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In this paper the Leray-Schauder nonlinear alternative for multivalued

maps combined with the semigroup theory is used to investigate the existence of
mild solutions for first order impulsive semilinear functional differential inclusions
in Banach spaces.

1. Introduction

This paper is concerned with the existence of mild solutions for the impulsive
semilinear functional differential inclusion of the form:

y′ −Ay ∈ F (t, yt) , t ∈ J = [0, b] , t 6= tk , k = 1, . . . ,m,(1.1)

y(t+k ) = Ik(y(t
−

k )) , k = 1, . . . ,m,(1.2)

y0 = φ ,(1.3)

where F : J ×D → 2E is a closed, bounded and convex valued multivalued map
D = {ψ : [−r, 0] → E | ψ is continuous everywhere except for a finite number of
points s at which ψ(s−) and ψ(s+) exist and ψ(s−) = ψ(s)}, φ ∈ C([−r, 0], E), A
is the infinitesimal generator of a strongly continuous semigroup T (t), t ≥ 0 and
E a real Banach space with the norm | · |, 0 = t0 < t1 < . . . < tm < tm+1 = b,
Ik ∈ C(E,E) (k = 1, 2, . . . ,m), y(t−k ) and y(t

+
k ) represent the left and right limits

of y(t) at t = tk, respectively.
For any continuous function y defined on the interval [−r, b]−{t1, . . . , tm} and

any t ∈ J , we denote by yt the element of C([−r, 0], E) defined by

yt(θ) = y(t+ θ) , θ ∈ [−r, 0] .

Here yt(.) represents the history of the state from time t − r, up to the present
time t.
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Impulsive differential equations have become more important in recent years
in some mathematical models of real world phenomena, especially in the biolog-
ical or medical domain (see the monographs of Lakshmikantham et al. [10], and
Samoilenko and Perestyuk [16], and the papers of Agur et al. [1], Erbe et al. [6],
Goldbeter et al. [7], Kirane and Rogovchenko [9], Liu et al. [12] and Liu and Zhang
[13]).

This paper will be divided into three sections. In Section 2 we will recall briefly
some basic definitions and preliminary facts from multivalued analysis which will
be used throughout Section 3. In Section 3 we establish an existence theorem for
(1.1)-(1.3). Our approach is based on the nonlinear alternative of Leray-Schauder
type for multivalued maps combined with the semigroup theory [15].

In our results we do not assume any type of monotonicity condition on Ik, k =
1, . . . ,m which is usually the situation in the literature, see for instance, [6], [9]
and [12].

2. Preliminaries

We will briefly recall some basic definitions and facts from multivalued analysis
that we will use in the sequel. Let the Banach space E. B(E) denotes the Banach
space of bounded linear operators from E into E.

A measurable function y : J → E is Bochner integrable if and only if |y| is
Lebesgue integrable. For properties of the Bochner integral, we refer to Yosida
[17].

L1(J,E) denotes the Banach space of functions y : J → E which are Bochner
integrable normed by

‖y‖L1 =

∫ b

0

|y(t)| dt for all y ∈ L1(J,E) .

Let (X, ‖ · ‖) be a Banach space. A multivalued map G : X → 2X is convex
(closed) valued if G(x) is convex (closed) for all x ∈ X . G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in X for any bounded set B of X (i.e.
sup
x∈B

{sup{‖y‖ : y ∈ G(x)}} <∞).

G is called upper semicontinuous (u.s.c.) on X if for each x∗ ∈ X the set G(x∗)
is a nonempty, closed subset of X , and if for each open set B of X containing
G(x∗), there exists an open neighbourhood V of x∗ such that G(V ) ⊆ B.

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X .

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. xn → x∗, yn →
y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is x ∈ X such that
x ∈ G(x).

In the following BCC(X) denotes the set of all nonempty bounded, closed and
convex subsets of X .
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A multivalued map G : J → BCC(E) is said to be measurable if for each x ∈ E

the function Y : J → R defined by

Y (t) = d(x,G(t)) = inf{|x− z| : z ∈ G(t)}

is measurable. For more details on multivalued maps see the books of Deimling
[4] and Hu and Papageorgiou [8].

Definition 2.1. Amultivalued map F : J×D → 2E is said to be L1-Carathéodory
if

(i) t 7→ F (t, u) is measurable for each u ∈ D;
(ii) u 7→ F (t, u) is upper semicontinuous for almost all t ∈ J ;
(iii) For each ρ > 0, there exists φρ ∈ L1(J,R+) such that ‖F (t, u)‖ = sup{|v| :

v ∈ F (t, u)} ≤ φρ(t) for all ‖u‖ ≤ ρ and for almost all t ∈ J .

In order to define the mild solution of (1.1)-(1.3) we shall consider the following
space

Ω = {y : [−r, b]→ E : yk ∈ C(Jk, E), k = 0, . . . ,m and there exist

y(t−k ) and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)

with y(t) = φ(t), ∀t ∈ [−r, 0]}

which is a Banach space with the norm

‖y‖Ω = max{‖yk‖∞, k = 0, . . . ,m} ,

where yk is the restriction of y to Jk = [tk, tk+1], k = 0, . . . ,m.
So let us start by defining what we mean by a mild solution of problem (1.1)-

(1.3).

Definition 2.2. A function y ∈ Ω is said to be a mild solution of (1.1)-(1.3) (see
[15]) if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, yt) a.e. on Jk,
and

y(t) =



























φ(t), t ∈ [−r, 0]

T (t)φ(0) +

∫ t

0

T (t− s)v(s) ds, t ∈ [0, t1],

Ik(y(t
−

k )) +

∫ t

tk

T (t− s)v(s) ds, t ∈ Jk, k = 1, . . . ,m.

For the multivalued map F and for each y ∈ C([−r, b], E) we define S1F,y by

S1F,y = {v ∈ L1(J,E) : v(t) ∈ F (t, yt) for a.e. t ∈ J} .

Our main result is based on the following:
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Lemma 2.3 [11]. Let I be a compact real interval and X be a Banach space.
Let F : I × X → BCC(X); (t, y) → F (t, y) measurable with respect to t for any
y ∈ X and u.s.c. with respect to y for almost each t ∈ I and S1F,y 6= ∅ for any

y ∈ C(I,X) and let Γ be a linear continuous mapping from L1(I,X) to C(I,X).
Then the operator

Γ ◦ S1F : C(I,X)→ BCC(C(I,X)), y 7→ (Γ ◦ S1F )(y) := Γ(S
1
F,y)

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.4 (Nonlinear Alternative [5]). Let X be a Banach space with C ⊂ X

convex. Assume U is a relatively open subset of C with 0 ∈ U and G : U → 2C is
a compact multivalued map, u.s.c. with convex closed values. Then either,

(i) G has a fixed point in U ; or

(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u ∈ λG(u).

Remark 2.5. By U and ∂U we denote the closure of U and the boundary of U
respectively.

3. Main Result

We are now in a position to state and prove our existence result for the IVP
(1.1)-(1.3).

Theorem 3.1. Let t0 = 0, tm+1 = b. Suppose:

(H1) A is the infinitesimal generator of a linear bounded compact semigroup
T (t), t ≥ 0 and there exists M ≥ 1 such that |T (t)|B(E) ≤M ;

(H2) F : J ×D → BCC(E) is an L1-Carathéodory multivalued map and for
each fixed y ∈ C([−r, b], E) the set

S1F,y =
{

v ∈ L1(J,E) : v(t) ∈ F (t, yt) for a.e. t ∈ J
}

is nonempty;

(H3) there exists a continuous nondecreasing function ψ : [0,∞)→ (0,∞) and
p ∈ L1(J,R+) such that

‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖)

for a.e. t ∈ J and each u ∈ D with
∫ tk

tk−1

p(s) ds <

∫

∞

Nk−1

dτ

ψ(τ)
, k = 1, . . . ,m+ 1 ,

where N0 =M‖φ‖, and for k = 2, . . . ,m+ 1,

Nk−1 = sup
y∈[−Mk−2,Mk−2]

|Ik−1(y)| , Mk−2 = Γ
−1
k−1

(

M

∫ tk−1

tk−2

p(s) ds

)

with

Γl(z) =

∫ z

Nl−1

dτ

ψ(τ)
, z ≥ Nl−1 , l ∈ {1, . . . ,m+ 1} .



IMPULSIVE SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS 133

Then the problem (1.1)-(1.3) has at least one mild solution y ∈ Ω.

Remark 3.2. (i) If dimE < ∞, then for each y ∈ C([−r, b], E), S1F,y 6= ∅ (see
Lasota and Opial [11]).

(ii) If dimE =∞ and y ∈ C([−r, b], E) the set S1F,y is nonempty if and only if
the function Y : J → R defined by

Y (t) := inf{|v| : v ∈ F (t, yt)}

belongs to L1(J,R) (see Hu and Papageorgiou [8]).

Proof. The proof is given in several steps.
Step 1. Consider the problem (1.1)-(1.3) on [−r, t1]

y′ −Ay ∈ F (t, yt) , a.e. t ∈ J0 ,(3.1)

y0 = φ .(3.2)

We shall show that the possible mild solutions of (3.1)-(3.2) are a priori bounded,
that is, there exists a constant b0 such that, if y ∈ Ω is a mild solution of (3.1)-(3.2),
then

sup{|y(t)| : t ∈ [−r, 0] ∪ J0} ≤ b0 .

Let y be a (possible) mild solution to (3.1)-(3.2). Then for each t ∈ [0, t1]

y(t)− T (t)φ(0) ∈

∫ t

0

T (t− s)F (s, ys) ds .

From (H3) we get

|y(t)| ≤M‖φ‖+M

∫ t

0

p(s)ψ(‖ys‖) ds , t ∈ [0, t1] .

We consider the function µ0 defined by

µ0(t) = sup{|y(s)| : −r ≤ s ≤ t} , 0 ≤ t ≤ t1 .

Let t∗ ∈ [−r, t] be such that µ0(t) = |y(t∗)|. If t∗ ∈ [0, t1], by the previous
inequality we have for t ∈ [0, t1]

µ0(t) ≤M‖φ‖+M

∫ t

0

p(s)ψ(µ0(s)) ds .

If t∗ ∈ [−r, 0] then µ0(t) = ‖φ‖ and the previous inequality holds since M ≥ 1.
Let us take the right-hand side of the above inequality as v0(t), then we have

v0(0) =M‖φ‖ = N0 , µ0(t) ≤ v0(t) , t ∈ [0, t1]
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and
v′0(t) =Mp(t)ψ(µ0(t)) , t ∈ [0, t1] .

Using the nondecreasing character of ψ we get

v′0(t) ≤Mp(t)ψ(v0(t)) , t ∈ [0, t1] .

This implies for each t ∈ [0, t1] that

∫ v0(t)

N0

dτ

ψ(τ)
≤M

∫ t1

0

p(s) ds .

In view of (H3), we obtain

|v0(t
∗)| ≤ Γ−11

(

M

∫ t1

0

p(s) ds

)

:=M0 .

Since for every t ∈ [0, t1], ‖yt‖ ≤ µ0(t), we have

sup
t∈[−r,t1]

|y(t)| ≤ max(‖φ‖,M0) = b0 .

We transform this problem into a fixed point problem. A mild solution to (3.1)-
(3.2) is a fixed point of the operator G : C([−r, t1], E) → 2C([−r,t1],E) defined
by

G(y) :=















h ∈ C([−r, t1], E) : h(t) =















φ(t), t ∈ [−r, 0]

T (t)φ(0)

+

∫ t

0

T (t− s)v(s) ds, t ∈ J0















where v ∈ S1F,y. We shall show that G satisfies the assumptions of Lemma 2.2.

Claim 1: G(y) is convex for each y ∈ C(J0, E).

Indeed, if h, h belong to G(y), then there exist v ∈ S1F,y and v ∈ S1F,y such that

h(t) = T (t)φ(0) +

∫ t

0

T (t− s)v(s) ds , t ∈ J0

and

h(t) = T (t)φ(0) +

∫ t

0

T (t− s)v(s) ds , t ∈ J0 .

Let 0 ≤ l ≤ 1. Then for each t ∈ J0 we have

[lh+ (1− l)h](t) = T (t)φ(0) +

∫ t

0

T (t− s)[lv(s) + (1− l)v(s)] ds .
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Since S1F,y is convex (because F has convex values) then

lh+ (1− l)h ∈ G(y) .

Claim 2: G sends bounded sets into bounded sets in C(J0, E).

Let Bq := {y ∈ C(J0, E) : ‖y‖∞ = sup
t∈J0

|y(t)| ≤ q} be a bounded set in C(J0, E)

and y ∈ Bq, then for each h ∈ G(y) there exists v ∈ S1F,y such that

h(t) = T (t)φ(0) +

∫ t

0

T (t− s)v(s) ds , t ∈ J0 .

Thus for each t ∈ J0 we get

|h(t)| ≤M‖φ‖+M

∫ t

0

|v(s)| ds

≤M‖φ‖+M‖φq‖L1 .

Claim 3: G sends bounded sets in C(J0, E) into equicontinuous sets.

Let r1, r2 ∈ J0, r1 < r2, Bq := {y ∈ C(J0, E) : ‖y‖∞ ≤ q} be a bounded set in
C(J0, E) as in Claim 2 and y ∈ Bq. For each h ∈ G(y) there exists v ∈ S1F,y such
that

h(t) = T (t)φ(0) +

∫ t

0

T (t− s)v(s) ds , t ∈ J0 .

Hence,

|h(r2)− h(r1)| ≤ |(T (r2)φ(0)− T (r1)φ(0)|+

∣

∣

∣

∣

∫ r2

0

[T (r2 − s)− T (r1 − s)]v(s) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ r2

r1

T (r1 − s)v(s) ds

∣

∣

∣

∣

≤ |(T (r2)φ(0)− T (r1)φ(0)|+

∣

∣

∣

∣

∫ r2

0

[T (r2 − s)− T (r1 − s)]v(s) ds

∣

∣

∣

∣

+ M

∫ r2

r1

|v(s)| ds

≤ |(T (r2)φ(0)− T (r1)φ(0)|+

∣

∣

∣

∣

∫ r2

0

[T (r2 − s)− T (r1 − s)]φr(s) ds

∣

∣

∣

∣

+ M

∫ r2

r1

|φr(s)| ds.

The equicontinuity for the cases r1 < r2 ≤ 0 and r1 ≤ 0 ≤ r2 are obvious.
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Set
U = {y ∈ C([−r, t1], E) : ‖y‖∞ < b0 + 1} .

As a consequence of Claim 2 and Claim 3 together with the Arzela-Ascoli theorem
we can conclude that G : U → 2C([−r,t1],E) is a compact multivalued map.

Claim 4: G has a closed graph.

Let yn → y∗, hn ∈ G(yn) and hn → h∗. We shall prove that h∗ ∈ G(y∗).
hn ∈ G(yn) means that there exists vn ∈ SF,yn

such that

hn(t) = T (t)φ(0) +

∫ t

0

T (t− s)vn(s) ds , t ∈ J0 .

We must prove that there exists v∗ ∈ S1F,y∗

such that

h∗(t) = T (t)φ(0) +

∫ t

0

T (t− s)v∗(s) ds , t ∈ J0 .

Consider the linear continuous operator Γ : L1(J0, E)→ C(J0, E) defined by

(Γv)(t) =

∫ t

0

T (t− s)v(s) ds .

We have

‖(hn − T (t)φ(0))− (h∗ − T (t)φ(0))‖∞ → 0 as n→ ∞ .

From Lemma 2.1 it follows that Γ ◦ S1F is a closed graph operator.
Also from the definition of Γ we have that

hn(t)− T (t)φ(0) ∈ Γ(S1F,yn
) .

Since yn → y∗, it follows from Lemma 2.1 that

h∗(t) = T (t)φ(0) +

∫ t

0

T (t− s)v∗(s) ds , t ∈ J0

for some v∗ ∈ S1F,y∗

.

From the choice of U there is no y ∈ ∂U such that y ∈ λG(y) for any λ ∈ (0, 1).
As a consequence of Lemma 2.2 we deduce that G has a fixed point y0 ∈ U

which is a mild solution of (3.1)–(3.2).

Step 2. Consider now the following problem on J1 := [t1, t2]

y′ −Ay ∈ F (t, yt) , a.e. t ∈ J1 ,(3.3)

y(t+1 ) = I1(y(t
−

1 )) .(3.4)
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Let y be a (possible) mild solution to (3.3)–(3.4). Then for each t ∈ [t1, t2]

y(t)− I1(y(t
−

1 )) ∈

∫ t

t1

T (t− s)F (s, ys) ds .

From (H3) we get

|y(t)| ≤ sup
t∈[−r,t1]

|I1(y0(t
−))|+M

∫ t

t1

p(s)ψ(‖ys‖) ds , t ∈ [t1, t2] .

We consider the function µ1 defined by

µ1(t) = sup{|y(s)| : t1 ≤ s ≤ t} , t1 ≤ t ≤ t2 .

Let t∗ ∈ [t1, t] be such that µ1(t) = |y(t∗)|. Then we have for t ∈ [t1, t2]

µ1(t) ≤ N1 +M

∫ t

t1

p(s)ψ(µ1(s)) ds .

Let us take the right-hand side of the above inequality as v1(t), then we have

v1(t1) = N1 , µ1(t) ≤ v1(t) , t ∈ [t1, t2]

and

v′1(t) =Mp(t)ψ(µ1(t)) , t ∈ [t1, t2] .

Using the nondecreasing character of ψ we get

v′1(t) ≤Mp(t)ψ(v1(t)) , t ∈ [t1, t2] .

This implies for each t ∈ [t1, t2] that

∫ v1(t)

N1

dτ

ψ(τ)
≤M

∫ t2

t1

p(s) ds .

In view of (H3), we obtain

|v1(t
∗)| ≤ Γ−12

(

M

∫ t2

t1

p(s)ds

)

:=M1 .

Since for every t ∈ [t1, t2], ‖yt‖ ≤ µ1(t), we have

sup
t∈[t1,t2]

|y(t)| ≤M1 .
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A mild solution to (3.3)-(3.4) is a fixed point of the operator G : C(J1, E) →
2C(J1,E) defined by

G(y) :=

{

h ∈ C(J1, E) : h(t) = I1(y(t
−

1 )) +

∫ t

t1

T (t− s)v(s) ds : v ∈ S1F,y

}

.

Set
U = {y ∈ C(J1, E) : ‖y‖∞ < M1 + 1} .

As in Step 1 we can show that G : U → 2C(J1,E) is a compact multivalued map
and u.s.c. From the choice of U there is no y ∈ ∂U such that y ∈ λG(y) for any
λ ∈ (0, 1).
As a consequence of Lemma 2.2 we deduce that G has a fixed point y1 ∈ U

which is a mild solution of (3.3)-(3.4).
Step 3. Continue this process and construct solutions yk ∈ C(Jk, E), k =

2, . . . ,m to

y′ −Ay ∈ F (t, yt) , a.e. t ∈ Jk ,(3.5)

y(t+k ) = Ik(y(t
−

k )) .(3.6)

Then

y(t) =































y0(t), t ∈ [−r, t1]

y1(t), t ∈ (t1, t2]

...

ym−1(t), t ∈ (tm−1, tm]

ym(t), t ∈ (tm, b]

is a mild solution of (1.1)-(1.3). �
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