MAXIMAL COMPLETION OF A PSEUDO MV-ALGEBRA

JÁN JAKUBÍK

Abstract

In the present paper we investigate the relations between maximal completions of lattice ordered groups and maximal completions of pseudo $M V$-algebras.

1. Introduction

The notion of a pseudo $M V$-algebra (denoted also as a noncommutative $M V$ algebra) has been introduced independently by Georgescu and Iorgulescu [8], [9] and by Rachůnek [16]. It is defined to be an algebraic structure $\mathcal{A}=\left(A ; \oplus,^{-}, \sim, 0\right.$, $1)$ of type $(2,1,1,0,0)$ satisfying certain axioms (cf. Section 2 below).

Dvurečenskij [5] proved that each pseudo $M V$-algebra \mathcal{A} can be constructed by means of a lattice ordered group G with a strong unit u. This generalized the well-known result concerning $M V$-algebras (cf., e.g., the monograph Cignoli, D'Ottaviano and Mundici [2]).

In the method of Dvurečenskij a partial binary operation + on the underlying set A of the pseudo $M V$-algebra \mathcal{A} was applied in an essential way.

The maximal completion $M(\mathcal{A})$ of an $M V$-algebra \mathcal{A} has been investigated in [12].

In the present paper we use Dvurečenskij's result for dealing with the maximal completion of a pseudo $M V$-algebra.

We prove that if \mathcal{A} is constructed by means of a lattice ordered group G with a strong unit u (i.e., if $\mathcal{A}=\Gamma(G, u)$, in the notation of [5]), then the maximal completion $M(\mathcal{A})$ of \mathcal{A} can be constructed by means of the maximal completion of the lattice ordered group G.

If the pseudo $M V$-algebra \mathcal{A} is archimedean, then according to [5], \mathcal{A} is an $M V$-algebra. In this case $M(\mathcal{A})$ coincides with the Dedekind completion $D(\mathcal{A})$ of \mathcal{A}.

[^0]
2. Preliminaries

For pseudo $M V$-algebras we apply the terminology and notation from [8], [9]; cf. also Dvurečenskij and Pulmannová [4]. For the sake of completeness, we recall the basic definition.
2.1. Definition. Assume that A is a nonempty set. Let $\mathcal{A}=\left(A ; \oplus,{ }^{-}, \sim, 0,1,\right)$ be an algebraic structure of type $(2,1,1,0,0)$. For $x, y \in A$ we put

$$
y \odot x=\left(x^{-} \oplus y^{-}\right)^{\sim}
$$

The structure \mathcal{A} is a pseudo $M V$-algebra if the following axioms (A1) - (A8) are satisfied for each $x, y, z \in A$:
(A1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$;
(A2) $x \oplus 0=0 \oplus x=x$;
(A3) $x \oplus 1=1 \oplus x=1$;
(A4) $1^{\sim}=0 ; 1^{-}=0$;
(A5) $\left(x^{-} \oplus y^{-}\right)^{\sim}=\left(x^{\sim} \oplus y^{\sim}\right)^{-}$;
(A6) $x \oplus\left(x^{\sim} \odot y\right)=y \oplus\left(y^{\sim} \odot x\right)=\left(x \odot y^{-}\right) \oplus y=\left(y \odot x^{-}\right) \oplus x$;
(A7) $x \odot\left(x^{-} \oplus y\right)=\left(x \oplus y^{\sim}\right) \odot y$;
(A8) $\left(x^{-}\right)^{\sim}=x$.
Suppose that \mathcal{A} is a pseudo $M V$-algebra. For $x, y \in A$ we put $x \leqq y$ if $x^{-} \oplus y=$ 1. Then $(A ; \leqq)$ turns out to be a distributive lattice with the least element 0 and with the greatest element 1 . We denote $(A ; \leqq)=\ell(\mathcal{A})$.

In [4], a partial binary operation + on the set A has been defined as follows: for $x, y \in A$ the partial operation $x+y$ is defined if and only if $x \leqq y^{-}$; in this case $x+y=x \oplus y$.

For lattice ordered groups we apply the notation as in Conrad [3]. Let G be a lattice ordered group with a strong unit u. For $x, y \in G$ we put

$$
\begin{gathered}
x \oplus y=(x+y) \wedge y \\
x^{-}=u-x, \quad x^{\sim}=-x,+u, \quad 1=u
\end{gathered}
$$

Further, let A be the interval $[0, u]$ of G. Then the structure $(A ; \oplus,-, \sim, 0,1)$ is a pseudo $M V$-algebra which will be denoted by $\Gamma(G, u)$. (Cf. [9].)
2.2. Theorem (Cf. [5]). For each pseudo MV-algebra \mathcal{A} there exists a lattice ordered group G with a strong unit u such that $\mathcal{A}=\Gamma(G, u)$.

Let us also remark that for $x, y \in[0, u]$ the above mentiond partial operation + coincides with the operation + as defined in G. Also, the partial order \leqq on A is that induced from the partial order in G.

3. MAXIMAL COMPLETION OF A LATTICE ORDERED GROUP

The maximal completion G_{D} of a lattice ordered group G has been constructed by Everett [6] in the case of an abelian lattice ordered group G and by Černák [1] in the general case; cf. also the monograph Fuchs [7], Chapter V, $\S 10$.

We will apply G_{D} by constructing the maximal completion \mathcal{A}_{D} of a pseudo $M V$-algebra \mathcal{A} (cf. Section 5 below).

In the present section we recall the corresponding definitions concerning G_{D}. For establishing a deeper insight into the structure of G_{D}, we present also some steps of its construction; analogous steps will be used by constructing \mathcal{A}_{D}.

We remark that in $[6]$ and $[7]$ a different terminology and notation have been applied.

Let G be a lattice ordered group. For each subset X of G we denote by X^{u} (and X^{ℓ}) the set of all upper bounds (or lower bounds, respectively) of the set X.

We denote by $d(G)$ the system of all sets

$$
X^{\#}=X^{u \ell},
$$

where X runs over the system of all nonempty upper bounded subsets of G. If $X=\{x\}$, then we write $x^{\#}$ instead of $\{x\}^{\#}$.

The system $d(G)$ is partially ordered by the set-theoretical inclusion. Then $d(G)$ is a conditionally complete lattice. Namely, if $\emptyset \neq\left\{C_{i}\right\}_{i \in I} \subseteq d(G)$, then

$$
\bigwedge_{i \in I} C_{i}=\bigcap_{i \in I} C_{i}
$$

holds in $d(G)$. Moreover, if $C_{0} \in d(G)$ and $C_{0} \geqq C_{i}$ for each $i \in I$, then the relation

$$
\bigvee_{i \in I} C_{i}=\left(\bigcup_{i \in I} C_{i}\right)^{\#}
$$

is valid in $d(G)$.
Let $\ell(G)$ be the underlying lattice of G. The mapping

$$
x \rightarrow x^{\#} \quad(x \in G)
$$

is an embedding of $\ell(G)$ into $d(G)$ preserving all suprema and infima existing in $\ell(G)$.

For $X, Y \subseteq G$ we put, as usual,

$$
X+Y=\{x+y: x \in X, y \in Y\}, \quad-X=\{-x: x \in X\} .
$$

Further, for $X, Y \in d(G)$ we set

$$
X+_{0} Y=(X+Y)^{\#} .
$$

3.1. Lemma (Cf. [7]). The system $d(G)$ with the relation \leqq and with the operation $+_{0}$ is a partially ordered semigroup. If $x, y \in G$, then

$$
(x+y)^{\#}=x^{\#}+{ }_{0} y^{\#} .
$$

Further, $0^{\#}$ is the neutral element of this semigroup.
3.2. Lemma (Cf. [7]). The set G_{D} of all elements of $d(G)$ which have an inverse is a group.

Let P be the positive cone of G.
3.3. Lemma (Cf. [7]). Let $C \in d(G)$. Then C has a left inverse in $d(G)$ if and only if some of the following equivalent conditions is satisfied:
(i) $\left((-C)^{\ell}+C\right)^{u}=P$.
(ii) If $x \in G$ and $C^{u}+x \subseteq C^{u}$, then $x \in P$.

An analogous result holds for the right inverses in $d(G)$.
Let $C \in d(G)$. Consider the following conditions for C :
(iii) The relation

$$
\bigwedge_{c \in C, b \in C^{u}}(-c+b)=0
$$

is valid in G.
(ii ${ }_{2}$) The relation

$$
\bigwedge_{c \in C, b \in C^{u}}(b-c)=0
$$

is valid in G.
3.4. Proposition. Let $C \in d(G)$. Then C has an inverse in $d(G)$ if and only if the conditions $\left(\mathrm{ii}_{1}\right)$ and (ii_{2}) are satisfied in G.

Proof. This is a consequence of 1.3 in [1].
3.5. Lemma. Let $C \in G_{D}$. Then $C \vee 0^{\#} \in G_{D}$.

Proof. Denote

$$
C^{u}=B, \quad C \vee 0^{\#}=C_{1}, \quad C_{1}^{u}=B_{1} .
$$

We have

$$
\left(C \cup 0^{\#}\right)^{u}=(C \cup\{0\})^{u}
$$

whence

$$
\begin{aligned}
& C_{1}=\left(C \cup\{0\}^{\#}\right)^{u \ell}=(C \cup\{0\})^{u \ell}, \\
& B_{1}=(C \cup\{0\})^{u \ell u}=(C \cup\{0\})^{u} .
\end{aligned}
$$

Thus

$$
B_{1}=\left\{b_{1} \in G: b_{1} \geqq c \vee 0 \quad \text { for each } c \in C\right\}
$$

Since $C_{1} \in d(G)$ we get $C_{1}=B_{1}^{\ell}$ and hence C_{1} is the set of all $c_{1} \in G$ such that
$(+) c_{1} \leqq b_{1}$ whenever $b_{1} \in G$ and $b_{1} \geqq c \vee 0$ for each $c \in C$.

Let $c_{0} \in C$ and $b_{0} \in B$. Then

$$
b_{0} \vee 0 \geqq c \vee 0 \quad \text { for each } c \in C \text {, }
$$

whence $b_{0} \vee 0 \in B_{1}$.
Let $b_{1} \in G, b_{1} \geqq c \vee 0$ for each $c \in C$. Then, in particular, $c_{0} \vee 0 \leqq b_{1}$. Thus in view of (+) we get $c_{0} \vee 0 \in C_{1}$.

Denote $x=b_{0} \wedge\left(c_{0} \vee 0\right)$. Since

$$
b_{0} \vee\left(c_{0} \vee 0\right)=b_{0} \vee 0,
$$

we get

$$
0 \leqq\left(b_{0} \vee 0\right)-\left(c_{0} \vee 0\right)=b_{0}-x \leqq b_{0}-c_{0} .
$$

Therefore from the relation $C \in G_{D}$ and from 3.4 we obtain

$$
\bigwedge_{0 \in B, c_{0} \in C}\left(\left(b_{0} \vee 0\right)-\left(c_{0} \vee 0\right)\right)=0 .
$$

We verified that $b_{0} \vee 0 \in B_{1}, c_{0} \vee 0 \in C_{1}$. Hence we conclude that

$$
\bigwedge_{b_{1} \in B_{1}, c_{1} \in C_{1}}\left(b_{1}-c_{1}\right)=0
$$

Similarly we obtain

$$
\bigwedge_{b_{1} \in B_{1}, c_{1} \in C_{1}}\left(-c_{1}+b_{1}\right)=0 .
$$

By applying 3.4 again we get $C_{1} \in G_{D}$, completing the proof.
The system G_{D} is partially ordered by the set-theoretical inclusion (i.e., by the relation of partial order induced from $d(G)$. Then G_{D} is a partially ordered group.

Since $C, 0^{\#}$ and $C \vee 0^{\#}=C_{1}$ belong to G_{D}, we conclude
3.6. Lemma. $C \vee 0^{\#}$ is the least upper bound of the set $\left\{C, 0^{\#}\right\}$ in G_{D}.
3.7. Lemma (Cf. [3]). Let H be a partially ordered group such that for each $h \in H$, the element $\sup \{0, h\}$ exists in H. Then H is a lattice ordered group.

From 3.6 and 3.7 we obtain
3.8. Proposition (Cf. Černák [1]). G_{D} is a lattice ordered group.

Since the mapping $x \rightarrow x^{\#}(x \in G)$ is an embedding of G into $d(G)$ preserving the partial order, in view of 3.1 and of the fact that $x^{\#} \in G_{D}$ for each $x \in G$, we conclude that the mentioned mapping is an embedding of the lattice ordered group G into the lattice ordered group G_{D}.

We often identify the element x of G with the element $x^{\#}$ of G_{D}. Then G turns out to be an ℓ-subgroup of G_{D}.

We call G_{D} the maximal completion of G (the terms maximal Dedekind completion or Dedekind completion have also been used in the literature). We use the term 'Dedekind completion' for G_{D} in the case when G is archimedean. It is well-known that in such case we have $G_{D}=d(G)$; otherwise, $G_{D} \neq d(G)$.
4. Further results on G_{D} and $d(G)$

Assume that $G, d(G)$ and G_{D} are as above. In this section we denote the suprema and infima in $d(G)$ (or in G_{D}) by the symbols \vee^{1}, \wedge^{1} (and by \vee^{2}, \wedge^{2}, respectively).

If $X \in d(G)$ and if X has an inverse element in $d(G)$, then this element will be denoted by $-{ }_{0} X$. In view of the definition of G_{D}, this element is also the inverse of X in G_{D}.
4.1. Lemma (Cf. [7]). Let $A, B, C \in d(G)$. Then

$$
\begin{aligned}
& \left(A \vee^{1} B\right)+_{0} C=\left(A+{ }_{0} C\right) \vee^{1}\left(B+{ }_{0} C\right), \\
& C+{ }_{0}\left(A \vee^{1} B\right)=\left(C+{ }_{0} A\right) \vee^{1}\left(C+{ }_{0} B\right) .
\end{aligned}
$$

4.2. Lemma. The lattice G_{D} is a sublattice of the lattice $d(G)$.

Proof. Let $X, Y \in G_{D}$. Since G_{D} is a lattice ordered group, we have

$$
\left(-{ }_{0} X\right)+{ }_{0}\left(X \vee^{2} Y\right)=0^{\#} \vee^{2}\left(-{ }_{0} X+{ }_{0} Y\right)
$$

Put $-{ }_{0} X+{ }_{0} Y=Z$. According to 3.6,

$$
\begin{equation*}
0^{\#} \vee^{2} Z=0^{\#} \vee^{1} Z \tag{1}
\end{equation*}
$$

Further, 4.1 yields

$$
\left(-{ }_{0} X\right)+_{0}\left(X \vee^{1} Y\right)=0^{\#} \vee^{1}\left(-{ }_{0} X+{ }_{0} Y\right)
$$

By applying (1) we obtain $X \vee^{1} Y=X \vee^{2} Y$.
If $X \in d(G)$ and $y \in G$, then, obviously,

$$
\begin{equation*}
y \in X \Leftrightarrow y^{\#} \leqq X \tag{*}
\end{equation*}
$$

Further, in view of Section 3 we have

$$
X \wedge^{1} Y=X \cap Y
$$

Put $X \wedge^{2} Y=Z$. Let $g \in G$. By (*),

$$
g \in Z \Leftrightarrow g^{\#} \leqq Z
$$

Further, $g^{\#} \leqq Z$ if and only if $g^{\#} \leqq X$ and $g^{\#} \leqq Y$; by using $(*)$ again we get that this is satisfied if and only if $g \in X$ and $g \in Y$. Hence $Z=X \cap Y$ and therefore $X \wedge^{1} Y=X \wedge^{2} Y$.
4.3. Lemma. Let $\left\{X_{i}\right\}_{i \in I}$ be a nonempty system of elements of G_{D} and $Z \in G_{D}$. Suppose that

$$
\bigvee_{i \in I}^{2} X_{i}=Z
$$

Then $\bigvee_{i \in I}^{1} X_{i}=Z$.
Proof. It suffices to verify that the element

$$
T=\bigvee_{i \in I}^{1} X_{i}
$$

of $d(G)$ belongs to G_{D}. By way of contradiction, assume that T fails to be an element of G_{D}. Then we must have

$$
\begin{equation*}
Z>T \tag{1}
\end{equation*}
$$

Denote $Y=\bigcup_{i \in I} X_{i}$. For $i \in I$ let

$$
X_{i}=\left\{x_{i j}\right\}_{j \in J(i)}
$$

Then $T=Y^{\#}$.
Since T does not belong to G_{D}, in view of 3.4 , some of the conditions (ii ${ }_{1}$) or (ii_{2}) from Section 3 is not satisfied. Assume that (ii_{2}) is not valid (the case of (ii ${ }_{1}$) is analogous).

Thus there exists $0<a \in G$ such that for every $y \in T$ and every $p \in Y^{u}$ the relation

$$
a+y \leqq p
$$

is satisfied. In particular, the relation

$$
\begin{equation*}
a+x_{i j} \leqq p \tag{2}
\end{equation*}
$$

is valid for each $i \in I, j \in J(i)$ and $p \in Y^{u}$.
In view of $(*)$, for each $C \in G_{D}$ we have

$$
C=\bigvee_{c \in C}^{1} c^{\#}
$$

Thus we get

$$
X_{i}=\bigvee_{j \in J(i)}^{2} x_{i j}^{\#}
$$

whence

$$
\begin{gathered}
Z=\bigvee_{i \in I, j \in J(i)}^{2} x_{i j}^{\#} \\
Z<a^{\#}+{ }_{0} Z=\bigvee_{i \in I, j \in J(i)}^{2}\left(a^{\#}+{ }_{0} x_{i j}^{\#}\right)=\bigvee_{i \in I, j \in J(i)}^{2}\left(a+x_{i j}\right)^{\#}
\end{gathered}
$$

From (2) we obtain

$$
\left(a+x_{i j}\right)^{\#} \leqq p^{\#}
$$

for each $i \in I, j \in J(i)$ and $p \in Y^{u}$. Thus $Z \leqq p^{\#}$, hence $z \leqq p$ for each $z \in Z$. Therefore

$$
Z \subseteq Y^{u \ell}=Y^{\#}=T
$$

In view of (1), we arrived at a contradiction.
4.4. Corollary. G_{D} is a conditionally complete sublattice of $d(G)$.

Consider the mapping $\varphi(x)=x^{\#}$ of G into G_{D}.
4.5. Lemma. The mapping φ preserves all suprema and infima existing in G.

Proof. Let $\left\{x_{i}\right\}_{i \in I} \subseteq G, x \in G$ and suppose that $x=\bigvee_{i \in I} x_{i}$ in G. Then we have

$$
x^{\#}=\bigvee_{i \in I}^{1} x_{i}^{\#}
$$

Since $x^{\#} \in G_{D}$, the above relation holds also in G_{D}, i.e.,

$$
x^{\#}=\bigvee_{i \in I}^{2} x_{i}^{\#}
$$

Analogously we can verify the dual assertion.
Now let us identify the element x of G with the element $x^{\#}$ of $d(G)$. We introduce the following definition.
4.6. Definition. Let G be as above and let H be a lattice ordered group such that
(a) G is an ℓ-subgroup of H;
(b) the underlying lattice $\ell(H)$ of H is a sublattice of the lattice $d(G)$;
(c) for $h_{1}, h_{2} \in H$ we have $h_{1}+h_{2}=h_{1}+{ }_{0} h_{2}$.

Then H is said to be a c-extension of G.
Let $\mathcal{C}(G)$ be the system of all c-extensions of G. This system is partially ordered by the set-theoretical inclusion.

From the definition of G_{D} and from 4.5 we obtain
4.7. Proposition. G_{D} is the greatest element of the system $\mathcal{C}(G)$.

For each $C \in G_{D}$ there exists $g \in G$ such that $C \leqq g^{\#}$. From this we conclude
4.8. Lemma. Assume that G has a strong unit u. Then $u^{\#}$ is a strong unit of the lattice ordered group G_{D}.

5. A construction for pseudo $M V$-algebras

In this section we define the notion of a maximal completion of a pseudo $M V$ algebra.

Let \mathcal{A} be a pseudo $M V$-algebra with the underlying set A. The corresponding lattice is denoted by $\ell(\mathcal{A})$.

In view of 2.2 , there exists a lattice ordered group G with a strong unit u such that $\mathcal{A}=\Gamma(G, u)$.

For $T \subseteq A$ we denote by $T^{u(1)}$ (and $T^{\ell(1)}$) the set of all upper bounds (or the set of all lower bounds, respectively) of the set T in $\ell(\mathcal{A})$. We put

$$
T^{u(1) \ell(1)}=T^{\#(1)}
$$

The system

$$
d(A)=\left\{T^{\#(1)}: T \subseteq A\right\}
$$

is partially ordered by the set-theoretical inclusion. Thus $d(A)$ is the Dedekind completion of the lattice $\ell(\mathcal{A})$. The mapping $x \rightarrow x^{\#(1)}$ is an embedding of $\ell(\mathcal{A})$ into $d(A)$ preserving all suprema and infima existing in $\ell(\mathcal{A})$.

Let A^{*} be the interval with the endpoints $0^{\#}$ and $u^{\#}$ of the lattice $d(G)$. For each $P \in A^{*}$ we put

$$
\varphi_{1}(P)=P \cap A
$$

From Lemma 3.1 in [12] we obtain (since the proof of this lemmas remains valid in the non-commutative case as well)
5.1. Lemma. φ_{1} is an isomorphism of the lattice A^{*} onto the lattice $d(A)$.
5.1.1. Lemma. Let $\emptyset \neq C \subseteq G$. Assume that C is upper bounded. Then

$$
C^{\#}=\bigvee_{c \in C}^{1} c^{\#}
$$

Proof. Let $c \in C$. Hence $\{c\} \subseteq C$, thus $c^{\#}=\{c\}^{\#} \leqq C^{\#}$. Let $Z \in d(G)$ and $c^{\#} \leqq Z$ for each $c \in C$. Then $c \in Z$ for each $c \in C$, whence $C \subseteq Z$ and then $C^{\#} \leqq Z^{\#}=Z$. Thus the assertion of the lemma is valid.

By a similar method as in the proof of 5.1.1 we can verify
5.1.2. Lemma. Let $\emptyset \neq C \subseteq A$. Then the relation

$$
C^{\#(1)}=\bigvee_{c \in C} c^{\#(1)}
$$

is valid in the lattice $d(A)$.
Let $g \in A$. Then

$$
g^{\#}=\left\{g_{1} \in G: g_{1} \leqq g\right\}, \quad g^{\#(1)}=\left\{g_{1} \in A: g_{1} \leqq g\right\}
$$

Thus we have
5.1.3. Lemma. For each $g \in A, \varphi_{1}\left(g^{\#}\right)=g^{\#(1)}$.

Let T_{1} and T_{2} be elements of $d(A)$. We put

$$
T_{1} \oplus T_{2}=\left\{t_{1} \oplus t_{2}: t_{1} \in T_{1}, t_{2} \in T_{2}\right\}^{\#(1)}
$$

5.2. Lemma. Let $T_{1}, T_{2} \in d(A)$. Then

$$
T_{1} \oplus T_{2}=\sup \left\{t_{1} \oplus t_{2}: t_{1} \in T_{1}, t_{2} \in T_{2}\right\}
$$

Proof. This is a consequence of 5.1.2.
Since the operation \oplus on A is associative, from 5.2 we conclude
5.3. Lemma. The set $d(A)$ with the operation \oplus is a semigroup.

The following definition is analogous to 4.6; cf. also [12], 3.6.
5.4. Definition. Let \mathcal{A} be as above and let \mathcal{B} be a pseudo $M V$-algebra with the underlying set B such that
(a) \mathcal{A} is a subalgebra of \mathcal{B};
(b) $\ell(\mathcal{B})$ is a sublattice of $d(A)$;
(c) (B, \oplus) is a subsemigroup of the semigroup $(d(A), \oplus)$.

Then \mathcal{B} is called a c-extension of \mathcal{A}.
5.5. Definition. Let \mathcal{B}_{1} be a c-extension of \mathcal{A} such that, whenever \mathcal{B} is a c extension of \mathcal{A}, then \mathcal{B} is a subalgebra of \mathcal{B}_{1}. We call \mathcal{B}_{1} a maximal completion of \mathcal{A}. We denote $\mathcal{B}_{1}=M(\mathcal{A})$.

Consider the lattice ordered group G_{D} from Section 3. In view of $4.8, G_{D}$ has the strong unit $u^{\#}$. Hence we can construct the pseudo $M V$-algebra $\mathcal{M}_{0}=$ $\Gamma\left(G_{D}, u^{\#}\right)$. Let M_{0} be the underlying set of \mathcal{M}_{0}. We have

$$
G_{D} \subseteq d(G), \quad M_{0} \subseteq A^{*}
$$

5.6.1. Lemma. Let $Z_{1}, Z_{2} \in M_{0}$. Further, let \oplus be the corresponding operation from \mathcal{M}_{0}. Then

$$
Z_{1} \oplus Z_{2}=\sup _{z_{1} \in Z_{1}, z_{2} \in Z_{2}}\left\{\left(\left(z_{1}+z_{2}\right) \wedge u\right)^{\#}\right\}
$$

where sup is taken with respect to the underlying lattice of \mathcal{M}_{0}.
Proof. In view of the definition of $\Gamma\left(G_{D}, u^{\#}\right)$ we have

$$
Z_{1} \oplus Z_{2}=\left(Z_{1}+_{0} Z_{2}\right) \wedge u^{\#}
$$

Further,

$$
Z_{1}+_{0} Z_{2}=\left\{z_{1}+z_{2}: z_{1} \in Z_{1}, z_{2} \in Z_{2}\right\}^{\#}
$$

Thus according to 5.1.1,

$$
Z_{1}+{ }_{0} Z_{2}=\bigvee_{z_{1} \in Z_{1}, z_{2} \in Z_{2}}^{2}\left(z_{1}+z_{2}\right)^{\#}
$$

Because each lattice ordered group is infinitely distributive, we get

$$
\begin{aligned}
\left(Z_{1}+{ }_{0} Z_{2}\right) \wedge u^{\#} & =\left(\bigvee_{z_{1} \in Z_{1}, z_{2} \in Z_{2}}^{2}\left(z_{1}+z_{2}\right)^{\#}\right) \wedge u^{\#} \\
& =\bigvee_{z_{1} \in Z_{1}, z_{2} \in Z_{2}}^{2}\left(\left(z_{1}+z_{2}\right)^{\#} \wedge u^{\#}\right)
\end{aligned}
$$

Since the mapping $x \rightarrow x^{\#}$ of G into G_{D} preserves the operations + and \wedge we obtain

$$
\left(Z_{1}+{ }_{0} Z_{2}\right) \wedge u^{\#}=\bigvee_{z_{1} \in Z_{1}, z_{2} \in Z_{2}}^{2}\left(\left(z_{1}+z_{2}\right) \wedge u\right)^{\#}
$$

The underlying lattice of \mathcal{M}_{0} is an interval of the lattice $\ell(G)$, thus

$$
\bigvee_{z_{1} \in Z_{1}, z_{2} \in Z_{2}}^{2}\left(\left(z_{1}+z_{2}\right) \wedge u\right)^{\#}=\sup _{z_{1} \in Z_{1}, z_{2} \in Z_{2}}\left\{\left(\left(z_{1}+z_{2}\right) \wedge u\right)^{\#}\right\}
$$

Let $Z_{1} \in M_{0}$ and $T_{1}=\varphi_{1}\left(Z_{1}\right)$. Hence $z_{1} \leqq u$ for each $z_{1} \in Z_{1}$. Further, $0 \leqq z_{1} \leqq z_{1} \vee 0 \leqq u$, thus $z_{1} \vee 0 \in T_{1}$ and analogously for Z_{2}. Therefore we have

$$
Z_{1}+{ }_{0} Z_{2}=\bigvee_{z_{1} \in T_{1}, z_{2} \in T_{2}}^{2}\left(z_{1}+z_{2}\right)^{\#}
$$

From this we conclude
5.6.2. Lemma. In the formula for $Z_{1} \oplus Z_{2}$ in 5.6.1, the relations $z_{1} \in Z_{1}, z_{2} \in Z_{2}$ can be replaced by $z_{1} \in T_{1}, z_{2} \in T_{2}$.

Let Z_{i} and $T_{i}(i=1,2)$ be as above. According to 5.2 we have

$$
T_{1} \oplus T_{2} \sup _{t_{1} \in T_{1}, t_{2} \in T_{2}}\left\{\left(t_{1}+t_{2}\right) \wedge u\right\}^{\#(1)} .
$$

Therefore according to 5.6.1, 5.6.2 and 5.1.2 we conclude
5.7. Lemma. φ_{1} is an isomorphism of the semigroup $\left(M_{0}, \oplus\right)$ onto the semigroup $\left(\varphi_{1}\left(M_{0}\right), \oplus\right)$.
(In fact, we use the symbol φ_{1} also for the partial mapping $\varphi_{1} \mid M_{0}$.)
In view of 4.5 , the lattice $\ell\left(G_{D}\right)$ is a sublattice of $d(G)$. Since M_{0} is an interval of $\ell\left(G_{D}\right)$, we infer that M_{0} is also a sublattice of $d(G)$. Thus in view of 5.1 we obtain
5.8. Lemma. φ_{1} is an isomorphism of the lattice M_{0} onto the lattice $\varphi_{1}\left(M_{0}\right)$.

We define the unary operation - on the set $\varphi_{1}\left(M_{0}\right)$ as follows. Let $T \in \varphi_{1}\left(M_{0}\right)$; there exists $X \in M_{0}$ with $\varphi_{1}(X)=T$. We put $T^{-}=\varphi_{1}\left(X^{-}\right)$. Analogously we define the unary operation ${ }^{\sim}$ on the set $\varphi_{1}\left(M_{0}\right)$.

Since M_{0} is the underlying set of the pseudo $M V$-algebra \mathcal{M}_{0}, in view of 5.7 and 5.8 we obtain
5.8.1. Lemma. The structure $\left(\varphi_{1}\left(M_{0}\right) ; \oplus,^{-}, \sim, 0^{\#(1)}, u^{\#(1)}\right)$ is a pseudo $M V$ algebra and φ_{1} is an isomorphism of \mathcal{M}_{0} onto this structure.

The structure considered in 5.8 .1 will be denoted by \mathcal{A}_{D}.
Similarly as in the case of G_{D}, we can identify the element a of A with the element $a^{\#(1)}$ of $\varphi_{1}\left(M_{0}\right)$. Then according to $5.7,5.8$ and 5.8 .1 we obtain
5.9. Proposition. \mathcal{A}_{D} is a c-extension of the pseudo $M V$-algebra \mathcal{A}.

Let $a, b \in A$. We put $a+b=a \oplus b$ if $x \leqq y^{-}$; otherwise, $a+b$ is not defined in A. (Cf. [4].) From the results of [5] we get
5.9.1. Lemma. Let $a, b, c \in A$. Then $a+b=c$ if and only if this relation is valid in G.

Consider the following conditions for $\emptyset \neq X \subseteq A$:
(i) There exists $0<a \in A$ such that the relation $a+b \leqq c$ is valid for each $b \in X^{\#}$ and each $c \in X^{u}$.
(ii) There exists $0<a \in A$ such that for each $b \in X^{\#(1)}$ the operation $a+b$ is defined in A and $a+b \leqq c$ for each $c \in X^{u(1)}$.
(We remark that in (i), $a+b$ has the meaning as in G.)
5.10. Lemma. Let $\emptyset \neq X \subseteq A$. Then the conditions (i) and (ii) are equivalent.

Proof. Assume that (i) holds. Let $b \in X^{\#(1)}$ and $c \in X^{u(1)}$. Then $b \in X^{\#}$ and $c \in X^{u}$. Hence $a+b \leqq c$ and so $a+b$ belongs to the interval $[0, u]$ of G. Therefore $a+b \in A$ and thus $a+b$ is defined in A. This shows that (ii) is satisfied.

Conversely, assume that (ii) is valid. Let $b \in X^{\#}$ and $c \in X^{u}$. Denote $b_{1}=b \vee 0$ and $c_{1}=c \wedge u$. We have $b \leqq u$, thus $b_{1} \in X^{\#(1)}$ and $c_{1} \in X^{u(1)}$. Let a be as in (ii). Hence $a+b_{1}$ is defined and $a+b_{1} \leqq c_{1}$. We have clearly

$$
a+b \leqq a+b_{1} \leqq c_{1} \leqq c
$$

Therefore (i) holds.
Let us denote by (i_{1}) the condition analogous to (i) such that we have $b+a$ instead of $a+b$. Further, let (ii i_{1}) be defined similarly. By the same method as above we obtain
5.10.1. Lemma. Let $\emptyset \neq X \subseteq A$. Then the conditions (i_{1}) and (ii_{1}) are equivalent.

Now assume that \mathcal{B}_{1} is a c-extenstion of \mathcal{A}. Suppose that X belongs to B_{1}, where B_{1} is the underlying set of \mathcal{B}_{1}. Then we have
5.11. Lemma. X does not satisfy the condition (ii) above.

Proof. By way of contradiction, assume that X satisfies the condition (ii). There exists a lattice ordered group G_{1} with the strong unit $u^{\#(1)}$ such that $\mathcal{B}_{1}=$ $\Gamma\left(G_{1}, u^{\#(1)}\right)$. Let us denote by $+_{1}$ the group operation in G_{1}.

In view of 5.11, the relation

$$
\begin{equation*}
X=\bigvee_{x \in X} x^{\#(1)} \tag{1}
\end{equation*}
$$

is valid in $d(A)$. Let B_{1} be the underlying set of \mathcal{B}_{1}. Since X and $x^{\#(1)}(x \in X)$ belong to B_{1}, the relation (1) holds in the lattice $\ell\left(\mathcal{B}_{1}\right)$ and hence also in G_{1}.

Further, since $a+x$ is defined in A, in view of 5.9 .1 we infer that $a+x=a+{ }_{1} x$. Also $a^{\#(1)}>0^{\#(1)}$ in $\ell\left(\mathcal{B}_{1}\right)$. Hence we have

$$
\begin{aligned}
X<a^{\#(1)}+_{1} X & =\bigvee_{x \in X}\left(a^{\#(1)}+{ }_{1} x^{\#(1)}\right)=\bigvee_{x \in X}\left(a+{ }_{1} x\right)^{\#(1)} \\
& =\bigvee_{x \in X}(a+x)^{\#(1)}
\end{aligned}
$$

In view of (ii), $a+x \leqq c$ for each $c \in X^{u(1)}$, whence $a+x \in X^{u(1) \ell(1)}=X$ for each $x \in X$. Therefore

$$
(a+x)^{\#(1)} \leqq X, \quad \bigvee_{x \in X}(a+x)^{\#(1)} \leqq X, \quad X<a^{\#(1)}+{ }_{1} X \leqq X
$$

which is a contradiction.
5.12. Lemma. Let \mathcal{B}_{1} be a c-extension of \mathcal{A}. Then $B_{1} \subseteq \varphi_{1}\left(A^{*}\right)$.

Proof. Let $X \in B_{1}$. There exists $Y \in d(G)$ such that $X=\varphi_{1}(Y)$. In view of 5.11, X does not satisfy the condition (ii). Analogously, X does not satisfy (ii ${ }_{1}$). Hence according to 5.10 and $5.10 .1, Y$ satisfies neither (i) nor (i i_{1}). Then 3.4 yields that Y belongs to A^{*}. Hence $X \in \varphi_{1}\left(A^{*}\right)$.

The following assertion is easy to verify.
5.12.1. Lemma. Let $a \in \mathcal{A}$. Then

$$
\begin{aligned}
& a^{-}=\max \{b \in A: b \oplus a=1\} \\
& a^{\sim}=\max \{b \in A: a \oplus b=1\}
\end{aligned}
$$

5.13. Lemma. Let \mathcal{B}_{1} be a c-extension of \mathcal{A}. Then \mathcal{B}_{1} is a subalgebra of \mathcal{A}_{D}.

Proof. In view of $5.12, B_{1}$ is a subset of the underlying set $A_{D}=\varphi_{1}\left(A^{*}\right)$ of \mathcal{A}. Then according to $5.4,\left(B_{1}, \oplus\right)$ is a subsemigroup of $\left(A_{D}, \oplus\right)$, and $\left(B_{1}, \leqq\right)$ is a sublattice of $\left(A_{D}, \leqq\right)$. According to 5.12 .1 , in each pseudo $M V$-algebra, the operations ${ }^{-}$and ${ }^{\sim}$ are uniquely determined by the operation \oplus and the corresponding partial order. Hence \mathcal{B}_{1} is a subalgebra of \mathcal{A}_{D}.

From 5.9 and 5.13 we conclude
5.14. Theorem. Let \mathcal{A} be a pseudo $M V$-algebra. Then \mathcal{A}_{D} is the maximal completion of \mathcal{A}.

In view of the above results we also have
5.15. Proposition. Let \mathcal{A} be a pseudo $M V$-algebra. The underlying set of \mathcal{A}_{D} consists of those elements X of $d(A)$ which satisfy neither (ii) nor (ii ${ }_{1}$). If $\mathcal{A}=\Gamma(G, u)$, then the mapping φ_{1} is an isomorphism of $\Gamma\left(G_{D}, u\right)$ onto \mathcal{A}_{D}.

6. Another characterization of elements of \mathcal{A}_{D}

In the present section we apply the same notation as in Section 5 .
For $X, Y \in d(G)$ the operation $X+{ }_{0} Y$ has been considered in Section 3.
We have $A^{*} \subseteq d(G)$. Let $X, Y \in A^{*}$. Put $X_{1}=\varphi_{1}(X), Y_{1}=\varphi_{1}(Y)$. If $X+{ }_{0} Y \notin A^{*}$, then we say that the operation $X_{1}+{ }_{0} Y_{1}$ is not defined in $d(A)$; otherwise we put

$$
X_{1}+_{0} Y_{1}=\varphi_{1}\left(X+_{0} Y\right)
$$

Hence $+_{0}$ is a partial binary operation on the set $d(A)$. If $X_{1} \leqq Y_{1}, Z_{1} \in d(A)$, and if $X_{1}+{ }_{0} Z_{1}, Y_{1}+{ }_{0} Z_{1}$ exist in $d(A)$, then we have

$$
X_{1}+{ }_{0} Z_{1} \leqq Y_{1}+{ }_{0} Z_{1}
$$

and analogously for $Z_{1}+{ }_{0} X_{1}, Z_{1}+{ }_{0} Y_{1}$. (Cf. 5.1.)
In Section 3, the set G_{D} has been characterized as the system of all $C \in d(G)$ having the property that there exists $X \in d(G)$ with

$$
\begin{equation*}
X+{ }_{0} C=C+{ }_{0} X=0^{\#} \tag{*}
\end{equation*}
$$

Hence G_{D} is characterized merely by $d(G)$ and the operation $+_{0}$ on $d(G)$.
The elements of \mathcal{A}_{D} have been characterized in 5.15. The following result gives another characterization of these elements.
6.1. Theorem. Let $C_{1} \in d(A)$. Then the following conditions are equivalent:
(a) C_{1} is an element of \mathcal{A}_{D}.
(b) There exist $X_{1}, Y_{1} \in d(A)$ such that
(1) $X_{1}+{ }_{0} C_{1}=C_{1}+{ }_{0} Y_{1}=u^{\#(1)}$,
(2) $Z+{ }_{0}(-u)^{\#}=(-u)^{\#}+{ }_{0} T$,
where $T=\varphi_{1}^{-1}\left(X_{1}\right), Z=\varphi_{1}^{-1}\left(Y_{1}\right)$.
Proof. Let (a) be valid. Put $C=\varphi_{1}^{-1}\left(C_{1}\right)$. Then according to 5.15 we have $C \in G_{D}$. Thus there exists $X \in d(G)$ such that the relation (*) holds.

We have $0^{\#} \leqq C \leqq u^{\#}$. Since X is the inverse element of C in the lattice ordered group G_{D} we obtain

$$
(-u)^{\#} \leqq X \leqq 0^{\#}
$$

Then

$$
\begin{aligned}
& 0^{\#} \leqq u^{\#}+_{0} X \leqq u^{\#} \\
& 0^{\#} \leqq X+{ }_{0} u^{\#} \leqq u^{\#}
\end{aligned}
$$

Therefore the elements $u^{\#}+{ }_{0} X, X+{ }_{0} u^{\#}$ belong to the set A^{*}. We put

$$
X_{1}=\varphi_{1}\left(u^{\#}+_{0} X\right), \quad Y_{1}=\varphi_{1}\left(X+{ }_{0} u^{\#}\right)
$$

Thus X_{1} and Y_{1} are elements of $d(A)$. From $(*)$ we obtain

$$
\begin{aligned}
& \left(u^{\#}+{ }_{0} X\right)+{ }_{0} C=u^{\#} \\
& \left.C+{ }_{0} u^{\#}\right)=u^{\#}
\end{aligned}
$$

whence applying the mapping φ_{1} we get

$$
\begin{aligned}
& X_{1}+{ }_{0} C_{1}=u^{\#(1)} \\
& C_{1}+{ }_{0} Y_{1}=u^{\#(1)}
\end{aligned}
$$

Hence (1) holds. Also, (2) is obviously satisfied. Therebore (b) is valid.
Conversely, suppose that (b) holds. Again, let $C=\varphi_{1}^{-1}\left(C_{1}\right)$. Applying the mapping φ_{1}^{-1} for (1) we obtain

$$
\begin{aligned}
& T+{ }_{0} C=u^{\#} \\
& C+{ }_{0} Z=u^{\#}
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left((-u)^{\#}+{ }_{0} T\right)+{ }_{0} C=0^{\#} \\
& \left(C+{ }_{0}\left(Z+{ }_{0}(-u)^{\#}\right)=0^{\#}\right.
\end{aligned}
$$

Then according to (2), the element $(-u)^{\#}+{ }_{0} T$ is the inverse element of C in $d(G)$. Hence C belongs to G_{D}. Thus in view of 5.15 we conclude that C_{1} is an element of \mathcal{A}_{D}.
6.1.1. Proposition. Let $C_{1} \in d(A)$ and $v \in A$ such that $c_{1} \leqq v$ for each $c_{1} \in C_{1}$. Then C_{1} is an element of $d(A)$ if and only if the condition $(b(v))$ is satisfied, where $(b(v))$ is the modification of (b) from 6.1 consisting in replacing the element u by the element v.

Proof. It suffices to replace the element u by the element v in the proof of 6.1.
6.2. Proposition. Assume that \mathcal{A} is an $M V$-algebra. Let $C_{1} \in d(A)$. The following conditions are equivalent:
(a) C_{1} is an element of \mathcal{A}_{D}.
$\left(\mathrm{b}_{1}\right)$ There exists $X_{1} \in d(A)$ such that $X_{1}+{ }_{0} C_{1}=u^{\#(1)}$.
Proof. In view of 6.1 we have $(\mathrm{a}) \Rightarrow\left(\mathrm{b}_{1}\right)$. Assume that $\left(\mathrm{b}_{1}\right)$ is valid. The operation $+_{0}$ is commutative. Put $Y_{1}=X_{1}$. Then (b) holds, hence (a) is satisfied.

Similarly as in 6.1.1 we have
6.2.1. Proposition. Assume that \mathcal{A} is an $M V$-algebra. Let $C_{1} \in d(A), v \in A$, $c_{1} \leqq v$ for each $c_{1} \in C_{1}$. Then the condition (a) from 6.2 is equivalent with the condition
$\left(\mathrm{b}_{2}\right)$ there exists $X_{1} \in d(A)$ such that $X_{1}+{ }_{0} C_{1}=v^{\#(1)}$.
6.2.2. Corollary. Let \mathcal{A} be an $M V$-algebra. Then the maximal completion of \mathcal{A} is the set of all $T \in d(A)$ which satisfy the following condition
(c) either $T=u^{\#(1)}$, or there are $a \in A$ and $T_{1} \in d(A)$ such that $a<u$ and $T+{ }_{0} T_{1}=a^{\#(1)}$.

We remark that there is a mistake in Proposition 3.19 of [12] (consisting in the fact that instead of the operation \oplus, the operation $+_{0}$ should be taken into account); the corrected version is Corollary 6.2.2 above. An analogous correction is to be performed in Lemma 3.15 of [12].

7. Strong subdirect products

In this section we assume that whenever \mathcal{A} is a pseudo $M V$-algebra, then it is a subalgebra of its maximal completion (in view of the identification mentioned in Section 5). The same assumption is made for lattice ordered groups.

For the notion of the internal direct product decomposition of an $M V$-algebra cf. [11]; the same definition can be applied for pseudo $M V$-algebras.

Strong subdirect products of pseudo $M V$-algebras and of lattices have been investigated in [13]. In [15], strong subdirect products of $M V$-algebras have been dealt with.

For the sake of completeness, we recall the definition of the strong subdirect product decomposition of a pseudo $M V$-algebra.

Suppose that we are given a subdirect product decomposition

$$
\begin{equation*}
\varphi: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}=\mathcal{B} \tag{1}
\end{equation*}
$$

of a pseudo $M V$-algebra \mathcal{A}. We apply the usual notation: A, A_{i} and B are the underlying subsets of $\mathcal{A}, \mathcal{A}_{i}$, or \mathcal{B}, respectively. Further, 0_{i} and 1_{i} is the least resp. the greatest element of A_{i}.

The elements of B are written in the form $\left(a_{i}\right)_{i \in I}$. Let $i \in I, a \in A, \varphi(a)=$ $\left(a_{i}\right)_{i \in I}$. We put

$$
\alpha_{i}(a)=a_{i}, \quad \beta_{i}(a)=\left(a_{j}\right)_{j \in J \backslash\{i\}}, \quad A_{i}^{\prime}=\left\{\beta_{i}(a): a \in A\right\}
$$

Then there exists a pseudo $M V$-algebra \mathcal{A}_{i}^{\prime} such that
(i) \mathcal{A}_{i}^{\prime} is a subalgebra of $\prod_{j \in I \backslash\{i\}} \mathcal{A}_{j}$,
(ii) the underlying subset of \mathcal{A}_{i}^{\prime} is equal to A_{i}^{\prime}.

For each $a \in A$ we put

$$
\varphi_{i}^{0}(a)=\left(\alpha_{i}(a), \beta_{i}(a)\right)
$$

In view of (1), φ_{i}^{0} is an injective mapping of \mathcal{A} into the direct product $\mathcal{A}_{i} \times \mathcal{A}_{i}^{\prime}$.
We say that (1) is a strong subdirect product decomposition of \mathcal{A} if for each $i \in I, \varphi_{i}^{0}$ is an isomorphism of \mathcal{A} onto $\mathcal{A}_{i} \times \mathcal{A}_{i}^{\prime}$.

Let us suppose that this condition is satisfied.
Without loss of generality we can assume that for each $i \in I, A_{i}$ is the set

$$
\left\{a \in A: \varphi(a)_{j}=0_{j} \quad \text { for each } j \in I \backslash\{i\}\right\}
$$

and that for each $x \in A_{i}$ we have $\varphi(x)_{i}=x, \varphi(x)_{j}=0_{j}$ whenever, $j \in I, j \neq i$.
Then (in view of the definition of the internal direct product) we have an internal direct product decomposition

$$
\begin{equation*}
\varphi_{i}^{0}: \mathcal{A} \rightarrow \mathcal{A}_{i} \times \mathcal{A}_{i}^{\prime} \tag{2}
\end{equation*}
$$

From Theorem 6.1 in [14] we obtain that (2) induces a direct product decomposition of the corresponding lattice

$$
\begin{equation*}
\varphi_{i}^{0}: \ell(\mathcal{A}) \rightarrow \ell\left(\mathcal{A}_{i}\right) \times \ell\left(\mathcal{A}_{i}^{\prime}\right) \tag{2.1}
\end{equation*}
$$

We remark that Proposition 2.4 and Proposition 2.5 proven in [11] for $M V$ algebras remain valid (with the same proofs) for pseudo $M V$-algebras as well; hence from 2.1 we conclude that there exists an internal direct product decomposition

$$
\begin{equation*}
\psi_{i}^{0}: G \rightarrow G_{i} \times G_{i}^{\prime} \tag{3}
\end{equation*}
$$

where (under the notation as above)

$$
\mathcal{A}=\Gamma(G, u), \quad \mathcal{A}_{i}=\Gamma\left(G_{i}, u_{i}\right), \quad \mathcal{A}_{i}^{\prime}=\Gamma\left(G_{i}^{\prime}, u_{i}^{\prime}\right)
$$

Now we recall that in [10] there have been investigated the relations between the direct product decompositions of a lattice ordered group G and the direct product decompositions of the maximal completion of G. It was proved that each internal
direct product decomposition of G induces an internal direct product decomposition of G_{D}. It was assumed that the lattice ordered group under consideration is abelian, but the proof remains valid for the non-abelian case as well. Hence from (3) we infer that there exists an internal direct product decomposition

$$
\begin{equation*}
\chi_{i}^{0}: G_{D} \rightarrow\left(G_{i}\right)_{D} \times\left(G_{i}^{\prime}\right)_{D} \tag{4}
\end{equation*}
$$

such that χ_{i}^{0} is an extension of ψ_{i}^{0} in the sense that for each $g \in G$ we have

$$
\psi_{i}^{0}(g)=\chi_{i}^{0}(g)
$$

Let us apply again Proposition 2.5 of [11] (we already remarked that it remains valid for pseudo $M V$-algebras as well); further we use Theorem 6.4 of [14]. Then in view of (4) there exists an internal direct product decomposition

$$
\begin{equation*}
\psi_{i}^{\prime}: \mathcal{A}^{0} \rightarrow \mathcal{A}_{i}^{0} \times \mathcal{A}_{i}^{01} \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{A}^{0}=\Gamma\left(G_{D}, u\right) \\
\mathcal{A}_{i}^{0}=\Gamma\left(\left(G_{i}\right)_{D}, u_{i}\right), \quad \mathcal{A}_{i}^{01}=\Gamma\left(\left(G_{i}^{\prime}\right)_{D}, u_{i}^{\prime}\right) .
\end{gathered}
$$

Then in view of 5.15 we have

$$
\begin{equation*}
\mathcal{A}_{i}^{0} \simeq\left(\mathcal{A}_{i}\right)_{D}, \quad \mathcal{A}_{i}^{01} \simeq\left(\mathcal{A}_{i}^{\prime}\right)_{D}, \quad \mathcal{A}^{0} \simeq \mathcal{A}_{D} \tag{6}
\end{equation*}
$$

where \simeq denotes the relation of isomorphism between pseudo $M V$-algebras.
The above construction can be performed for each $i \in I$. Let $a_{0} \in A^{0}$ (as usual, we denote by A^{0} the underlying set of \mathcal{A}^{0}; the meaning of A_{i}^{0} is analogous). Consider the mapping

$$
\psi^{0}: A^{0} \rightarrow \prod_{i \in I} A_{i}^{0}
$$

defined by

$$
\psi^{0}\left(a_{0}\right)=\left(\psi_{i}^{1}\left(a_{0}\right)\right)_{i \in I} \text { for each } a \in A^{0}
$$

Then ψ^{0} is a homomorphism of the pseudo $M V$-algebra \mathcal{A}^{0} into the direct product

$$
\prod_{i \in I} \mathcal{A}_{i}^{0}=\mathcal{D}
$$

Suppose that

$$
x=\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} A_{i}^{0}
$$

Let $i \in I$. Thus $x_{i} \in A_{i}^{0}$. Hence $x_{i} \in\left(G_{i}\right)_{D}$. According to 4.3 .2 there exists a subset $\left\{a_{i j}\right\}_{j \in J_{i}}$ of G_{i} such that

$$
\begin{equation*}
x_{i}=\bigvee_{j \in J_{i}} a_{i j} \tag{7}
\end{equation*}
$$

is valid in $\left(G_{i}\right)_{D}$. Then, clearly, this relation is valid also in \mathcal{A}_{i}^{0} and, consequently, also in \mathcal{A}^{0}. Put

$$
\begin{aligned}
B_{1} & =\left\{a_{i j}\right\} \quad\left(i \in I, j \in J_{i}\right) \\
C & =B_{1}^{u}, \quad B=C^{\ell}
\end{aligned}
$$

where the symbols u and ℓ are taken with respect to the partially ordered set $\ell\left(\mathcal{A}^{0}\right)$. Hence B is an element of $d\left(\mathcal{A}_{0}\right)$.
7.1. Lemma. B is an element of $\left(\mathcal{A}^{0}\right)_{D}$.

Proof. By way of contradiction, assume that B does not belong to $\left(\mathcal{A}^{0}\right)_{D}$. Then in view of 3.2 and 3.3 there exists $0<y \in A^{0}$ such that either
a) $y+b \leqq c$ for each $b \in B, c \in C$,
or
b) $b+y \leqq c$ for each $b \in B, c \in C$.

Let us consider the case a). Hence, in particular,

$$
\begin{equation*}
y+a_{i j} \leqq c \quad \text { for each } a_{i j} \in B_{1} \text { and each } c \in C \tag{8}
\end{equation*}
$$

Since $y>0$, there exists $i \in I$ with $y_{i}>0$. Denote

$$
B_{1 i}=B_{1}\left(\mathcal{A}_{i}\right), \quad B_{i}=B\left(\mathcal{A}_{i}\right), \quad C_{i}=C\left(\mathcal{A}_{i}\right)
$$

Then C_{i} is the set of all upper bounds of $B_{1 i}$ in $\ell\left(\mathcal{A}_{i}\right)$ and B_{i} is the set of all lower bounds of C_{i} in $\ell\left(\mathcal{A}_{i}\right)$. Moreover, because of

$$
\left(a_{i j}\right)_{i}=a_{i j} \quad \text { if } j \in J_{i} \quad \text { and } \quad\left(a_{i j}\right)_{i}=0 \text { otherwise, }
$$

we have $B_{i 1}=\left\{a_{i j}\right\}_{j \in J_{i}}$.
Let x_{i} be as in (7). Then

$$
\begin{aligned}
C_{i} & =\left\{c \in A_{i}: c \geqq x_{i}\right\}, \\
B_{i} & =\left\{c \in A_{i}: c \leqq x_{i}\right\} .
\end{aligned}
$$

Therefore the condition a) yields $y+x_{i} \leqq x_{i}$, which is a contradiction. The case when b) is valid can be treated analogously.

From 7.1 and 5.1.1 we conclude (in view of the indentification mentioned above)

$$
B=\bigvee_{i \in I, j \in J_{i}} a_{i j}
$$

whence according to (7) we obtain
7.2. Lemma. The relation $B=\bigvee_{i \in I} x_{i}$ is valid in $\left(\mathcal{A}^{0}\right)_{D}$

Let $i_{0} \in I$ be fixed. Then 7.2 yields

$$
u_{i_{0}} \wedge B=\bigvee_{i \in I}\left(u_{i_{0}} \wedge x_{i}\right)=x_{i_{0}}
$$

since $x_{i_{0}} \leqq u_{i_{0}}$ and $u_{i_{0}} \wedge x_{i}=0$ if $i \neq i_{0}$. From this we easily obtain

$$
(B)_{i_{0}}=x_{i_{0}} \quad \text { for each } i_{0} \in I
$$

Thus we have
7.3. Lemma. The mapping ψ^{0} is surjective.
7.4. Lemma. The mapping ψ^{0} is an isomorphism.

Proof. Let $x, y \in A^{0}$ and suppose that $\psi^{0}(x)=\psi^{0}(y)$; in other words, $x_{i}=y_{i}$ for each $i \in I$. According to 7.2 we have

$$
x=\bigvee_{i \in I} x_{i}, \quad y=\bigvee_{i \in I} y_{i}
$$

Hence $x=y$. Thus the mapping ψ^{0} is injective. Since ψ^{0} is a homomorphism, by 7.3 it is an isomorphism.
7.5. Theorem. Let \mathcal{A} be a pseudo $M V$-algebra which can be expressed as a strong subdirect product of pseudo MV-algebras $\mathcal{A}_{i}(i \in I)$. Then the maximal completion \mathcal{A}_{D} of \mathcal{A} is isomorphic to the direct product of pseudo MV-algebras $\left(\mathcal{A}_{i}\right)_{D}(i \in I)$.
Proof. Let us apply the notation as above. Then we have

$$
\mathcal{A} \simeq \mathcal{A}^{0}, \quad \mathcal{A}_{i} \simeq \mathcal{A}_{i}^{0} \quad \text { for } i \in I
$$

Now, it suffices to use 7.4.
For the particular case when \mathcal{A} is an $M V$-algebra, cf. [15].

References

[1] Černák, Š., On the maximal Dedekind completion of a lattice ordered group, Math. Slovaca 29 (1979), 305-313.
[2] Cignoli, R., D'Ottaviano, M. I., Mundici, D., Algebraic Foundations of many-valued Reasoning, Trends in Logic, Studia Logica Library Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
[3] Conrad, P., Lattice Ordered Groups, Tulane University, 1970.
[4] Dvurečenskij, A., Pulmannová, S., New Trends in Quantum structures, Kluwer Academic Publishers, Dordrecht-Boston-London, and Ister Science, Bratislava, 2000.
[5] Dvurečenskij, A., Pseudo MV-algebras are intervals in ℓ-groups, J. Austral. Math. Soc. (to appear).
[6] Everett, C. J., Sequence completion of lattice modules, Duke Math. J. 11 (1994), 109-119.
[7] Fuchs, L., Paritally Ordered Algebraic Systems, Pergamon Press, Oxford-New York-Lon-don-Paris, 1963.
[8] Georgescu, G., Iorgulescu, A., Pseudo MV-algebras: a noncommutative extension of MV--algebras, The Proceedings of the Fourth International Symposium on Economic Informatics, Romania, 1999, pp. 961-968.
[9] Georgescu, G., Iorgulescu, A., Pseudo MV-algebras, Multiple Valued Logic (a special issue dedicated to Gr. Moisil), vol. 6, 2001, pp. 95-135.
[10] Jakubík, J., Maximal Dedekind completion of an abelian lattice ordered group, Czechoslovak Math. J. 28 (1978), 611-631.
[11] Jakubík,J., Direct product decompositions of MV-algebras, Czechoslovak Math. J. 44 (1994), 725-739.
[12] Jakubík, J., Complete generators and maximal completions of MV-algebras, Czechoslovak Math. J. 48 (1998), 597-608
[13] Jakubík, J., Basic elements in a pseudo MV-algebra, Soft Computing (to appear).
[14] Jakubík, J., Direct product decompositions of pseudo MV-algebras, Archivum Math. (to appear).
[15] Jakubík, J., Strong subdirect products of MV-algebras, (Submitted).
[16] Rachůnek, J., A noncommutative generalization of MV-algebras, Czechoslovak Math. J. 25 (2002), 255-273.

Matematický ústav SAV, Grešákova 6
04001 Košice, Slovakia
E-mail: kstefan@saske.sk

[^0]: 2000 Mathematics Subject Classification: 06D35, 06B23.
 Key words and phrases: pseudo $M V$-algebra, maximal completion, b-atomicity, direct product.

 Supported by Grant VEGA 2/6087/99.
 Received May 21, 2001.

