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REGULAR HALF-LINEAR SECOND ORDER DIFFERENTIAL

EQUATIONS

ONDŘEJ DOŠLÝ AND JANA ŘEZNÍČKOVÁ

Abstract. We introduce the concept of the regular (nonoscillatory) half-
linear second order differential equation

(∗)
(

r(t)Φ(x′)
)

′

+ c(t)Φ(x) = 0 , Φ(x) := |x|p−2x , p > 1

and we show that if (*) is regular, a solution x of this equation such that
x′(t) 6= 0 for large t is principal if and only if

∫

∞ dt

r(t)x2(t)|x′(t)|p−2
= ∞ .

Conditions on the functions r, c are given which guarantee that (*) is regular.

1. Introduction and preliminaries

The aim of this paper is to investigate half-linear second order differential equa-
tions

(r(t)Φ(x′))
′
+ c(t)Φ(x) = 0 , Φ(x) := |x|p−2x , p > 1 ,(1)

where r, c are continuous functions, r(t) > 0, via the properties of solutions of
the associated Riccati differential equation (related to (1) by the substitution w =
r(t)Φ(x′)

Φ(x) )

w′ + c(t) + (p − 1)r1−q(t)|w|q = 0 , q :=
p

p − 1
.(2)

In particular, we will focus our attention to the so-called regular half-linear equa-
tions and to the integral characterization of their principal solutions.

The notion of the principal solution of the nonoscillatory Sturm-Liouville dif-
ferential equation

(r(t)x′)′ + c(t)x = 0(3)
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(which is the special case p = 2 of (1)) was introduced by Leighton and Morse [12]
and this notion plays an important role in the oscillation theory of (3). Recall that
a solution x̃(t) of nonoscillatory equation (3) is said to be principal (at t = ∞) if

lim
t→∞

x̃(t)

x(t)
= 0(4)

for any solution x(t) which is linearly independent of x̃(t). Differentiating the ratio
x(t)/x̃(t) and using the Wronskian identity r(x′x̃ − xx̃′) = const 6= 0, it follows
that (4) is equivalent to

∫ ∞ dt

r(t)x̃2(t)
= ∞ .(5)

Clearly, the principal solution x̃(t) of (1) is unique up to a constant multiple.
On the other hand, for any other solution x(t), linearly independent of x̃(t), the
relation

∫ ∞ dt

r(t)x2(t)
< ∞

holds.
Mirzov [15] extended the concept of the principal solution to half-linear equation

(1) and defined this solution via the eventually minimal solution of the associated
Riccati equation (2). This method is known to be the equivalent definition of the
principal solution in the linear case, see [10, Chap. XI]. Elbert and Kusano [8]
defined this concept as the “zero maximal” solution (which is in the linear case
also equivalent characterization of the principal solution, see [13]), and showed
that their definition is equivalent to Mirzov’s one. The attempt to find an integral
characterization of the principal solution of (1) which reduces to (5) in the linear
case has been made in [3]. It was shown that the property being the principal
solution is closely related to the divergence of the integral

I(x) :=

∫ ∞ dt

r(t)x2(t)|x′(t)|p−2
.(6)

In this paper we continue in this investigation and we find conditions on the
functions r, c which guarantee that a solution x̃ of (1) is principal if and only if
I(x̃) = ∞.

2. Riccati equation, Picone’s identity and principal solution

In this section we recall some basic facts concerning equations (1), (2), in par-
ticular, their principal and eventually minimal solutions.

It is well known that the classical Sturmian theory extends almost verbatim
to (1), see e.g. [5, 14]. In particular, equation (1) can be classified as oscillatory
or nonoscillatory according to the oscillatory nature of its solution near ∞. First
we recall Mirzov’s definition of the principal solution of (1). Suppose that this
equation is nonoscillatory and let x̄ be its solution for which x̄(t) 6= 0 for t > T .
Further, for b > T , let xb be the solution of (1) given by the initial condition

xb(b) = 0, x′(b) = −1. Let w̄ = rΦ(x̄′)
Φ(x̄) , wb =

rΦ(x′

b)
Φ(xb)

be the corresponding solutions
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of (2). Then w(b−) = −∞ and wb(t) < w̄(t) on [T, b). Moreover, if T < b < b̃ then
wb(t) < wb̃(t) < w̄(t) on [T, b). As b → ∞, the functions wb converge uniformly on
every compact interval [T, T1] ⊂ [T,∞) to a function w̃ which is also a solution (2).
This solution has the property that any other solution w of (2) which is defined
on the whole interval [T,∞) satisfies w(t) > w̃(t) in this interval. Now, if

x̃(t) = exp

{
∫ t

r1−q(s)Φq(w̃(s)) ds

}

, Φq(w) := |w|q−2w ,

then x̃ is a solution of (1) which is called the principal solution of this equation.
Elbert and Kusano [8] used a somewhat different construction based on the

generalized Prüfer transformation and generalized trigonometric functions. They
proved the following comparison theorem for (1) and for another differential equa-
tion of the same form

(R(t)Φ(y′))
′
+ C(t)Φ(y) = 0 .(7)

Lemma 1. Suppose that

0 < R(t) ≤ r(t) , C(t) ≥ c(t)

hold for large t, i.e. (7) is a Sturmian majorant of (1). Further suppose that equa-

tion (7) is nonoscillatory and let x̃, ỹ be principal solutions of (1) and (7), respec-

tively. Denote by w̃ = r(t)Φ(x̃′/x̃), ṽ = R(t)Φ(ỹ′/ỹ) the corresponding eventually

minimal solutions of (2) and of

v′ + C(t) + (p − 1)R1−q(t)|v|q = 0 .(8)

Then ṽ(t) ≥ w̃(t) for large t. Moreover, if t0 is sufficiently large and w, v are

solutions of (2) and (8), respectively, which exist on the whole interval [t0,∞)
and satisfy v(t0) ≤ w(t0), then v(t) ≤ w(t) for t ≥ t0.

Now we formulate (in a simplified form as needed in this paper) the recently
found Picone type identity for (1), (see [1, 11]).

Lemma 2. Suppose that w is a solution of (2) defined in the whole interval I =
[a, b]. Then for any y ∈ C1(I) the following identity holds:

[r(t)|y′|p − c(t)|y|p] = [w|y|p]
′
+ pr1−q(t)P (rq−1y′, Φ(y)w) ,

where

P (u, v) =
|u|p

p
− uv +

|v|q

q
≥ 0(9)

for any u, v ∈ R, with the equality if and only if v = Φ(u).

The next statement (proved in [3]) compares the function P with the quadratic
part of its Taylor’s expansion (with respect to v) at the center v0 = Φ(u)).

Lemma 3. The function P (u, v) defined in (9) satisfies the following inequalities

P (u, v) ≷
1

2
|u|2−p (v − Φ(u))

2
for p ≶ 2 , v 6= Φ(u) ,(10)
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and

P (u, v) ≶
1

2(p − 1)
|u|2−p (v − Φ(u))

2
for p≶2 , Φ(|u|)> |v| , uv>0 .(11)

Of course, in case p = 2 we have the equality in both relations (10) and (11).

The previous two lemmas play the crucial role in the proofs of the main statements
of [3] which are summarized in the next proposition.

Proposition 1. Suppose that (1) is nonoscillatory and x̃ is its solution such that

x̃′(t) 6= 0 for large t.

(i) Let p ∈ (1, 2). If

I(x̃) :=

∫ ∞ dt

r(t)x̃2(t)|x̃′(t)|p−2
= ∞ ,(12)

then x̃ is the principal solution.

(ii) Let p > 2. If x̃ is the principal solution then (12) holds.

(iii) Suppose that
∫ ∞

r1−q(t) dt = ∞, the function

γ(t) :=

∫ ∞

t

c(s) ds

exists and γ(t) ≥ 0 but γ(t) 6≡ 0 eventually. Then x̃(t) is the principal solution

if and only if (12) holds.

Note that the proof of the part (i) is based on inequality (10) with p ∈ (1, 2),
whereas (ii) leans on this inequality for p > 2. The proof of (iii) uses the fact
that under additional restrictions on r, c given there all solutions of (2) which are
extensible up to ∞ are positive and one can then use also inequalities (11).

Generally, as pointed out in [3], the fact that (12) equivalently characterizes the
principal solution x̃ of (1) can be proved whenever the inequalities of the form

P (u, v) > C1|u|
2−p(v − Φ(u))2 , P (u, v) < C2|u|

2−p(v − Φ(u))2 ,

C1, C2 being positive real constants, hold. This observation motivates the following
statement.

Lemma 4. Let T > 0 be arbitrary. There exists a constant K > 0 such that

P (u, v) ≶ K|u|2−p (v − Φ(u))2 for p ≶ 2(13)

and every u, v ∈ R satisfying

∣

∣

∣

v
Φ(u)

∣

∣

∣
≤ T , v 6= Φ(u).

Proof. Consider the case p ∈ (1, 2), i.e. q > 2, the case p > 2 can be treated in a
similar way. For any K > 0 and u 6= 0 we have

P (u, v) − K|u|2−p(v − Φ(u))2 = |u|p

{

1

q

∣

∣

∣

∣

v

Φ(u)

∣

∣

∣

∣

q

−
v

Φ(u)
+

1

p
− K

(

v

Φ(u)
− 1

)2
}

.

Denote t := v
Φ(u) , f(t) := |t|q

q
− t + 1

p
, g(t) := K(t − 1)2. If K > q−1

2 , by a direct

computation one can verify that (f−g)(1) = 0 = (f−g)′(1), the function f−g has
the local maximum at t = 1, two negative local minima attained at the numbers
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whose absolute value is greater than T̃ :=
(

2K
q−1

)
1

q−2

(where the graph of (f − g)

has the inflection), and (f − g) is concave for |t| < T̃ and convex for |t| > T̃ .
Consequently, if we chose K such that (f − g)(−T ) < 0 then according to the
previous considerations and the fact that f(−t) = f(t)+2t we have (f − g)(t) < 0
for t ∈ [−T, T ], i.e.

|t|q

q
− t +

1

p
< K(t − 1)2

which implies (13) for q > 2. The existence of a K with the required property
follows from the second degree Taylor expansion formula for f at t0 = 1 (with
ξ ∈ (1, T ))

f(−T )− g(−T ) = f(T ) + 2T − K(T + 1)2

=
q − 1

2
(T − 1)2

[

1 +
(q − 2)(T − 1)

3
ξq−3

]

+ 2T − K(T + 1)2,

so, if we take K sufficiently large, then (f − g)(−T ) < 0 really holds.

3. Regular half-linear equations

We start with the basic definition of our paper.

Definition 1. Suppose that (1) is nonoscillatory. Equation (1) is said to be regular

if there exists a positive constant T ∈ R such that

lim sup
t→∞

∣

∣

∣

∣

w1(t)

w2(t)

∣

∣

∣

∣

< T(14)

for any pair of solution w1, w2 of (2) for which w2(t) > w1(t) eventually.

Next theorem justifies the introduction of the concept of regular half-linear
second order equations, for these equations we have the equivalent integral char-
acterization of the principal solution of these equations.

Theorem 1. Suppose that (1) is regular and x is its solution such that x′ 6= 0
eventually. Then x is the principal solution if and only if

I(x) :=

∫ ∞ dt

r(t)x2(t)|x′(t)|p−2
= ∞ .(15)

Proof. We distinguish the cases p ∈ (1, 2) and p > 2. In the first case we have the
implication “I(x) = ∞ =⇒ x is the principal solution” by Proposition 1, part (i).
To prove the opposite implication we borrow some ideas used in [3]. Suppose, by
contradiction, that x is the principal solution and I(x) < ∞. Let T be the constant

from (14). By Lemma 4 there exists K > 0 such that (13) holds if
∣

∣

∣

v
Φ(u)

∣

∣

∣
< T .

Further, let t0 ∈ R be such that
∫ ∞

t0

dt

r(t)x2(t)|x′(t)|p−2
<

1

Kp
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and consider the solution w of (2) given by the initial condition w(t0) = w̃(t0) −

(2xp(t0))
−1, where w̃ = rΦ

(

x′

x

)

is the eventually minimal solution of (2). Sub-

stituting the principal solution x into the Picone identity with the above defined
solution w of (2), we have

r(t)|x′|p − c(t)xp = [xpw]
′
+ pr1−q(t)xp(t)P (Φq(w̃), w) ,

where Φq(s) := |s|q−2s is the inverse function of Φ, and at the same time, replacing
w by w̃ and using the fact that P (Φq(w̃), w̃) = 0,

r(t)|x′|p − c(t)|x|p = [xpw̃]′ + pr1−q(t)xp(t)P (Φq(w̃), w̃) = [xpw̃]′.

Subtracting the last two equalities, we get

[xp(w̃ − w)]
′
= pr1−q(t)xpP (Φq(w̃), w) .(16)

By (13)

P (Φq(w̃), w) < K|Φq(w̃)|2−p (w̃ − w)
2
.

This implies, in view of (16),

[xp(w̃ − w)]′ < Kpr1−qxp

∣

∣

∣

∣

r1−q x′

x

∣

∣

∣

∣

2−p

(w̃ − w)
2

=
Kp

rx2|x′|p−2
[xp(w̃ − w)]]

2
.

Denote h := xp(w̃ − w). Then h(t0) = 1
2 and the last inequality reads

h′(t)

h2(t)
<

Kp

r(t)x2(t)|x′(t)|p−2
.(17)

Integrating this inequality from t0 to t we have

1

h(t0)
−

1

h(t)
<

∫ t

t0

Kp

r(s)x2(s)|x′(s)|p−2
ds ,

which means, taking into account that h(t0) = 1
2 ,

h(t) <
1

2 − Kp
∫ ∞

t0

dt
r(t)x2(t)|x′(t)|p−2 dt

.

Consequently, 1
2 < h(t) < 1, for t ∈ [t0,∞), i.e. h(t) can be continued up to ∞.

Hence w(t) is a solution of (2) which is extensible up to ∞ and w(t) < w̃(t) for
t ≥ t0, i.e. w̃(t) is not the eventually minimal solution and thus the solution x(t)
is not principal, a contradiction.

If p > 2, the implication “x is the principal solution =⇒ I(x) = ∞” is
given in Proposition 1, part (ii). Concerning the opposite implication, suppose
that I(x) = ∞ and x is not the principal solution, i.e. there exists a solution w
of (2) which is defined on some interval [t0,∞) and satisfies there the inequality

w < w̃ := rΦ(x′

x
). If h is the same as in the first part of the proof, using a similar

reasoning as above we have the inequality

h′(t)

h2(t)
>

Kp

r(t)x2(t)|x′(t)|p−2
for t ≥ t0
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and integrating this inequality from t0 to t1 > t0 we get

1

h(t0)
>

1

h(t0)
−

1

h(t1)
> Kp

∫ t1

t0

dt

r(t)x2(t)|x′(t)|p−2
.

Letting t1 → ∞ we have the required contradiction. Hence x is the principal
solution.

Remark 1. It is shown in [3] that under the assumptions of the part (iii) of
Proposition 1, every solution of (2) is eventually positive. This means that (1) is

regular since 0 < w1(t) < w2(t) is equivalent to 0 < w1(t)
w2(t) < 1. From this point of

view, the previous theorem is a natural extension of the integral characterization
of the principal solution of (1) given in Proposition 1 (iii).

In the next part of this section we deal with (1) under the restriction r(t) ≡ 1,
i.e. we investigate the equation

(Φ(x′))
′
+ c(t)Φ(x) = 0 .(18)

Using the transformation of the independent variable

x(t) = y(s), s =

∫ t

r1−q(τ) dτ

which transforms (1) into (18), the results can be extended to general equation (1).
In the previous remark we have shown that (18) with positive c (and

∫ ∞
c(t) dt

convergent) is a typical example of the regular half-linear equation. Next we deal
with the case when the function c is negative and we present sufficient conditions
on the function c which guarantee that (18) is regular.

Theorem 2. Suppose that

lim
t→∞

c(t) = −α2 < 0 .(19)

Then equation (18) is regular.

Proof. According to the definition we have to find a positive constants T such
that (14) holds. We use the following notation. Let

c̃(t) := −
c(t)

p− 1
> 0 and βq :=

α2

p − 1
> 0 .

Then our assumption limt→∞ c(t) = −α2 is equivalent to limt→∞ c̃(t) = βq . This
means that for every 0 < ε < β there exists t0 ∈ R such that

(β − ε)q < c̃(t) < (β + ε)q

for every t ≥ t0. Now, consider the equations (the first one is rewritten equation
(18))

(Φ(x′))
′
− (p − 1)c̃(t)Φ(x) = 0 ,(20)

(Φ(y′))
′
− (p − 1)(β + ε)qΦ(y) = 0 ,(21)

(Φ(z′))
′
− (p − 1)(β − ε)qΦ(z) = 0 ,(22)
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i.e. (21) is the Sturmian minorant to (20) and (22) is the Sturmian majorant to
(20). The Riccati type equations associated with (20), (21) and (22) are

w′(t) − (p − 1)[c̃(t) − |w(t)|q ] = 0 ,(23)

w′
y(t) − (p − 1)[(β + ε)q − |wy(t)|q] = 0 ,(24)

w′
z(t) − (p − 1)[(β − ε)q − |wz(t)|

q ] = 0 .(25)

Equation (24) has constant solutions wy = ±(β + ε) and any other solution of this
equation satisfies

lim
t→∞

wy(t) = β + ε ,(26)

see [6]. Similarly, (25) has constant solutions wz = ±(β−ε) and all other solutions
satisfy limt→∞ wz(t) = β − ε.

Let w̃(t) be the minimal solution of (23). Then according to the Sturmian
comparison theorem for eventually minimal solutions of Riccati equations (Lemma
1) we obtain

− (β + ε) ≤ w̃(t) ≤ −(β − ε)(27)

where −(β + ε) = w̃y(t) is the minimal solution of (24) and −(β − ε) = w̃z(t) is
the minimal solution of (25). Let w(t) be a solution of (23) which is not minimal.
Then there exists t0 ∈ R such that

w(t) > w̃(t) t ≥ t0

and using (27) we have

w(t) > −(β + ε) for t ≥ t0 .(28)

Now, let wy, wz be the solutions of (24) and (25) given by the initial condition
wy(t0) = w(t0) = wz(t0). Then by Lemma 1

wz(t) ≤ w(t) ≤ wy(t)(29)

for every t ≥ t0. We distinguish the following cases according to the value of the
initial condition w(t0):

(a) −(β + ε) < w(t0) ≤ −(β − ε). Then

w(t) ≥ wz(t) > −(β + ε) for t ≥ t0(30)

what we already know from (28).
(b) −(β − ε) < w(t0) ≤ β − ε. Then using (29) we have

w(t) > β − ε , t ≥ t0 .(31)

(c) β − ε < w(t0) ≤ β + ε. Then according to (29) we have

β − ε ≤ w(t) ≤ β + ε , t ≥ t0 .(32)

(d) w(t0) > β+ε. Then by (29) and the fact that for all solutions of (24) relation
(26) holds, we obtain

lim sup
t→∞

w(t) < β + 2ε .(33)
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From (28) - (33) we conclude that

− (β + ε) < w(t) < β + 2ε , t ≥ t0 ,(34)

for any proper solution w(t) of (23) which is not minimal, and hence using (27)
and (34) we obtain that

−
β + 2ε

β − ε
<

w(t)

w̃(t)
<

β + 2ε

β − ε
, t ≥ t0 .

Since ε > 0 was arbitrary (sufficiently small), we have

− 1 ≤ lim inf
t→∞

w(t)

w̃(t)
≤ lim sup

t→∞

w(t)

w̃(t)
≤ 1 .(35)

Now, let w1, w2 be any solutions of (2) which exist on the whole interval [t0,∞) and
for which w2(t) > w1(t) (≤ w̃(t)) in this interval. Then by the previous analysis

lim sup
t→∞

∣

∣

∣

∣

w1(t)

w2(t)

∣

∣

∣

∣

≤ 1

and hence (18) is regular.

Remark 2. It is easy to see that condition (19) can be replaced by a weaker
condition.

−∞ < lim inf
t→∞

c(t) ≤ lim sup
t→∞

c(t) < 0 .(36)

In the next theorem equation (18) is compared with the below given Euler type
equation (38).

Theorem 3. Suppose that

lim
t→∞

tpc(t) = γ < 0 .(37)

Then (18) is regular.

Proof. Similarly as in the proof of Theorem 2 we will find a positive constants T
satisfying (14). To this end, consider the Euler equation

(Φ(x′))′ +
γ

tp
Φ(x) = 0 .(38)

The transformation y(t) = x(et) transforms this equation into the equation (with
constant coefficients)

(Φ(y′))′ − (p − 1)Φ(y′) + γΦ(y) = 0(39)

The corresponding Riccati equation is

w′ = −(p − 1)|w|q + (p − 1)w − γ .(40)

The same transformation transforms (18) into

(Φ(y′))′ − (p − 1)Φ(y′) + eptc(ept)Φ(y) = 0(41)

and the Riccati equation associated with (41) is

w′ = −(p − 1)|w|q + (p − 1)w − eptc(ept) .(42)
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Now, if (37) holds, then for every ε > 0, ε < |γ|, there exists t0 ∈ R such that

γ − ε < eptc(ept) < γ + ε

for every t ≥ t0. Consider the equations

(Φ(x′))′ − (p − 1)Φ(x′) + γ + ε = 0(43)

and

(Φ(x′))′ − (p − 1)Φ(x′) + γ − ε = 0 ,(44)

i.e., (43) is the Sturmian majorant to (41) and (44) is the Sturmian minorant to
(41). The corresponding Riccati equations are

v′ = −(p − 1)|v|q + (p − 1)v − (γ + ε)(45)

and

z′ = −(p − 1)|z|q + (p − 1)z − (γ − ε) .(46)

Note that equations (43), (44) can be written in the form (1), so Lemma 1 applies
also to (45) and (46). Let λ1(ε) < 0 < λ2(ε), µ1(ε) < 0 < µ2(ε) be the roots of
the equation

(p − 1)(|λ|q − λ) + γ + ε = 0 , (p − 1)(|µ|q − µ) + γ − ε = 0 ,

respectively. Then (45) has the constant solutions v1,2(t) = µ1,2(ε), (46) has con-
stant solutions z1,2(t) = λ1,2(ε) and the constants λ1,2(ε), µ1,2(ε) play the same
role as the constants ∓(β + ε), ∓(β − ε) in the proof of Theorem 2. In particular,
the solutions v = µ1(ε), z = λ1(ε) are eventually minimal of (45) and (46) and
any solutions v, z which are not eventually minimal satisfy

lim
t→∞

v(t) = µ2(ε) , lim
t→∞

z(t) = λ2(ε) .

Let w̃(t) be the minimal solution of (42). Then by the Sturmian comparison the-
orem we obtain

λ1(ε) ≤ w̃(t) ≤ µ1(ε) ,(47)

If w is any nonminimal solution of (42) then comparing this solution with those
of (45) and (46) we have that this solution satisfies either the same inequality as
the minimal solution w̃ in (47) or

µ2(ε) ≤ lim inf
t→∞

w(t) ≤ lim sup
t→∞

w(t) ≤ λ2(ε) .

Since ε > 0 was arbitrary and limε→0+ λ1,2(ε) = limε→0+ µ1,2(ε) =: λ̃1,2, where

λ̃1, λ̃2 are the negative and the positive root of the equation (p−1)(|λ|p−p)+γ = 0,

respectively, and since |λ̃1| < λ̃2 as can be verified by a direct computation, using
the same argument as used in the proof of the previous theorem we have

lim sup
t→∞

∣

∣

∣

∣

w1(t)

w2(t)

∣

∣

∣

∣

<
λ̃2

|λ̃1|
.
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This proves that (41) is regular and hence (18) is also regular since the trans-
formation of independent variable t 7−→ et preserves regularity of transformed
equations.

Remark 3. Similarly as in Remark 2 we can replace condition (37) by a weaker
condition

−∞ < lim inf
t→∞

tpc(t) ≤ lim sup
t→∞

tpc(t) < 0 .

4. Remarks

(i) A subject of the current discussion is whether (15) is really a good candidate
for the integral characterization of the principal solution of (1). There are several
supporting points, the most important of them is that the expression

G(t) :=

∫ t ds

r(s)x2(s)|x′(s)|p−2

plays in oscillation theory of (1) the same role as the term
∫ t

r−1x−2(s) ds in the
linear oscillation criteria, see [4, 9]. On the other hand, this integral characteri-
zation requires restrictions on the functions r, c which guarantee that solutions of
(1) satisfy x′ 6= 0 for large t as shows the example the equation (1) with p ∈ (1, 2),
c ≡ 0 and r satisfying

∫ ∞
r1−q dt = ∞. In this case x(t) ≡ 1 is the principal

solution but in its integral characterization I(x) = 0, where I(x) is defined by (6).

(ii) In our paper we investigate the principal solution at ∞, i.e. a solution having
some special properties for large t. Let b < ∞ be a regular point of (1) (in the sense
that the initial conditions x(b) = A, x′(b) = B determines the unique solution of
(1) for any A, B ∈ R) and denote by xb the solution given by the initial condition
xb(b) = 0, x′

b(b) = 1. This solution can be regarded as the principal solution at b
(since principal solution at ∞ is the limit (as b → ∞) of such solutions). In the
linear case xb is the only solution (up to a multiple by a nonzero real constant)

for which
∫ b

r−1(t)x−2(t) dt = ∞. A natural question is whether the principal
solution xb of (1) is also the only one solution of this equation which satisfies

Ib(x) :=

∫ b dt

r(t)x2(t)|x′(t)|p−2
= ∞

since this is the case for linear equation (3). Another solution which could satisfy
Ib(x) = ∞ in case p ∈ (2,∞) is the solution x̃b given by the initial condition
x̃b(b) = 1, x̃′

b(b) = 0. In this case, if c(b) 6= 0, then Ib(x̃b) < ∞, i.e. the solution xb

is really the only solution satisfying Ib(x) = ∞. Indeed, let w = rΦ(x̃′
b/x̃b) be the

solution of (2) corresponding to x̃b. Then w(b) = 0, w′(b) = c(b) 6= 0 and since
x̃b(b) = 1, r(b) > 0, we have Φ(x′(t)) ∼ w(t) ∼ (b − t) sgn c(b) for t → b. Hence

|x′(t)|p−2 ∼ |t− b|
p−2

p−1 and thus Ib(x̃b) < ∞. However, if c(b) = 0, it may generally
happen that Ib(x̃b) = ∞, i.e. Ib(x) is not equivalent integral characterization of
the principal solution at a finite point. This problem is a subject of the present
investigation.
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(iii) As mentioned at the beginning of this paper, another important character-
ization of the principal solution x̃ in the linear case is the limit characterization
limt→∞(x̃(t)/x(t)) = 0 for any solution x linearly independent of x̃. Concerning
nonoscillatory half-linear equation (1), since the solution space of (1) is no longer
additive and Wronskian identity is lost, see [7], it is an open problem whether the
same hold also in half-linear case. The ratio x̃/x is a monotonic function (since
x̃′x − x̃x′ has no zero, otherwise x̃′/x̃ = x′/x at some point which means that
there exist two different solution of the associated Riccati equation (2) satisfying
the same initial condition, a contradiction), hence there exists a (finite or infinite)
limit L := limt→∞ x̃(t)/x(t). Moreover, if solutions x, x̃ are eventually positive,
normalized in the sense that x(t0) = 1 = x̃(t0) for some t0 (sufficiently large) and
x̃ is principal, then L ∈ [0, 1). We conjecture, based on all nonoscillatory equa-
tions which can be computed explicitly, that similar to the linear case L = 0. This
conjecture is is equivalent to the following conjecture.

Conjecture 1. Suppose that (1) is nonoscillatory, w, w̃ are solutions of the as-

sociated Riccati equation (2), the solution w̃ is minimal. Then

∫ ∞

r1−q(t) [Φq(w(t)) − Φq(w̃(t))] dt = ∞ .

The proof (disprove) of this conjecture is a subject of the present investigation.
Note also that in the very recent paper [2] it is proved that if c(t) < 0 for large t,
the above conjecture is true.

(iv) We conclude the paper with an example illustrating the statements of the
previous section. Consider the Euler-type equation

(Φ(x′))′ +
γ

tp
Φ(x) = 0 ,(48)

with γ < 0. This equation satisfies the assumptions of Theorem 3, hence there
exists unique (up to a multiple by a nonzero real constant) solution for which
I(x) = ∞. Here we compute this solution explicitly. By a direct computation one
can verify that equation (48) possesses (among others) two linearly independent
solutions x1(t) = tλ1 , x2(t) = tλ2 , where λ1 < 0 < λ2 are roots of the equation

R(λ) := |λ|p − Φ(λ) +
γ

p − 1
= 0 ,

all other solutions are asymptotically (as t → ∞) equivalent to x2(t) and λ1,2 are
the only real roots of (49), see [6]. We have R(0) = γ

p−1 < 0, R(∞) = ∞ and

R( 1
q
) < 0, hence λ2 > 1

q
. This means that

∫ ∞ dt

x2
2|x

′
2(t)|

p−2
=

∫ ∞ dt

tp(λ2−1)+2
< ∞

since p(λ2 − 1) + 2 > 1. Consequently, x1(t) is really the only solution for which
I(x) = ∞.
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