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ON A NEW SET OF ORTHOGONAL POLYNOMIALS

FRANZ HINTERLEITNER

Abstract. An orthogonal system of polynomials, arising from a second-
order ordinary differential equation, is presented.

1. Introduction

Most of the popular families of orthogonal polynomials in mathematical text
books have their origin in differential equations occurring in theoretical physics.
This is also the case for the polynomials constructed in the present paper. The fol-
lowing second-order linear ordinary differential equation emerges as wave equation
for the physical state functions f(x) of a quantized closed Friedmann cosmological
model [1]:

(

x
d2

dx2
− d

dx
− x3 + Mx2

)

f(x) = 0(1)

Up to constants, the variable x is the radius of the universe and M is its total
mass in units of Planck masses. Here we assume a domain −∞ < x < ∞.

The main subject of this paper, another differential equation, is obtained from
(1) by splitting off from f(x) an exponential function describing the two possible
kinds of asymptotic behaviour of the solutions,

f(x) = e±( x
2

2
−M

2
x) p(x) .(2)

From the physical point of view only the exponentially falling functions are inter-
esting.

2. The reduced equation

Inserting (2) (with the negative sign in the exponent) into (1) we obtain

x p′′(x) − (2x2 − Mx + 1) p′(x) +

(

M2

4
x − M

2

)

p(x) = 0 .(3)
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According to the standard classification [2] this equation has two singular points:
x = 0 and x = ∞. To determine the type of singularity at x = 0 we set

p(x) = xα

∞
∑

k=0

ak xk ,(4)

insert (4) into (3) and set the arising coefficients of the powers of x equal to zero.
From the lowest power we obtain the indicial equation

α(α − 2) = 0 .(5)

The fact that it has two solutions, α = 0 and α = 2, classifies x = 0 as regular
singular point. In consequence, there are two linearly independent solutions with
the expansions

p(0)(x) =

∞
∑

k=0

ak xk , respectively, p(2)(x) = x2
∞
∑

k=0

bk xk(6)

in a neighbourhood of x = 0, which converge for all real x, because the next
singular point of the differential equation is at infinity. Inserting the expression
for p(0) into (3), we deduce recurrence formulae for the coefficients ak. From the
vanishing of the coefficients of both the zeroth and the first power of x we obtain
only one equation,

a1 = −M

2
a0 .(7)

a2 is not restricted at all, the general recurrence relation for k > 1 is

ak+1 =
8(k − 1) − M2

4(k − 1)(k + 1)
ak−1 −

M(2k − 1)

2(k − 1)(k + 1)
ak .(8)

There are two free parameters, a0 and a2. The second expansion, p(2), is obtained
simply by setting a0 = 0, then a1 = 0 automatically and a2 corresponds to b0, so
(8) allows to calculate both linearly independent solutions from (6).

The second singular point, infinity, is an irregular one, where, according to [2],
one can expect an asymptotic behaviour like

p(x) = eλx2+µx xβ

∞
∑

k=0

ck x−k .(9)

Insertion into (3) yields the indicial equation

λ(λ − 1) = 0 ;(10)

λ = 1 leads to the asymptotically growing solution indicated in (2). For λ = 0
it follows that also µ = 0, so this solution has the asymptotic form of a Laurent
series.
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3. The polynomials

We insert the asymptotic series, which is not exponentially increasing,

p(x) = xβ

∞
∑

k=0

ck x−k(11)

into (3). Demanding that the coefficient of the highest power vanishes, yields

β =
M2

8
,(12)

so the asymptotic expansion contains positive powers. As the radius of convergence
of the series in (6) is infinite, the positive powers of (11) must agree with p(0) or
p(2) and, in consequence, one of these series must be identical with (11). This
means further that the principal part of the latter must vanish, as well as that at
least one of p(0) and p(2) must be finite, i. e. of order β. The conclusion from this
is that (1) has an exponentially falling solution only when M 2/8 is a non-negative
integer and when the associated solution p(x) of (3) is a polynomial. From the
vanishing of the terms proportional to x0 and x−1 we obtain

(

2 +
M2

4

)

cβ+1 =
M

2
cβ + cβ−1(13)

and
(

4 +
M2

4

)

cβ+2 =
3M

2
cβ+1 .(14)

So, if

cβ−1 = −M

2
cβ ,(15)

both cβ+1 and cβ+2 vanish and so do all the negative powers, because, the recur-
rence relation expresses every ck by the foregoing two coefficients, analogous to
(8). (15) corresponds to (7), this shows that it is p(0) which has a chance to agree
with (11). Indeed, as p(0)(x) contains two independent parameters, in the case
when M2/8 is equal to a positive integer n, it is possible to adjust the ratio a2 : a0

in such a way that the series terminates after the n-th power.
The lowest order polynomial, obtained in this way, is of first degree, but it

is immediately obvious that also a constant is a solution of (3) if M = 0. The

first seven polynomials for non-negative values of Mn = +2
√

2n are given by the
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following formulae:

p0(x) = 1 ,

p1(x) = 1 −
√

2x ,

p2(x) = 1 − 2 x +
2

3
x2 ,

p3(x) = 1 −
√

6x +
10

7
x2 − 2

√
6

21
x3 ,(16)

p4(x) = 1 − 2
√

2x +
132

59
x2 − 28

√
2

59
x3 +

4

59
x4 ,

p5(x) = 1 −
√

10x +
452

147
x2 − 20

√
10

49
x3 +

12

49
x4 − 4

√
10

735
x5 ,

p6(x) = 1 − 2
√

3x +
2670

679
x2 − 2440

√
3

2037
x3 +

380

679
x4 − 88

√
3

2037
x5 +

8

2037
x6 .

For Mn = −2
√

2n we denote the polynomials by p−n. From (3) it may be seen
that

p−n(x) = pn(−x) .(17)

(The physical application was restricted to positive values of Mn.)
Orthogonality of the functions fn(x) formed by pn(x) times the exponential

function in (2) is easily shown by dividing (1) by x2, which transforms it into a
hermitian eigenvalue equation with respect to the measure dx,

Lx f(x) :=

(

d

dx

1

x

d

dx
− x

)

f(x) = −Mf(x) .(18)

Therefore two eigenfunctions, fn(x) = e−
x
2

2
+ Mn

2
x pn(x) and fm(x), associated to

Mn and Mm, respectively, are orthogonal in the sense of the inner product

〈fn, fm〉 =

∫ ∞

−∞
dx fn(x)fm(x)(19)

and the polynomials (16) are orthogonal in the sense of the inner product

〈pn, pm〉 =

∫ ∞

−∞
dx e−x2+(

√
2n+

√
2m)x pn(x) pm(x) .(20)

The operator Lx has a completely nondegenerate spectrum and is self-adjoint on
the space of functions with compact support on the positive or on the negative
real axis (without 0). As this spectrum is dense in the Hilbert space L2(R, dx),
the eigenfunctions provide a basis of L2(R, dx).

For the sake of completeness, given a solution pn, a second linearly indepen-
dent solution of (3) (which has the expansion p(2)(x)), can be found by standard
methods,

qn(x) = pn(x)

∫ x x′

p2
n(x′)

ex′2−Mnx′

dx′,(21)



ON A NEW SET OF ORTHOGONAL POLYNOMIALS 121

so that we have finally a fundamental system of solutions in closed form for the
equations

(

x
d2

dx2
− d

dx
− x3 ± 2

√
2nx2

)

f(x) = 0 , n = 0, 1, 2, . . .(22)
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