AN EXTENSION OF THE METHOD OF QUASILINEARIZATION

TADEUSZ JANKOWSKI

Abstract

The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. This method has recently been generalized and extended using less restrictive assumptions so as to apply to a larger class of differential equations. In this paper, we use this technique to nonlinear differential problems.

1. Introduction

Let $y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ with $y_{0}(t) \leq z_{0}(t)$ on J and define the following sets

$$
\begin{aligned}
& \bar{\Omega}=\left\{(t, u): y_{0}(t) \leq u \leq z_{0}(t), t \in J\right\} \\
& \Omega=\left\{(t, u, v): y_{0}(t) \leq u \leq z_{0}(t), y_{0}(t) \leq v \leq z_{0}(t), t \in J\right\}
\end{aligned}
$$

In this paper, we consider the following initial value problem

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad t \in J=[0, b], x(0)=k_{0}, \tag{1}
\end{equation*}
$$

where $f \in C(\bar{\Omega}, \mathbb{R}), k_{0} \in \mathbb{R}$ are given. If we replace f by the sum $\left[f=g_{1}+g_{2}\right]$ of convex and concave functions, then corresponding monotone sequences converge quadratically to the unique solution of problem (1) (see $[6,8]$). In this paper we will generalize this result. Assume that f has the splitting $f(t, x)=F(t, x, x)$, where $F \in C(\Omega, \mathbb{R})$. Then problem (1) takes the form

$$
\begin{equation*}
x^{\prime}(t)=F(t, x(t), x(t)), \quad t \in J, x(0)=k_{0} . \tag{2}
\end{equation*}
$$

[^0]
2. Main Results

A function $v \in C^{1}(J, \mathbb{R})$ is said to be a lower solution of problem (2) if

$$
v^{\prime}(t) \leq F(t, v(t), v(t)), \quad t \in J, v(0) \leq k_{0}
$$

and an upper solution of (2) if the inequalities are reversed.
Theorem 1. Assume that:
$1^{\circ} y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ are lower and upper solutions of problem (2), respectively, such that $y_{0}(t) \leq z_{0}(t)$ on J,
$2^{\circ} F, F_{x}, F_{y}, F_{x x}, F_{x y}, F_{y x}, F_{y y} \in C(\Omega, \mathbb{R})$ and

$$
F_{x x}(t, x, y) \geq 0, \quad F_{x y}(t, x, y) \leq 0, \quad F_{y y}(t, x, y) \leq 0 \quad \text { for } \quad(t, x, y) \in \Omega
$$

Then there exist monotone sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ which converge uniformly to the unique solution x of (2) on J, and the convergence is quadratic.
Proof. The above assumptions guarantee that (2) has exactly one solution on Ω.
Observe that 2° implies that F_{x} is nondecreasing in the second variable, F_{x} is nonincreasing in the third variable and F_{y} is nonincreasing in the last two variables. Denote this property by (A).

Let us construct the elements of sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ by

$$
\begin{aligned}
y_{n+1}^{\prime}(t)=F\left(t, y_{n}, y_{n}\right)+\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right]\left[y_{n+1}(t)\right. & \left.-y_{n}(t)\right], \\
y_{n+1}(0) & =k_{0} \\
z_{n+1}^{\prime}(t)=F\left(t, z_{n}, z_{n}\right)+\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right]\left[z_{n+1}(t)\right. & \left.-z_{n}(t)\right] \\
z_{n+1}(0) & =k_{0}
\end{aligned}
$$

for $n=0,1, \cdots$. Note that the above sequences are well defined.
Indeed, $y_{0}(t) \leq z_{0}(t)$ on J, by 1°. We shall show that

$$
\begin{equation*}
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t) \text { on } J \tag{3}
\end{equation*}
$$

Put $p=y_{0}-y_{1}$ on J. Then

$$
\begin{aligned}
p^{\prime}(t) & \leq F\left(t, y_{0}, y_{0}\right)-F\left(t, y_{0}, y_{0}\right)-\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[y_{1}(t)-y_{0}(t)\right] \\
& =\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right] p(t)
\end{aligned}
$$

Hence $p(t) \leq 0$ on J, since $p(0) \leq 0$, showing that $y_{0}(t) \leq y_{1}(t)$ on J. Note that if we put $p=z_{1}-z_{0}$ on J, then

$$
\begin{aligned}
p^{\prime}(t) & \leq F\left(t, z_{0}, z_{0}\right)+\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[z_{1}(t)-z_{0}(t)\right]-F\left(t, z_{0}, z_{0}\right) \\
& =\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right] p(t), \quad \text { and } \quad p(0) \leq 0,
\end{aligned}
$$

so $z_{1}(t) \leq z_{0}(t)$ on J. Next, we let $p=y_{1}-z_{1}$ on J, so $p(0)=0$. By the mean value theorem and property (A), we have

$$
\begin{aligned}
p^{\prime}(t)= & F\left(t, y_{0}, y_{0}\right)-F\left(t, z_{0}, y_{0}\right)+F\left(t, z_{0}, y_{0}\right)-F\left(t, z_{0}, z_{0}\right) \\
& +\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right] \\
= & {\left[F_{x}\left(t, \xi, y_{0}\right)+F_{y}\left(t, z_{0}, \sigma\right)\right]\left[y_{0}(t)-z_{0}(t)\right] } \\
& +\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right] \\
\leq & {\left[F_{x}\left(t, y_{0}, z_{0}\right)-F_{x}\left(t, y_{0}, y_{0}\right)\right]\left[z_{0}(t)-y_{0}(t)\right] } \\
& +\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right] p(t) \\
\leq & {\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right] p(t) }
\end{aligned}
$$

where $y_{0}(t)<\xi(t), \sigma(t)<z_{0}(t)$ on J. As the result we get $p(t) \leq 0$ on J, so $y_{1}(y) \leq z_{1}(t)$ on J. It proves that (3) holds.

Now we prove that y_{1}, z_{1} are lower and upper solutions of (2), respectively. The mean value theorem and property (A) yield

$$
\begin{aligned}
y_{1}^{\prime}(t)= & F\left(t, y_{0}, y_{0}\right)-F\left(t, y_{1}, y_{0}\right)+F\left(t, y_{1}, y_{0}\right)-F\left(t, y_{1}, y_{1}\right)+F\left(t, y_{1}, y_{1}\right) \\
& +\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[y_{1}(t)-y_{0}(t)\right] \\
= & {\left[F_{x}\left(t, \xi_{1}, y_{0}\right)+F_{y}\left(t, y_{1}, \sigma_{1}\right)\right]\left[y_{0}(t)-y_{1}(t)\right]+F\left(t, y_{1}, y_{1}\right) } \\
& +\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[y_{1}(t)-y_{0}(t)\right] \\
\leq & {\left[F_{x}\left(t, y_{0}, z_{0}\right)-F_{x}\left(t, y_{0}, y_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)-F_{y}\left(t, y_{1}, y_{1}\right)\right]\left[y_{1}(t)-y_{0}(t)\right] } \\
& +F\left(t, y_{1}, y_{1}\right) \leq F\left(t, y_{1}, y_{1}\right),
\end{aligned}
$$

where $y_{0}(t)<\xi_{1}(t), \sigma_{1}(t)<y_{1}(t)$ on J. Similarly, we get

$$
\begin{aligned}
z_{1}^{\prime}(t)= & F\left(t, z_{1}, z_{1}\right)+F\left(t, z_{0}, z_{0}\right)-F\left(t, z_{1}, z_{0}\right)+F\left(t, z_{1}, z_{0}\right)-F\left(t, z_{1}, z_{1}\right) \\
& +\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[z_{1}(t)-z_{0}(t)\right] \\
= & F\left(t, z_{1}, z_{1}\right)+\left[F_{x}\left(t, \xi_{2}, z_{0}\right)+F_{y}\left(t, z_{1}, \sigma_{2}\right)\right]\left[z_{0}(t)-z_{1}(t)\right] \\
& +\left[F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[z_{1}(t)-z_{0}(t)\right] \\
\geq & F\left(t, z_{1}, z_{1}\right)+\left[F_{x}\left(t, z_{1}, z_{0}\right)-F_{x}\left(t, y_{0}, z_{0}\right)+F_{y}\left(t, z_{1}, z_{0}\right)\right. \\
& \left.-F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[z_{0}(t)-z_{1}(t)\right] \geq F\left(t, z_{1}, z_{1}\right)
\end{aligned}
$$

where $z_{1}(t)<\xi_{2}(t), \sigma_{2}(t)<z_{0}(t)$ on J. The above proves that y_{1}, z_{1} are lower and upper solutions of (2).

Let us assume that

$$
\begin{array}{r}
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{k-1}(t) \leq y_{k}(t) \leq z_{k}(t) \leq z_{k-1}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t) \\
t \in J
\end{array}
$$

and let y_{k}, z_{k} be lower and upper solutions of problem (2) for some $k \geq 1$. We shall prove that:

$$
\begin{equation*}
y_{k}(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq z_{k}(t), \quad t \in J \tag{4}
\end{equation*}
$$

Let $p=y_{k}-y_{k+1}$ on J, so $p(0)=0$. Using the mean value theorem, property (A) and the fact that y_{k} is a lower solution of problem (2), we obtain

$$
\begin{aligned}
p^{\prime}(t) & \leq F\left(t, y_{k}, y_{k}\right)-F\left(t, y_{k}, y_{k}\right)-\left[F_{x}\left(t, y_{k}, z_{k}\right)+F_{y}\left(t, z_{k}, z_{k}\right)\right]\left[y_{k+1}(t)-y_{k}(t)\right] \\
& =\left[F_{x}\left(t, y_{k}, z_{k}\right)+F_{y}\left(t, z_{k}, z_{k}\right)\right] p(t)
\end{aligned}
$$

Hence $p(t) \leq 0$, so $y_{k}(t) \leq y_{k+1}(t)$ on J. Similarly, we can show that $z_{k+1}(t) \leq$ $z_{k}(t)$ on J.

Now, if $p=y_{k+1}-z_{k+1}$ on J, then

$$
\begin{aligned}
p^{\prime}(t)= & F\left(t, y_{k}, y_{k}\right)-F\left(t, z_{k}, y_{k}\right)+F\left(t, z_{k}, y_{k}\right)-F\left(t, z_{k}, z_{k}\right) \\
& +\left[F_{x}\left(t, y_{k}, z_{k}\right)+F_{y}\left(t, z_{k}, z_{k}\right)\right]\left[y_{k+1}(t)-y_{k}(t)-z_{k+1}(t)+z_{k}(t)\right] \\
= & {\left[F_{x}\left(t, \bar{\xi}, y_{k}\right)+F_{y}\left(t, z_{k}, \bar{\sigma}\right)\right]\left[y_{k}(t)-z_{k}(t)\right] } \\
& +\left[F_{x}\left(t, y_{k}, z_{k}\right)+F_{y}\left(t, z_{k}, z_{k}\right)\right]\left[y_{k+1}(t)-y_{k}(t)-z_{k+1}(t)+z_{k}(t)\right] \\
\leq & {\left[F_{x}\left(t, y_{k}, z_{k}\right)-F_{x}\left(t, y_{k}, y_{k}\right)\right]\left[z_{k}(t)-y_{k}(t)\right] } \\
& +\left[F_{x}\left(t, y_{k}, z_{k}\right)+F_{y}\left(t, z_{k}, z_{k}\right)\right] p(t) \\
\leq & {\left[F_{x}\left(t, y_{k}, z_{k}\right)+F_{y}\left(t, z_{k}, z_{k}\right)\right] p(t) }
\end{aligned}
$$

with $y_{k}(t)<\bar{\xi}(t), \bar{\sigma}(t)<z_{k}(t)$. It proves that $y_{k+1}(t) \leq z_{k+1}(t)$ on J, so relation (4) holds.

Hence, by induction, we have

$$
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

for all n. Employing standard techniques [5], it can be shown that the sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge uniformly and monotonically to the unique solution x of problem (2).

We shall next show the convergence of y_{n}, z_{n} to the unique solution x of problem (2) is quadratic. For this purpose, we consider

$$
p_{n+1}=x-y_{n+1} \geq 0, \quad q_{n+1}=z_{n+1}-x \geq 0 \quad \text { on } \quad J,
$$

and note that $p_{n+1}(0)=q_{n+1}(0)=0$ for $n \geq 0$. Using the mean value theorem and property (A), we get

$$
\begin{aligned}
p_{n+1}^{\prime}(t)= & F(t, x, x)-F\left(t, y_{n}, x\right)+F\left(t, y_{n}, x\right)-F\left(t, y_{n}, y_{n}\right) \\
& -\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right]\left[y_{n+1}(t)-x(t)+x(t)-y_{n}(t)\right] \\
= & {\left[F_{x}\left(t, \bar{\xi}_{1}, x\right)+F_{y}\left(t, y_{n}, \bar{\sigma}_{1}\right)\right] p_{n}(t) } \\
& +\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right]\left[p_{n+1}(t)-p_{n}(t)\right] \\
\leq & {\left[F_{x}(t, x, x)-F_{x}\left(t, y_{n}, x\right)+F_{x}\left(t, y_{n}, x\right)-F_{x}\left(t, y_{n}, z_{n}\right)\right.} \\
& \left.+F_{y}\left(t, y_{n}, y_{n}\right)-F_{y}\left(t, z_{n}, y_{n}\right)+F_{y}\left(t, z_{n}, y_{n}\right)-F_{y}\left(t, z_{n}, z_{n}\right)\right] p_{n}(t) \\
& +\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right] p_{n+1}(t) \\
= & \left\{F_{x x}\left(t, \bar{\xi}_{2}, x\right) p_{n}(t)-F_{x y}\left(t, y_{n}, \bar{\sigma}_{2}\right) q_{n}(t)-F_{y x}\left(t, \bar{\xi}_{3}, y_{n}\right)\left[z_{n}(t)-y_{n}(t)\right]\right. \\
& \left.-F_{y y}\left(t, z_{n}, \bar{\sigma}_{3}\right)\left[z_{n}(t)-y_{n}(t)\right]\right\} p_{n}(t) \\
& +\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right] p_{n+1}(t),
\end{aligned}
$$

where $y_{n}(t)<\bar{\xi}_{1}(t), \bar{\xi}_{2}(t), \bar{\sigma}_{1}(t)<x(t), x(t)<\bar{\sigma}_{2}(t)<z_{n}(t), y_{n}(t)<\bar{\xi}_{3}(t)$, $\bar{\sigma}_{3}(t)<z_{n}(t)$ on J. Thus we obtain

$$
\begin{aligned}
p_{n+1}^{\prime}(t) & \leq\left\{A_{1} p_{n}(t)+A_{2} q_{n}(t)+\left[A_{2}+A_{3}\right]\left[q_{n}(t)+p_{n}(t)\right]\right\} p_{n}(t)+M p_{n+1}(t) \\
& \leq M p_{n+1}(t)+B_{1} p_{n}^{2}(t)+B_{2} q_{n}^{2}(t),
\end{aligned}
$$

where

$$
\begin{gathered}
\left|F_{x x}(t, u, v)\right| \leq A_{1},\left|F_{x y}(t, u, v)\right| \leq A_{2},\left|F_{y y}(t, u, v)\right| \leq A_{3},\left|F_{x}(t, u, v)\right| \leq M_{1}, \\
\left|F_{y}(t, u, v)\right| \leq M_{2} \text { on } \Omega \text { with } M=M_{1}+M_{2}, \quad B_{1}=A_{1}+2 A_{2}+\frac{3}{2} A_{3}, \\
B_{2}=A_{2}+\frac{1}{2} A_{3} .
\end{gathered}
$$

Now, the differential inequality implies

$$
0 \leq p_{n+1}(t) \leq \int_{0}^{t}\left[B_{1} p_{n}^{2}(s)+B_{2} q_{n}^{2}(s)\right] \exp [M(t-s)] d s
$$

This yields the following relation

$$
\max _{t \in J}\left|x(t)-y_{n+1}(t)\right| \leq a_{1} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+a_{2} \max _{t \in J}\left|x(t)-z_{n}(t)\right|^{2},
$$

where $a_{i}=B_{i} S, i=1,2$ with

$$
S=\left\{\begin{array}{lll}
b & \text { if } & M=0 \\
\frac{1}{M}[\exp (M b)-1] & \text { if } & M>0
\end{array}\right.
$$

Similarly, we find that

$$
\begin{aligned}
q_{n+1}^{\prime}(t)= & F\left(t, z_{n}, z_{n}\right)-F\left(t, x, z_{n}\right)+F\left(t, x, z_{n}\right)-F(t, x, x) \\
& +\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right]\left[z_{n+1}(t)-x(t)+x(t)-z_{n}(t)\right] \\
= & {\left[F_{x}\left(t, \bar{\xi}_{4}, z_{n}\right)+F_{y}\left(t, x, \bar{\sigma}_{4}\right)\right] q_{n}(t) } \\
& +\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right]\left[q_{n+1}(t)-q_{n}(t)\right] \\
\leq & {\left[F_{x}\left(t, z_{n}, z_{n}\right)-F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}(t, x, x)-F_{y}\left(t, z_{n}, x\right)\right.} \\
& \left.+F_{y}\left(t, z_{n}, x\right)-F_{y}\left(t, z_{n}, z_{n}\right)\right] q_{n}(t)+\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right] q_{n+1}(t) \\
= & \left\{F_{x x}\left(t, \bar{\xi}_{5}, z_{n}\right)\left[z_{n}(t)-y_{n}(t)\right]\right. \\
& \left.-F_{y x}\left(t, \bar{\xi}_{6}, x\right) q_{n}(t)-F_{y y}\left(t, z_{n}, \bar{\sigma}_{5}\right) q_{n}(t)\right\} q_{n}(t) \\
& +\left[F_{x}\left(t, y_{n}, z_{n}\right)+F_{y}\left(t, z_{n}, z_{n}\right)\right] q_{n+1}(t),
\end{aligned}
$$

where $x(t)<\bar{\xi}_{4}(t), \bar{\xi}_{6}(t), \bar{\sigma}_{4}(t), \bar{\sigma}_{5}(t)<z_{n}(t), y_{n}(t)<\bar{\xi}_{5}(t)<z_{n}(t)$ on J. Hence, we get

$$
\begin{aligned}
q_{n+1}^{\prime}(t) & \leq\left\{A_{1}\left[q_{n}(t)+p_{n}(t)\right]+A_{2} q_{n}(t)+A_{3} q_{n}(t)\right\} q_{n}(t)+M q_{n+1}(t), \\
& \leq M q_{n+1}(t)+\bar{B}_{1} p_{n}^{2}(t)+\bar{B}_{2} q_{n}^{2}(t),
\end{aligned}
$$

where

$$
\bar{B}_{1}=\frac{1}{2} A_{1}, \quad \bar{B}_{2}=\frac{3}{2} A_{1}+A_{2}+A_{3} .
$$

Now, the last differential inequality implies

$$
q_{n+1}(t) \leq\left[\bar{B}_{1} \max _{s \in J} p_{n}^{2}(s)+\bar{B}_{2} \max _{s \in J} q_{n}^{2}(s)\right] S, \quad t \in J
$$

or

$$
\max _{t \in J}\left|x(t)-z_{n+1}(t)\right| \leq \bar{a}_{1} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+\bar{a}_{2} \max _{t \in J}\left|x(t)-z_{n}(t)\right|^{2}
$$

with $\bar{a}_{i}=\bar{B}_{i} S, i=1,2$.
The proof is complete.
Remark 1. Let $f=h+g$, and $h, h_{x}, h_{x x}, g, g_{x}, g_{x x} \in C\left(\Omega_{1}, \mathbb{R}\right)$ for $\Omega_{1}=\{(t, u)$: $\left.t \in J, y_{0}(t) \leq u \leq z_{0}(t)\right\}$. Put $F(t, x, y)=h(t, x)+g(t, y)$. Indeed, $F(t, x, x)=$ $f(t, x)$ and $F_{x x}(t, x, y)=h_{x x}(t, x), F_{x y}(t, x, y)=F_{y x}(t, x, y)=0, F_{y y}(t, x, y)=$ $g_{y y}(t, y)$. In this case Theorem 1 reduces to Theorem 1.3.1 of [8].

Remark 2. Let f, h, g be as in Remark 1 and moreover let $\Phi, \Phi_{x}, \Phi_{x x}, \Psi, \Psi_{x}$, $\Psi_{x x} \in C\left(\Omega_{1}, \mathbb{R}\right)$. Put $F(t, x, y)=H(t, x)+G(t, y)-\Phi(t, y)-\Psi(t, x)$ for $H=$ $h+\Phi, G=g+\Psi$. Indeed, $F(t, x, x)=f(t, x)$ and $F_{x x}(t, x, y)=H_{x x}(t, x)-$ $\Psi_{x x}(t, x), \quad F_{x y}(t, x, y)=F_{y x}(t, x, y)=0, F_{y y}(t, x, y)=G_{y y}(t, y)-\Phi_{y y}(t, y)$. If assumptions of Theorem 1.4.3[8] hold ($\left.H_{x x} \geq 0, \Psi_{x x} \leq 0, G_{y y} \leq 0, \Phi_{y y} \geq 0\right)$ then Theorem 1 is satisfied (see also a result of [6] for $g=\Psi=0, \Phi(t, x)=$ $\left.M x^{2}, M>0\right)$.

Theorem 2. Assume that
(i) condition 1° of Theorem 1 holds,
(ii) $F, F_{x}, F_{y}, F_{x x}, F_{x y}, F_{y x}, F_{y y} \in C(\Omega, \mathbb{R})$ and

$$
F_{x x}(t, x, y) \geq 0, \quad F_{x y}(t, x, y) \geq 0, \quad F_{y y}(t, x, y) \leq 0 \quad \text { for } \quad(t, x, y) \in \Omega
$$

Then the conclusion of Theorem 1 remains valid.
Proof. Note that, in view of (ii), F_{x} is nondecreasing in the last two variables, F_{y} is nondecreasing in the second variable, and F_{y} is nonincreasing in the third one. Denote this property by (B).

We construct the monotone sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ by formulas:

$$
\begin{gathered}
y_{n+1}^{\prime}(t)=F\left(t, y_{n}, y_{n}\right)+\left[F_{x}\left(t, y_{n}, y_{n}\right)+F_{y}\left(t, y_{n}, z_{n}\right)\right]\left[y_{n+1}(t)-y_{n}(t)\right] \\
y_{n+1}(0)=k_{0} \\
z_{n+1}^{\prime}(t)=F\left(t, z_{n}, z_{n}\right)+\left[F_{x}\left(t, y_{n}, y_{n}\right)+F_{y}\left(t, y_{n}, z_{n}\right)\right]\left[z_{n+1}(t)-z_{n}(t)\right] \\
z_{n+1}(0)=k_{0}
\end{gathered}
$$

for $n=0,1, \ldots$.

Let $p=y_{0}-y_{1}$ on J. Then

$$
\begin{aligned}
p^{\prime}(t) & \leq F\left(t, y_{0}, y_{0}\right)-F\left(t, y_{0}, y_{0}\right)-\left[F_{x}\left(t, y_{0}, y_{0}\right)+F_{y}\left(t, y_{0}, z_{0}\right)\right]\left[y_{1}(t)-y_{0}(t)\right] \\
& =\left[F_{x}\left(t, y_{0}, y_{0}\right)+F_{y}\left(t, y_{0}, z_{0}\right)\right] p(t), \quad \text { and } \quad p(0) \leq 0 .
\end{aligned}
$$

Hence $p(t) \leq 0$ on J, showing that $y_{0}(t) \leq y_{1}(t)$ on J. Similarly, we can show that $z_{1}(t) \leq z_{0}(t)$ on J. If we now put $p=y_{1}-z_{1}$ on J, then the mean value theorem and property (B), we have

$$
\begin{aligned}
p^{\prime}(t)= & F\left(t, y_{0}, y_{0}\right)-F\left(t, z_{0}, y_{0}\right)+F\left(t, z_{0}, y_{0}\right)-F\left(t, z_{0}, z_{0}\right) \\
& +\left[F_{x}\left(t, y_{0}, y_{0}\right)+F_{y}\left(t, y_{0}, z_{0}\right)\right]\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right] \\
= & {\left[F_{x}\left(t, \xi, y_{0}\right)+F_{y}\left(t, z_{0}, \sigma\right)\right]\left[y_{0}(t)-z_{0}(t)\right] } \\
& +\left[F_{x}\left(t, y_{0}, y_{0}\right)+F_{y}\left(t, y_{0}, z_{0}\right)\right]\left[p(t)-z_{1}(t)+z_{0}(t)\right] \\
\leq & {\left[F_{y}\left(t, y_{0}, z_{0}\right)-F_{y}\left(t, z_{0}, z_{0}\right)\right]\left[z_{0}(t)-y_{0}(t)\right] } \\
& +\left[F_{x}\left(t, y_{0}, y_{0}\right)+F_{y}\left(t, y_{0}, z_{0}\right)\right] p(t) \\
\leq & {\left[F_{x}\left(t, y_{0}, y_{0}\right)+F_{y}\left(t, y_{0}, z_{0}\right)\right] p(t), \quad p(0)=0 }
\end{aligned}
$$

with $y_{0}(t)<\xi(t), \sigma(t)<z_{0}(t)$ on J. Hence $y_{1}(t) \leq z_{1}(t)$ on J, and as a result, we obtain

$$
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t) \quad \text { on } \quad J .
$$

Continuing this process successively, by induction, we get

$$
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

for all n. Indeed, the sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge uniformly and monotonically to the unique solution x of problem (2). Now, we are in a position to show that this convergence is quadratic.

Let

$$
p_{n+1}=x-y_{n+1} \geq 0, \quad q_{n+1}=z_{n+1}-x \geq 0 \quad \text { on } \quad J .
$$

Hence $p_{n+1}(0)=q_{n+1}(0)=0$. The mean value theorem and property (B) yield

$$
\begin{aligned}
p_{n+1}^{\prime}(t)= & F(t, x, x)-F\left(t, y_{n}, x\right)+F\left(t, y_{n}, x\right)-F\left(t, y_{n}, y_{n}\right) \\
& -\left[F_{x}\left(t, y_{n}, y_{n}\right)+F_{y}\left(t, y_{n}, z_{n}\right)\right]\left[y_{n+1}(t)-x(t)+x(t)-y_{n}(t)\right] \\
= & {\left[F_{x}\left(t, \xi_{1}, x\right)+F_{y}\left(t, y_{n}, \sigma_{1}\right)\right] p_{n}(t) } \\
& +\left[F_{x}\left(t, y_{n}, y_{n}\right)+F_{y}\left(t, y_{n}, z_{n}\right)\right]\left[p_{n+1}(t)-p_{n}(t)\right] \\
\leq & {\left[F_{x}(t, x, x)-F_{x}\left(t, y_{n}, x\right)+F_{x}\left(t, y_{n}, x\right)-F_{x}\left(t, y_{n}, y_{n}\right)\right.} \\
& \left.+F_{y}\left(t, y_{n}, y_{n}\right)-F_{y}\left(t, y_{n}, z_{n}\right)\right] p_{n}(t) \\
& +\left[F_{x}\left(t, y_{n}, y_{n}\right)+F_{y}\left(t, y_{n}, z_{n}\right)\right] p_{n+1}(t) \\
= & \left\{F_{x x}\left(t, \xi_{2}, x\right) p_{n}(t)+F_{x y}\left(t, y_{n}, \sigma_{2}\right) p_{n}(t)\right. \\
& \left.-F_{y y}\left(t, y_{n}, \sigma_{3}\right)\left[z_{n}(t)-y_{n}(t)\right]\right\} p_{n}(t) \\
& +\left[F_{x}\left(t, y_{n}, y_{n}\right)+F_{y}\left(t, y_{n}, z_{n}\right)\right] p_{n+1}(t),
\end{aligned}
$$

where $y_{n}(t)<\xi_{1}(t), \xi_{2}(t), \sigma_{1}(t), \sigma_{2}(t)<x(t), y_{n}(t)<\sigma_{3}(t)<z_{n}(t)$ on J. Thus we obtain

$$
\begin{aligned}
p_{n+1}^{\prime}(t) & \leq\left\{\left(A_{1}+A_{2}\right) p_{n}(t)+A_{3}\left[q_{n}(t)+p_{n}(t)\right]\right\} p_{n}(t)+M p_{n+1}(t) \\
& \leq M p_{n+1}(t)+D_{1} p_{n}^{2}(t)+D_{2} q_{n}^{2}(t),
\end{aligned}
$$

where $D_{1}=A_{1}+A_{2}+\frac{3}{2} A_{3}, D_{2}=\frac{1}{2} A_{3}$. Hence, we get

$$
0 \leq p_{n+1}(t) \leq \int_{0}^{t}\left[D_{1} p_{n}^{2}(s)+D_{2} q_{n}^{2}(s)\right] \exp [M(t-s)] d s
$$

and it yields the relation

$$
\max _{t \in J}\left|x(t)-y_{n+1}(t)\right| \leq d_{1} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+d_{2} \max _{t \in J}\left|x(t)-z_{n}(t)\right|^{2},
$$

where $d_{i}=D_{i} S, i=1,2$.
By the similar argument, we can show that

$$
\max _{t \in J}\left|x(t)-z_{n+1}(t)\right| \leq \bar{d}_{1} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+\bar{d}_{2} \max _{t \in J}\left|x(t)-z_{n}(t)\right|^{2},
$$

with $\bar{d}_{i}=\bar{D}_{i} S, i=1,2$, for $\bar{D}_{1}=\frac{1}{2} A_{1}+A_{2}, \bar{D}_{2}=\frac{3}{2} A_{1}+2 A_{2}+A_{3}$.
This ends the proof.

References

[1] Bellman, R., Methods of Nonlinear Analysis, Vol. II, Academic Press, New York 1973.
[2] Bellman, R. and Kalaba, R., Quasilinearization and Nonlinear Boundary Value Problems, American Elsevier, New York 1965.
[3] Jankowski, T. and Lakshmikantham, V., Monotone iterations for differential equations with a parameter, J. Appl. Math. Stoch. Anal. 10 (1997), 273-278.
[4] Jankowski, T. and McRae, F. A., An extension of the method of quasilinearization for differential problems with a parameter, Nonlinear Stud. 6 (1999), 21-44.
[5] Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S., Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman 1985.
[6] Lakshmikantham, V. and Malek, S., Generalized quasilenearization, Nonlinear World 1 (1994), 59-63.
[7] Lakshmikantham, V., Leela, S. and Sivasundaram, S., Extensions of the Method of Quasilinearization, J. Optimization Theory Appl. Vol. 87 (1995), 379-401.
[8] Lakshmikantham, V. and Vatsala, A. S., Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht 1998.
[9] Lakshmikantham, V., Leela, S. and McRae, F. A., Improved Generalized Quasilinearization Method, Nonlinear Analysis 24 (1995), 1627-1637.
[10] Lakshmikantham, V. and Shahzad, N., Further Generalization of Generalized Quasilinearization Method, J. Appl. Math. Stoch. Anal. 7 (1994), 545-552.
[11] Shahzad, N. and Vatsala, A. S., An Extension of the Method of Generalized Quasilinearization for Second Order Boundary Value Problems, Appl. Anal. 58 (1995), 77-83.

Technical University of Gdańsk
Department of Differential Equations
11/12 G.Narutowicz Str., 80-952 GdańSk, Poland
E-mail: tjank@mifgate.mif.pg.gda.pl

[^0]: 2000 Mathematics Subject Classification: 34A45.
 Key words and phrases: quasilinearization, monotone iterations, quadratic convergence.
 Received August 15, 2001.

