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ON HEREDITY OF STRONGLY PROXIMAL ACTIONS

C.ROBINSON EDWARD RAJA

Abstract. We prove that action of a semigroup T on compact metric space
X by continuous selfmaps is strongly proximal if and only if T action on
P(X) is strongly proximal. As a consequence we prove that affine actions
on certain compact convex subsets of finite-dimensional vector spaces are
strongly proximal if and only if the action is proximal.

Let X be a complete separable metric space. Let T be a semigroup acting on
X by continuous selfmaps. A system (X, T ) is a pair consisting of a complete
separable metric space X and a semigroup T acting on X by continuous selfmaps.
In such a situation X is a called a T -space.

Two points x and y in a T -space X are said to be proximal if there exists a
sequence (tn) in T such that lim tnx = lim tny.

We say that a system (X, T ) is proximal or the action of T on X is proximal if
any two points x and y in X are proximal.

It is easy to see that group of special linear automorphisms on R
n action on R

n

is proximal and the compact group actions are not proximal.
Let P(X) be the space of all regular Borel probability measures on X , equipped

with the weak* topology with respect to all continuous bounded functions. It may
be seen that P(X) equipped with the weak* topology is a complete separable
metric space (see [P]). The map x 7→ δx, maps X homeomorphically onto a closed
subset δX , say of P(X) (see [P]) where δx is the measure concentrated at the point
x. Suppose a semigroup T acts on X by continuous selfmaps. Then the action
of T on X extends to an action on P(X) in the following natural way, for any
λ ∈ P(X) and any t ∈ T tλ(E) = λ(t−1E) for any Borel subset E of X .

We say that a system (X, T ) is strongly proximal or the action of T on X is
strongly proximal if for any λ ∈ P(X), there exists a sequence (tn) ⊂ T such that
tnλ → δx for some x ∈ X .

By considering 1
2 (δx + δy) for any x, y ∈ X , it is easy to see that any strongly

proximal system is proximal; see [G] for more details on proximal and strongly
proximal systems. But not all proximal systems are strongly proximal. The action
of the special Linear group SL(V ) on V is proximal but it is not strongly proximal.
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We now prove the following interesting result which is needed in the sequel.

Proposition 1. Let T be a semigroup acting on a complete separable metric space

X by continuous selfmaps. Then the action of T on X is strongly proximal if and

only if the action of T on P(X) is proximal.

Proof. Suppose the action of T on X is strongly proximal. Let λ1 and λ2 be in
P(X). Then there exists a sequence (tn) in T such that tn( 1

2 (λ1 + λ2)) → δx for
some x ∈ X . Then for given 1 > ε > 0 there exists a compact subset K of X such
that

(i) tnλ1(K) + tnλ2(K) > 2 − ε

for all n ≥ 1. Suppose for some i = 1, 2 and for some m ≥ 1, tmλi(K) ≤ 1 − ε.
Then since λ1 and λ2 are probability measures, we get that

tmλ1(K) + tmλ2(K) ≤ 2 − ε

for some m ≥ 1 which is a contradiction to (i). Thus,

tnλi(K) > 1 − ε

for i = 1, 2 and for all n ≥ 1. By Prohorov’s theorem (see [B] or [P]), the sequences
(tnλ1) and (tnλ2) are relatively compact in P(X). Let µ1 be a limit point of (tnλ1).
Then there exists a µ2 ∈ P(X) such that

1

2
(µ1 + µ2) = δx

and hence µ1 = δx. This implies that

lim tnλ1 = δx = lim tnλ2 .

Thus, the action of T on P(X) is proximal.

Suppose the action of T on P(X) is proximal. Let λ ∈ P(X). Now for any
x ∈ X , there exists a sequence (tn) in T such that

(ii) lim tnλ = lim tnδx .

For any n ≥ 1, tnx ∈ δX which is a closed T -invariant set and hence lim tnx ∈ δX .
Thus, (ii) implies that

tnλ → δy

for some y ∈ X .

Let (X, T ) be a dynamical system where X is a complete separable metric space
and T be topological semigroup. Let us now consider the map Ψ: P(P(X)) →
P(X) defined as

Ψ(ρ) =

∫

P(X)

y dρ(y) ∈ P(X)

for any ρ ∈ P(P(X)).

We first establish the following properties of Ψ.
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Proposition 2. Let X, T and Ψ be as above. Then

1. Ψ is a continuous T -equivariant map,

2. Ψ(δy) = y for all y ∈ P(X),
3. for ρ ∈ P(P(X)), Ψ(ρ) = δx for some x ∈ X implies ρ is a point mass

concentrated at the point x.

4. suppose X is a semigroup, then Ψ is a semigroup homomorphism.

Proof. Since X , P(X) and P(P(X)) are all metrizable, it is enough to prove
sequential continuity of Ψ. Let (ρn) be a sequence in P(P(X)) such that ρn →
ρ ∈ P(P(X)). Let νn = Ψ(ρn) for all n and Ψ(ρ) = ν. Let f be a bounded
continuous function on X . Then the function y 7→ y(f) is a continuous bounded
function on P(X) and hence since ρn → ρ in P(P(X)), we have

νn(f) =

∫

y(f) dρn(y) →

∫

y(f) dρ(y) = ν(f) .

Thus, νn → ν in P(X). This proves that Ψ is continuous. Since the action of T

on X is by continuous maps, we have

tν =

∫

ty dρ(y) =

∫

y d(tρ)(y) ,

that is tΨ(ρ) = Ψ(tρ). Thus, verifying property (1) of the map Ψ. It is easy to
verify property (2) of the map Ψ.

Suppose for ρ ∈ P(P(X)), Ψ(ρ) = δx = ν, say for some x ∈ X . Then for any
ε > 0 and any bounded continuous function f on X such that f ≥ 0 and f(x) = 0,
let

σ(f, ε) = {y ∈ P(X) | y(f) > ε} .

Then

0 = ν(f) ≥

∫

y∈σ(f,ε)

y(f) dρ(y) ≥ ερ(σ(f, ε))

and hence ρ(σ(f, ε)) = 0. It is easy to see that σ(f, ε) is an open set for all
continuous bounded f and ε > 0. Now let W be the set of all nonnegative bounded
continuous functions f on X which vanish at x and

B = ∪f∈W ∪∞
n=1 σ

(

f,
1

n

)

.

Then B is an open set.

We now claim that B ∪ x = P(X) and x 6∈ B. Let λ(6= δx) ∈ P(X). Then
choose a compact set K such that λ(K) > 1

n
for some n and x 6∈ K. Since x 6∈ K,

there exists a continuous function f on X such that 0 ≤ f ≤ 1, f(x) = 0 and
f(y) = 1 for all y ∈ K. Then λ(f) > 1

n
and hence λ ∈ σ(f, 1

n
) ⊂ B. Thus,

P(X) = B ∪ x and it is easy to see that x 6∈ B.

We now claim that ρ(B) = 0. Let K be any compact set contained B. Then
there exists a finite number nonnegative continuous function f1, f2, · · · , fk and a
finite set of integers n1, n2, · · · , nk such that K ⊂ ∪σ(fi,

1
ni

). Since ρ(σ(f, ε)) = 0
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for all f ∈ W and ε > 0, we have ρ(K) = 0 and hence since K is any arbitrary com-
pact subset contained in B, we have ρ(B) = 0. Thus, ρ is the mass concentrated
at the point x ∈ X . Thus, verifying property (3) of the map Ψ.

Suppose X is a semigroup. The Ψ is a semigroup homomorphism follows from
the facts

1. Ψ is affine, that is for any 0 ≤ α1, α2, · · · , αn ≤ 1 with
∑

αi = 1 and for
ρ1, ρ2, · · · , ρn ∈ P(P(X)), Ψ(

∑

αiρi) =
∑

αiΨ(ρi),
2. the set of measures with finite supports in P(X) is dense in P(P(X)) and
3. Ψ is continuous.

We now prove that strongly proximal actions on compact metric spaces is hered-
itary in the following sense.

Theorem 1. Let X be a compact metric space and T be a topological semigroup

acting on X. Then the following are equivalent:

1. T action on X is strongly proximal;

2. the action of T on P(X) is strongly proximal.

Proof. Suppose (X, T ) is strongly proximal. Let ρ ∈ P(P(X)), and let ν =
Ψ(ρ) ∈ P(X). Then since the action of T on X is strongly proximal, there exists
a sequence (tn) in T such that tnν → δx, for some x ∈ X . Since for each n,
tnρ ∈ P(P(X)) which is a compact metrizable space, the sequence (tnρ) is a
relatively compact sequence. Now let ρo ∈ P(P(X)) be a limit point of (tnρ).
Since P(P(X)) is a metrizable space, there exists a subsequence (tkn

) of (tn) such
that tkn

ρ → ρ0 in P(P(X)). Let ν0 = Ψ(ρ0) ∈ P(X). Then by Proposition 2,

tkn
ν = tkn

Ψ(ρ) = Ψ(tkn
ρ) → Ψ(ρ0) = ν0

in P(X) and hence since tnν → δx in P(X) which is a metric space, we get
that ν0 = δx. Again by Proposition 2, ρ0 is the mass concentrated at x ∈ X .
Thus, the relatively compact sequence (tnρ) has a unique limit point and hence it
converges to the point mass concentrated at x ∈ X . This proves that (1) implies
(2). That (2) implies (1) follows from Proposition 1 and from the remark that
strongly proximal actions are proximal.

As a consequence we have the following corollary for certain affine actions:
affine action of a semigroup T on a closed convex subset X of a locally convex
vector space is an action of T on X such that t(ax+(1−a)y) = at(x)+(1−a)t(y)
for all x, y ∈ X and all 0 ≤ a ≤ 1.

Corollary 1. Let {v1, v2, · · · , vn} be a set of linearly independent vectors on a lo-

cally convex vector space V over reals. Let X be the convex hull of {v1, v2, · · · , vn}.
Let T be a topological semigroup acting on X by affine surjective maps. Then the

T action on X is proximal if and only if the T action on X is strongly proximal.

Proof. Let F = {vi | 1 ≤ i ≤ n}. Since F is compact, it is easy to see that X is
compact. Since T is an affine action of X by surjective maps and F is the set of
extreme points of X , F is a T -invariant set. Thus, T acts on F also.
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Let f : P(F ) → X be defined by

f(λ) =
∑

λ(vi)vi

for all λ ∈ P(F ). Suppose (λn) is a sequence in P(F ) such that λn → λ in P(F ).
Then λn(vi) → λ(vi) for all i. This implies that f(λn) =

∑

λn(vi)vi →
∑

λ(vi)vi.
Thus, f is continuous.

Given any point x in X there exist 0 ≤ λi ≤ 1 for i = 1, 2, · · ·n such that
x =

∑

λivi and
∑

λi = 1. Since {vi | 1 ≤ i ≤ n} is a linearly independent set
λi’s are unique. This implies that f is a bijection. Since P(F ) is compact, f is a
homeomorphism. Since the action is affine it is easy to verify that f(tλ) = tf(λ)
for all t ∈ T . Suppose the T action on X is proximal. Then the T action on P(F ) is
proximal. Now by Proposition 1, T action on F is strongly proximal and hence by
Theorem 1, T action on P(F ) is strongly proximal. Since f is a homeomorphism
preserving the T -action, T action on X is strongly proximal.

Remark 1. It should be noted that the conclusion of Theorem 1 is valid for any
Polish space if the map Ψ is proper.

In general for a complete separable metric space X , it is not clear that (P(X), T )
is strongly proximal if (X, T ) is strongly proximal. However the system (P(X), T )
does not admit a non-trivial T -invariant measure in the following sense:

Corollary 2. Let T be a topological semigroup acting strongly proximally on a

complete separable metric space X. Suppose ρ ∈ P(P(X)) is T -invariant. Then ρ

is the mass concentrated at a point x ∈ X.
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