LATTICE-THEORETICALLY CHARACTERIZED CLASSES OF FINITE BANDS

R. THRON AND J. KOPPITZ

Abstract

There are investigated classes of finite bands such that their subsemigroup lattices satisfy certain lattice-theoretical properties which are related with the cardinalities of the Green's classes of the considered bands, too. Mainly, there are given disjunctions of equations which define the classes of finite bands.

1. Introduction and Summary

For a semigroup S let $L(S)$ be the subsemigroup lattice of S with the usual lattice operations \vee and \wedge.

In the following let $1 \leqq n \in \mathbb{N}$ (where \mathbb{N} is the set of the natural numbers) and $S D_{\vee}(n)$ be the class of all finite bands (i.e., finite idempotent semigroups) S such that for $T, A, B_{0}, \ldots, B_{n} \in L(S)$ the following implication holds: If

$$
T=A \vee B_{0}=\ldots=A \vee B_{n},
$$

then

$$
T=A \vee \bigvee\left\{B_{i} \wedge B_{j}: 0 \leqq i<j \leqq n\right\}
$$

Obviously, the class $S D_{\vee}(1)$ is equal to the class of all finite bands such that their subsemigroup lattices are \vee-semidistributive or satisfy the so-called Jónsson condition (cf. [3, 5, 6]), respectively.

Moreover, let $A E(n)$ be the class of all finite bands S such that for $A \in L(S)$ and $i_{0}, \ldots, i_{n} \in S \backslash A$ the following implication holds: If

$$
A \vee i_{0}=A \vee i_{1}=\ldots=A \vee i_{n},
$$

then

$$
\left|\left\{i_{0}, \ldots, i_{n}\right\}\right| \leqq n
$$

where $A \vee i$ denotes $A \vee\{i\}$ for $i \in S$.
2000 Mathematics Subject Classification: Primary: 20M10; Secondary: 06B05.
Key words and phrases: subsemigroup lattices, finite bands.
The authors thank the referee for his valuable remarks.
Received October 10, 1996.

The class $A E(1)$ is equal to the class of all finite bands such that their subsemigroup closure operators have the anti-exchange property (cf. [1]). Therefore, the class $A E(1)$ concides with the class of all finite so-called filtered bands, i.e., the class of all finite bands S such that each $T \in L(S)$ has the least generating set with respect to inclusion (cf. [5, 6]). A set U is called to be a generating set of T if and only if $U \subseteq T$ and $T=\langle U\rangle$ where $\langle U\rangle$ is the subsemigroup of S generated by U.

For example, the finite left zero semigroups, right zero semigroups and semilattices are finite filtered bands.

In the following it is proved that the classes $S D_{\vee}(n)$ and $A E(n)$ coincide.
Moreover, there are given disjunctions of equations which define the classes $S D_{\vee}(n)$ and $A E(n)$, respectively.

For this let $\mathbb{X}:=\{z\} \cup\left\{x_{i}: i \in \mathbb{N}\right\} \cup\left\{y_{i}: i \in \mathbb{N}\right\}$ be a (countable) set of variables and \mathbb{X}^{+}be the free semigroup on \mathbb{X}. Let S be a band and $\mathcal{A} \subseteq \mathbb{X}^{+} \times \mathbb{X}^{+}$, i.e., \mathcal{A} is a set of equations. Then it is said that \mathcal{A} holds in S disjunctively, in symbols: $\mathcal{A} \varphi S$, if and only if for each homomorphism f from \mathbb{X}^{+}into S there exists an equation $(p, q) \in \mathcal{A}$ such that the equality $f(p)=f(q)$ is fulfilled (cf. [2]).

Let \mathfrak{V} be a class of bands. Then \mathfrak{V} is called to be disjunctively defined if and only if there exists a system \mathfrak{A} of sets $\mathcal{A} \subseteq \mathbb{X}^{+} \times \mathbb{X}^{+}$such that \mathfrak{V} is equal with the class of all bands S where $\mathcal{A} \varphi S$ for each $\mathcal{A} \in \mathfrak{A}$, in symbols: $\mathfrak{V}=\operatorname{MOD}(\mathfrak{A})$.

For $\mathbb{Y} \subseteq \mathbb{X}$ and $e \in \mathbb{N}$ let $\mathbb{Y}^{e} \subseteq \mathbb{X}^{+}$defined as follows:

$$
\mathbb{Y}^{e}:=\left\{y_{1} \ldots y_{i}: y_{1}, \ldots, y_{i} \in \mathbb{Y}, 1 \leqq i \leqq e\right\} \text { for } e \geqq 1 \text { and } \mathbb{Y}^{0}:=\emptyset
$$

Let

$$
\begin{aligned}
& F_{1}(n):=\left\{\left(x_{m} \ldots x_{0}\right)\left(x_{n} \ldots x_{0}\right) z: 0 \leqq m \leqq n\right\} \\
& F_{2}(n):=\left\{z\left(y_{0} \ldots y_{n}\right)\left(y_{0} \ldots y_{m}\right): 0 \leqq m \leqq n\right\} \\
& F_{3}(n):=\left\{\left(x_{m} \ldots x_{0}\right)\left(x_{n} \ldots x_{0}\right) z\left(y_{0} \ldots y_{n}\right)\left(y_{0} \ldots y_{m}\right): 0 \leqq m \leqq n\right\}
\end{aligned}
$$

Then for natural numbers e and $i=1,2,3$ let

$$
\begin{aligned}
\mathcal{A}_{i}(n) & :=\left\{(p, q): p, q \in F_{i}(n), p \neq q\right\}, \\
\mathcal{B}_{1}(n, e) & :=\left\{\left(x_{n} \ldots x_{0}\right) z\right\} \times\left\{x_{0}, \ldots, x_{n}\right\}^{e}, \\
\mathcal{B}_{2}(n, e) & :=\left\{z\left(y_{0} \ldots y_{n}\right)\right\} \times\left\{y_{0}, \ldots, y_{n}\right\}^{e}, \\
\mathcal{B}_{3}(n, e) & :=\left\{\left(x_{n} \ldots x_{0}\right) z\left(y_{0} \ldots y_{n}\right)\right\} \times\left\{x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}\right\}^{e}, \\
\mathcal{C}_{i}(n, e) & :=\mathcal{A}_{i}(n) \cup \mathcal{B}_{i}(n, e), \\
\mathfrak{C}(n, e) & :=\left\{\mathcal{C}_{1}(n, e), \mathcal{C}_{2}(n, e), \mathcal{C}_{3}(n, e)\right\} .
\end{aligned}
$$

Let

$$
\mathfrak{W}_{n, e}:=M O D(\mathfrak{C}(n, e))
$$

Then for each finite band S it holds $S \in S D_{\vee}(n)$ if and only if there is a natural number e such that $S \in \mathfrak{W}_{n, e}$.

Let \mathcal{D} be that Green's relation on a band S defined as follows: For $a, b \in S$ it is $a \mathcal{D} b$ if and only if $a=a b a$ and $b=b a b$ (cf. [4]). Moreover, let S / \mathcal{D} be the system of the \mathcal{D}-classes or Green's classes (with respect to \mathcal{D}) of S, respectively.

Then for each finite band S the following holds: It is $|D| \leqq n$ for each $D \in$ S / \mathcal{D} if and only if $S \in \mathfrak{W}_{n, 0}$ or $S \times F \in S D_{\vee}(n)$ for each finite semilattice F, respectively.

Consequently, for a finite band S it is $S \in \mathfrak{W}_{n, 0}$ if and only if (with respect to the notations in Petrich's structural theorem) S is a finite semilattice Y of rectangular bands S_{γ} (which are the Green's classes of S) such that $\left|S_{\gamma}\right| \leqq n$ for $\gamma \in Y$ (cf. Theorem 1, [4]).

2. Results

At first it is proved that for each natural number $n \geqq 1$ the classes $S D_{\vee}(n)$ and $A E(n)$ coincide.

For this let $G E N(T)$ be the system of all generating sets of some $T \in L(S)$.
Proposition 1. Let S be a finite band and $1 \leqq n \in \mathbb{N}$. Then the following statements are equivalent:
(i) $S \in S D_{\vee}(n)$.
(ii) $S \in A E(n)$.

Proof. (i) \Longrightarrow (ii): Let $S \in S D_{\vee}(n), A \in L(S)$ and $i_{0}, \ldots, i_{n} \in S \backslash A$. Then for

$$
T:=A \vee i_{0}=A \vee i_{1}=\ldots=A \vee i_{n}
$$

it is $T \neq A$. By the assumption it follows

$$
T=A \vee \bigvee\left\{\left\{i_{k}\right\} \wedge\left\{i_{l}\right\}: 0 \leqq k<l \leqq n\right\}
$$

Therefore, $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right| \leqq n$ and $S \in A E(n)$.
(ii) \Longrightarrow (i): Let $S \in A E(n), T \in L(S)$. Obviously, for $X \subseteq T$ it holds $X \in$ $G E N(T)$ if and only if for each maximal subsemigroup $T^{\prime} \subseteq T$ with $T \backslash T^{\prime} \neq \emptyset$ it is $\left(T \backslash T^{\prime}\right) \cap X \neq \emptyset$.

Moreover, $\left|T \backslash T^{\prime}\right| \leqq n$. Otherwise, there exist $i_{0}, \ldots, i_{n} \in T \backslash T^{\prime}$ such that $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right|=n+1$ and

$$
T^{\prime} \vee i_{0}=T^{\prime} \vee i_{1}=\ldots T^{\prime} \vee i_{n}
$$

contradicting $S \in A E(n)$.
Let $T, A, B_{0}, \ldots, B_{n} \in L(S)$ with

$$
T=A \vee B_{0}=\ldots=A \vee B_{n}
$$

i.e., $A \cup B_{0}, \ldots, A \cup B_{n} \in G E N(T)$ and

$$
\left(T \backslash T^{\prime}\right) \cap\left(A \cup B_{0}\right) \neq \emptyset, \ldots,\left(T \backslash T^{\prime}\right) \cap\left(A \cup B_{n}\right) \neq \emptyset
$$

Then $\left(T \backslash T^{\prime}\right) \cap\left(A \cup \bigcup\left\{B_{i} \cap B_{j}: 0 \leqq i<j \leqq n\right\}\right) \neq \emptyset$: If $\left(T \backslash T^{\prime}\right) \cap A \neq \emptyset$, the assertion follows, directly. If $\left(T \backslash T^{\prime}\right) \cap A=\emptyset$, then $\left(T \backslash T^{\prime}\right) \cap B_{i} \neq \emptyset$ for $i=0, \ldots, n$ by the assumption. Because $\left|T \backslash T^{\prime}\right| \leqq n$ it holds $\left(T \backslash T^{\prime}\right) \cap B_{i} \cap B_{j} \neq \emptyset$ for some i, j with $0 \leqq i<j \leqq n$ and the assertion follows.

Consequently,

$$
A \cup \bigcup\left\{B_{i} \cap B_{j}: 0 \leqq i<j \leqq n\right\} \in G E N(T)
$$

and the statement holds.
Example. For $1 \leqq n \in \mathbb{N}$ let L_{n} be the semigroup ($\{0, \ldots, n\}, \circ$) with $a \circ b=a$ for $a, b \in\{0, \ldots, n\}$. Moreover, let F be the semigroup $(\{0,1\}, \cdot)$ with the usual multiplication. Then the direct product $S_{n}:=L_{n} \times F$ is a finite band with $S_{n} \in A E(n+1)$ and $S_{n} \notin A E(n)$.
(a) It holds $S_{n} \in A E(n+1)$: Otherwise, there exist some $A \in L\left(S_{n}\right)$ and $i_{0}, \ldots, i_{n+1} \in S_{n} \backslash A$ with $\left|\left\{i_{0}, \ldots, i_{n+1}\right\}\right|=n+2$ and $i \in A \vee j$ for $i, j \in$ $\left\{i_{0}, \ldots, i_{n+1}\right\}$.

It is $\left\{i_{0}, \ldots, i_{n+1}\right\} \subseteq L_{n} \times\{0\}$ or $\left\{i_{0}, \ldots, i_{n+1}\right\} \subseteq L_{n} \times\{1\}$. Otherwise, there exist some $i \in L_{n} \times\{1\}, j \in L_{n} \times\{0\}$ with $i, j \notin A$ and $i \in A \vee j$, a contradiction.

Therefore, $\left|\left\{i_{0}, \ldots, i_{n+1}\right\}\right| \leqq n+1$, contradicting the assumption.
(b) It holds $S_{n} \notin A E(n)$: For this let $A=L_{n} \times\{1\}$ and $i_{0}=(0,0), \ldots$, $i_{n}=(n, 0) \in S_{n} \backslash A$. Then $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right|=n+1$ and $i \in A \vee j$ for $i, j \in\left\{i_{0}, \ldots, i_{n}\right\}$. From this it follows the assertion.

From the Example and Proposition 1 it follows
Proposition 2. For each natural number $n \geqq 1$ it is

$$
S D_{\vee}(n) \varsubsetneqq S D_{\vee}(n+1)
$$

Now it is shown that the class $S D_{\vee}(n)$ is equal to the class of all finite bands S such that $S \in \mathfrak{W}_{n, e}$ for some natural number e.

Proposition 3. Let S be a finite band and $1 \leqq n \in \mathbb{N}$. Then the following statements are equivalent:
(i) $S \in S D_{\vee}(n)$.
(ii) $S \in \mathfrak{W}_{n, e}$ for some $e \in \mathbb{N}$.

Proof. (i) \Longrightarrow (ii): Let $S \in S D_{\vee}(n)$. Clearly, $S \in A E(n)$ by Proposition 1. Moreover, $\mathcal{C}_{1}(n, e) \varphi S$ and $\mathcal{C}_{2}(n, e) \varphi S$ and $\mathcal{C}_{3}(n, e) \varphi S$ for $e=|S|$.

Otherwise, for $k=1,2$ or 3 it holds: There exists a homomorphism f_{k} from \mathbb{X}^{+} into S such that for each $(p, q) \in \mathcal{C}_{k}(n, e)$ it is $f_{k}(p) \neq f_{k}(q)$.
Let $f_{k}\left(x_{i}\right)=s_{i} \in S, f_{k}\left(y_{i}\right)=t_{i} \in S$ for $i \in \mathbb{N}$ and $f_{k}(z)=c \in S$.
For $k=1$ let

$$
\begin{aligned}
i_{0} & =\left(s_{n} \ldots s_{0}\right) c \\
i_{m} & =\left(s_{m-1} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) c
\end{aligned}
$$

where $1 \leqq m \leqq n$ and $A=\left\langle s_{0}, \ldots, s_{n}\right\rangle$.

For $k=2$ let

$$
\begin{aligned}
i_{0} & =c\left(t_{0} \ldots t_{n}\right) \\
i_{m} & =c\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{m-1}\right)
\end{aligned}
$$

where $1 \leqq m \leqq n$ and $A=\left\langle t_{0}, \ldots, t_{n}\right\rangle$.
For $k=3$ let

$$
\begin{aligned}
i_{0} & =\left(s_{n} \ldots s_{0}\right) c\left(t_{0} \ldots t_{n}\right) \\
i_{m} & =\left(s_{m-1} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) c\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{m-1}\right)
\end{aligned}
$$

where $1 \leqq m \leqq n$ and $A=\left\langle s_{0}, \ldots, s_{n}, t_{0}, \ldots, t_{n}\right\rangle$.
Because of $\langle U\rangle=\left\{u_{1} \ldots u_{i}: u_{1}, \ldots, u_{i} \in U, 1 \leqq i \leqq e\right\}$ for $U \subseteq S$ and $e=|S|$ it follows $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right|=n+1$ with $i_{0}, \ldots, i_{n} \in S \backslash A$ and

$$
A \vee i_{0}=A \vee i_{1}=\ldots=A \vee i_{n}
$$

contradicting $S \in A E(n)$. Consequently,

$$
S \in M O D(\mathfrak{C}(n, e))=\mathfrak{W}_{n, e}
$$

for $e=|S|$.
(ii) \Longrightarrow (i): Let $S \in \mathfrak{W}_{n, e}$ with $e \in \mathbb{N}, A \in L(S)$ and $i_{0}, \ldots, i_{n} \in S \backslash A$ such that

$$
A \vee i_{0}=A \vee i_{1}=\ldots=A \vee i_{n}
$$

In the following it is proved that $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right| \leqq n$.
There hold the following implications (I), (II) and (III).
(I) If

$$
\begin{aligned}
i_{0} & =s_{n} i_{n} h_{n} \text { with } h_{n} \in A \vee i_{n} \text { and } s_{n} \in A, \\
i_{m} & =s_{m-1} i_{m-1} h_{m-1} \quad \text { with } \quad h_{m-1} \in A \vee i_{m-1} \quad \text { and } \quad s_{m-1} \in A
\end{aligned}
$$

where $1 \leqq m \leqq n$, then $\left(s_{n} \ldots s_{0}\right) i_{0}=i_{0}$ and from

$$
\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}=\left(s_{l} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}
$$

for some integer numbers k, l with $-1 \leqq k<l \leqq n-1$ it follows that $\left\{i_{k+1}, i_{l+1}\right\}$ is a right zero semigroup : By successively substitutions of the i_{0}, \ldots, i_{n} in the right hand sides of the above equations one gets

$$
\begin{aligned}
i_{0} & =\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right) \\
i_{m} & =\left(s_{m-1} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{m-1}\right)
\end{aligned}
$$

where $1 \leqq m \leqq n$.

Clearly, $\left(s_{n} \ldots s_{0}\right) i_{0}=i_{0}$ and

$$
\begin{aligned}
i_{k+1} & =\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{k}\right) \\
i_{k+1} & =\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)^{2}\left(h_{0} \ldots h_{k}\right) \\
i_{l+1} & =\left(s_{l} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{l}\right) \\
& =\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{l}\right) .
\end{aligned}
$$

Therefore, $i_{k+1} i_{l+1}=i_{l+1}$ and $i_{l+1} i_{k+1}=i_{k+1}$, i.e., $\left\{i_{k+1}, i_{l+1}\right\}$ is a right zero semigroup.
(II) If

$$
\begin{aligned}
i_{0} & =g_{n} i_{n} t_{n} \text { with } g_{n} \in A \vee i_{n} \text { and } t_{n} \in A \\
i_{m} & =g_{m-1} i_{m-1} t_{m-1} \quad \text { with } \quad g_{m-1} \in A \vee i_{m-1} \quad \text { and } \quad t_{m-1} \in A
\end{aligned}
$$

where $1 \leqq m \leqq n$, then $i_{0}\left(t_{0} \ldots t_{n}\right)=i_{0}$ and from

$$
i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right)=i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{l}\right)
$$

for some integer numbers k, l with $-1 \leqq k<l \leqq n-1$ it follows that $\left\{i_{k+1}, i_{l+1}\right\}$ is a left zero semigroup: By successively substitutions of the i_{0}, \ldots, i_{n} in the right hand sides of the above equations one gets

$$
\begin{aligned}
i_{0} & =\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right), \\
i_{m} & =\left(g_{m-1} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{m-1}\right)
\end{aligned}
$$

where $1 \leqq m \leqq n$.
Clearly, $i_{0}\left(t_{0} \ldots t_{n}\right)=i_{0}$ and

$$
\begin{aligned}
i_{k+1} & =\left(g_{k} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right), \\
i_{k+1} & =\left(g_{k} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right)^{2} i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right), \\
i_{l+1} & =\left(g_{l} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{l}\right) \\
& =\left(g_{l} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right) .
\end{aligned}
$$

Therefore, $i_{l+1} i_{k+1}=i_{l+1}$ and $i_{k+1} i_{l+1}=i_{k+1}$, i.e., $\left\{i_{k+1}, i_{l+1}\right\}$ is a left zero semigroup.
(III) If

$$
\begin{aligned}
i_{0} & =s_{n} i_{n} q_{n} i_{n} t_{n} \quad \text { with } \quad q_{n} \in A \vee i_{n} \quad \text { and } \quad s_{n}, t_{n} \in A, \\
i_{m} & =s_{m-1} i_{m-1} q_{m-1} i_{m-1} t_{m-1} \quad \text { with } \quad q_{m-1} \in A \vee i_{m-1} \quad \text { and } \quad s_{m-1}, t_{m-1} \in A
\end{aligned}
$$

where $1 \leqq m \leqq n$, then $\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)=i_{0}$ and from

$$
\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right)=\left(s_{l} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{l}\right)
$$

for some integer numbers k, l with $-1 \leqq k<l \leqq n-1$ it follows that $\left\{i_{k+1}, i_{l+1}\right\}$ is a left zero semigroup as well as a right zero semigroup, i.e., $i_{k+1}=i_{l+1}$:

By successively substitutions of the i_{0}, \ldots, i_{n} in the right hand sides of the above equations one gets

$$
\begin{aligned}
i_{0} & =\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right) \\
i_{m} & =\left(s_{m-1} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{m-1}\right)
\end{aligned}
$$

where $h_{j}=q_{j} i_{j} t_{j}, 0 \leqq j \leqq n, 1 \leqq m \leqq n$ and

$$
\begin{aligned}
i_{0} & =\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right) \\
i_{m} & =\left(g_{m-1} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{m-1}\right)
\end{aligned}
$$

where $g_{j}=s_{j} i_{j} q_{j}, 0 \leqq j \leqq n, 1 \leqq m \leqq n$.
Obviously,
$i_{0}=\left(s_{n} \ldots s_{0}\right) i_{0}, i_{0}=i_{0}\left(t_{0} \ldots t_{n}\right)$ and $i_{0}=\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)$.
Therefore,

$$
\begin{aligned}
i_{k+1} & =\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{k}\right), \\
i_{k+1} & =\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)^{2}\left(h_{0} \ldots h_{k}\right), \\
i_{l+1} & =\left(s_{l} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{l}\right) \\
& =\left(s_{l} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{l}\right)\left(t_{0} \ldots t_{n}\right)\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{l}\right) \\
& =\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right)\left(t_{0} \ldots t_{n}\right)\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{l}\right) \\
& =\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(h_{0} \ldots h_{n}\right)\left(h_{0} \ldots h_{l}\right) .
\end{aligned}
$$

Consequently, $i_{k+1} i_{l+1}=i_{l+1}$ and $i_{l+1} i_{k+1}=i_{k+1}$, i.e., $\left\{i_{k+1}, i_{l+1}\right\}$ is a right zero semigroup.

Analogously, it follows

$$
\begin{aligned}
i_{k+1} & =\left(g_{k} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right), \\
i_{k+1} & =\left(g_{k} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right)^{2} i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right), \\
i_{l+1} & =\left(g_{l} \ldots g_{0}\right)\left(g_{n} \ldots g_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right)
\end{aligned}
$$

Hence, $i_{l+1} i_{k+1}=i_{l+1}$ and $i_{k+1} i_{l+1}=i_{k+1}$, i.e., $\left\{i_{k+1}, i_{l+1}\right\}$ is a left zero semigroup. Finally, $i_{k+1}=i_{l+1}$.

Furtherly, it hold the following statements:
(a) If there exist $i, j \in\left\{i_{0}, \ldots, i_{n}\right\}$ such that $i=j p j, j=s(i q i)$ with $p \in A \vee j$, $q \in A \vee i$ and $s \in A$, then $i=s(i q i) p j=s(j p j q j p j)$.
(b) If there exist $i, j \in\left\{i_{0}, \ldots, i_{n}\right\}$ such that $i=j p j, j=(i q i) t$ with $p \in A \vee j$, $q \in A \vee i$ and $t \in A$, then $i=j p(i q i) t=(j p j q j p j) t$.
(c) If there exist $i, j \in\left\{i_{0}, \ldots, i_{n}\right\}$ such that $i=s(j p j), j=(i q i) t$ with $p \in A \vee j, q \in A \vee i$ and $s, t \in A$, then
$i=\operatorname{sjp}(i q i) t=\operatorname{sjp}(s j p j) q(s j p j) t=s(j p j q s j p j) t$,
$j=s(j p j) q i t=s(i q i t) p(i q i t) q i t=s($ iqitpiqi $) t$.

8 R. THRON, J. KOPPITZ
Therefore, the following four cases are possible, exactly.
Case 1. There hold the following equations:

$$
\begin{aligned}
i_{0} & =i_{n} q_{n} i_{n} \text { with } q_{n} \in A \vee i_{n} \\
i_{m} & =i_{m-1} q_{m-1} i_{m-1} \text { with } q_{m-1} \in A \vee i_{m-1}
\end{aligned}
$$

where $1 \leqq m \leqq n$.
Obviously, it is $\left\{i_{0}, \ldots, i_{n}\right\}$ a right zero semigroup and a left zero semigroup, too. Therefore $i_{0} i_{1}=i_{1}$ and $i_{0} i_{1}=i_{0}$, i.e., $i_{0}=i_{1}$ and $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right| \leqq n$.

Case 2. There hold the following equations:

$$
\begin{aligned}
i_{0} & =s_{n} i_{n} q_{n} i_{n} \text { with } q_{n} \in A \vee i_{n} \text { and } s_{n} \in A \\
i_{m} & =s_{m-1} i_{m-1} q_{m-1} i_{m-1} \text { with } q_{m-1} \in A \vee i_{m-1} \text { and } s_{m-1} \in A
\end{aligned}
$$

where $1 \leqq m \leqq n$.
By (I) it is $\left(s_{n} \ldots s_{0}\right) i_{0}=i_{0}$. Because $S \in \operatorname{MOD}\left(\left\{\mathcal{A}_{1}(n) \cup \mathcal{B}_{1}(n, e)\right\}\right)$ and $i_{0} \notin A$ it follows

$$
\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}=\left(s_{l} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}
$$

for some integer numbers k, l with $-1 \leqq k<l \leqq n-1$. Then $\left\{i_{k+1}, i_{l+1}\right\}$ is a right zero semigroup by (I). Clearly, it is $\left\{i_{0}, \ldots, i_{n}\right\}$ a left zero semigroup. Consequently, $i_{k+1} i_{l+1}=i_{l+1}$ and $i_{k+1} i_{l+1}=i_{k+1}$, i.e., $i_{k+1}=i_{l+1}$ and $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right| \leqq$ n.

Case 3. There hold the following equations:

$$
\begin{aligned}
i_{0} & =i_{n} q_{n} i_{n} t_{n} \text { with } q_{n} \in A \vee i_{n} \text { and } t_{n} \in A, \\
i_{m} & =i_{m-1} q_{m-1} i_{m-1} t_{m-1} \text { with } q_{m-1} \in A \vee i_{m-1} \text { and } t_{m-1} \in A
\end{aligned}
$$

where $1 \leqq m \leqq n$.
Because $S \in \operatorname{MOD}\left(\left\{\mathcal{A}_{2}(n) \cup \mathcal{B}_{2}(n, e)\right\}\right)$ and $i_{0} \notin A$ it follows $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right| \leqq n$ by (II), analogously to Case 2.

Case 4. There hold the following equations:

$$
\begin{aligned}
i_{0} & =s_{n} i_{n} q_{n} i_{n} t_{n} \quad \text { with } \quad q_{n} \in A \vee i_{n} \quad \text { and } \quad s_{n}, t_{n} \in A, \\
i_{m} & =s_{m-1} i_{m-1} q_{m-1} i_{m-1} t_{m-1} \quad \text { with } \quad q_{m-1} \in A \vee i_{m-1} \quad \text { and } \quad s_{m-1}, t_{m-1} \in A
\end{aligned}
$$

where $1 \leqq m \leqq n$. By (III) it is $\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)=i_{0}$.
Because $S \in \operatorname{MOD}\left(\left\{\mathcal{A}_{3}(n) \cup \mathcal{B}_{3}(n, e)\right\}\right)$ and $i_{0} \notin A$ it follows

$$
\left(s_{k} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{k}\right)=\left(s_{l} \ldots s_{0}\right)\left(s_{n} \ldots s_{0}\right) i_{0}\left(t_{0} \ldots t_{n}\right)\left(t_{0} \ldots t_{l}\right)
$$

for some integer numbers k, l with $-1 \leqq k<l \leqq n-1$. Consequently, $i_{k+1}=i_{l+1}$ by (III). Therefore, $\left|\left\{i_{0}, \ldots, i_{n}\right\}\right| \leqq n$.

From the Cases 1, 2, 3 and 4 it follows that $S \in A E(n)$ and $S \in S D_{\vee}(n)$ by Proposition 1.

Finally, it is shown that a finite band S belongs to $\mathfrak{W}_{n, 0}$ if and only if $|D| \leqq n$ for each Green's class D with respect to the relation \mathcal{D} on S.

For this let J be the ideal closure operator on S, i.e., for each $U \subseteq S$ it is

$$
J(U):=U \cup S \cdot U \cup U \cdot S \cup S \cdot U \cdot S
$$

Let $a, b \in S$. Then it follows easily that $a \mathcal{D} b$ if and only if $J(\{a\})=J(\{b\})$.
Proposition 4. Let S be a finite band and $1 \leqq n \in \mathbb{N}$. Then the following statements are equivalent:
(i) $S \in \mathfrak{W}_{n, 0}$.
(ii) $S \times F \in S D_{\vee}(n)$ for each finite semilattice F.
(iii) $|D| \leqq n$ for each $D \in S / \mathcal{D}$.

Proof. It is easy to check that (i) if and only if (ii) by Proposition 3.
(ii) \Longrightarrow (iii): Let $\{0,1\}$ be that semilattice with respect to multiplication. Then $S \times\{0,1\} \in S D_{\vee}(n)$ by (ii) and $S \times\{0,1\} \in A E(n)$ by Proposition 1. Now let $D \in S / \mathcal{D}$ and $i_{0}, \ldots, i_{n} \in D$. Then $J\left(\left\{i_{0}\right\}\right)=\ldots=J\left(\left\{i_{n}\right\}\right)$. Therefore

$$
S \times\{1\} \vee\left(i_{0}, 0\right)=S \times\{1\} \vee\left(i_{1}, 0\right)=\ldots=S \times\{1\} \vee\left(i_{n}, 0\right)
$$

and

$$
\left(i_{0}, 0\right), \ldots,\left(i_{n}, 0\right) \in S \times\{0,1\} \backslash S \times\{1\}
$$

Because of $S \times\{0,1\} \in A E(n)$ it follows $|D| \leqq n$.
(iii) \Longrightarrow (ii): Clearly, if $|D| \leqq n$ for each $D \in S / \mathcal{D}$, then $\left|D^{\prime}\right| \leqq n$ for each $D^{\prime} \in$ $(S \times F) / \mathcal{D}$ and each finite semilattice F, too. Hence, if $J\left(\left\{i_{0}^{\prime}\right\}\right)=\ldots=J\left(\left\{i_{n}^{\prime}\right\}\right)$ for $i_{0}^{\prime}, \ldots, i_{n}^{\prime} \in S \times F$, then $\left|\left\{i_{0}^{\prime}, \ldots, i_{n}^{\prime}\right\}\right| \leqq n$.

Consequently, $S \times F \in A E(n)$ and $S \times F \in S D_{\vee}(n)$ by Proposition 1.

From Proposition 4 it follows that each finite band $S \in \mathfrak{W}_{n, 0}$ is characterized by Petrich's structural theorem restricted to a finite semilattice Y of rectangular bands S_{γ} under the condition $\left|S_{\gamma}\right| \leqq n$ for $\gamma \in Y$.

References

[1] Edelman, P. H., Meet-distributive lattices and the anti-exchange closure, Algebra Universalis 10 (1980), 290-299.
[2] Evseev, A. E., Semigroups with some power identity inclusions, Algebraic systems with one operation and one relation, Interuniv. Collect. sci. Works, Leningrad 1985, 21-32. (Russian)
[3] Grätzer, G., General lattice theory, Birkhäuser Verlag Basel und Stuttgart 1978.

10 R. THRON, J. KOPPITZ
[4] Petrich, M., A construction and a classification of bands, Math. Nachr. 48 (1971), 263-274.
[5] Shiryaev, V. M., Finite filtered semigroups, Mat. Sb. 182, no. 9 (1991), 1331-1356. (Russian)
[6] Shiryaev, V. M., Filtered semigroups, Mat. Zap. 14, no. 1 (1985), 171-184. (Russian)

Martin-Luther-Universität Halle-Wittenberg
Fachbereich Mathematik und Informatik
06099 Halle/Saale, Germany
E-mail: thron@mathematik.uni-halle.de

