde{U}_t(n)$ (52) in the space $\ell_{\mathbb{Z}}^2 \begin{pmatrix} I & S_{\Delta}^*(n) \\ S_{\Delta}(n) & I \end{pmatrix}$, and the family T_t (31) is unitary equivalent to $\widetilde{T}_t(n)$ (54) in the space \widetilde{H}_p .

Acknowledgement. The author is grateful to V.A. Zolotarev for setting of the problem and his permanent interest in the work.

References

- Livshits, M. S., Yantsevich, A. A., Theory of operator colligation in Hilbert space, J. Wiley, N. Y. 1979, Eng. translation.
- [2] Sz.-Nagy, B., Foias, C., Analyse harmonique des operateurs de l'espace de Hilbert, Mason, Paris and Akad. Kiado, Budapest 1967; Eng. translation North-Holland, Amsterdam and Akad. Kiado, Budapest 1970.
- [3] Zolotarev, V. A., Time cones and a functional model on a Riemann surface, Mat. Sb. 181 (1990), 965–995; Eng. translation in Math. USSR sb. 70 (1991).
- [4] Lax, P., Philips R.S., Scattering theory, Academic Press, New York 1967.
- [5] Pavlov, B.S., Dilatation theory and spectral analysis of nonsefadjoint operators, Math. programming and Related Questions (Proc. Sevent Winter School, Drogolych, 1994); Theory of Operators in Linear Spaces, Tsentral. Ekonom.-Math. Inst. Akad. Nauk SSSR, Moscow 1976, 3–69; Eng. translation in Amer. Math. Soc. Transl. (2) 115 (1980).
- [6] Mc. Cully J., The operational calculus of the Lagueree transform, Ph.D. University of Michigan (1957).
- [7] Kamke, E., Differentialgleichungen. Lösungsmethoden und Lösungen, Leipzig 1974.

DEPARTMENT OF MATHEMATICS, IRBID NATIONAL UNIVERSITY P.O.Box 2600, IRBID, JORDAN *E-mail*: raedhat@yahoo.com