THE ASYMPTOTIC PROPERTIES OF THE SOLUTIONS OF THE N-TH ORDER NEUTRAL DIFFERENTIAL EQUATIONS

DÁŠA LACKOVÁ

Abstract. The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the n-th order neutral differential equation

$$
(x(t)-p x(t-\tau))^{(n)}-q(t) x(\sigma(t))=0
$$

where $\sigma(t)$ is a delayed or advanced argument.

We consider the $n-$ th order differential equation with a deviating argument of the form

$$
\begin{equation*}
(x(t)-p x(t-\tau))^{(n)}-q_{1}(t) x\left(\sigma_{1}(t)\right)=0 \tag{1}
\end{equation*}
$$

where
(i) n is even,
(ii) p and τ are positive numbers,
(iii) $q_{1}(t), \sigma_{1}(t) \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), q_{1}(t)$ is positive, $\lim _{t \rightarrow \infty} \sigma_{1}(t)=\infty$.

By a solution of Eq. (1) we mean a function $x:\left[T_{x}, \infty\right) \rightarrow \mathbb{R}$ which satisfies (1) for all sufficiently large t. Such a solution is called oscillatory if it has a sequence of zeros tending to infinity; otherwise it is called nonoscillatory. Eq. (1) is said to be oscillatory if all its solutions are oscillatory.

We introduce the notation

$$
\begin{equation*}
Q_{j}(t)=q_{j}(t) \sum_{i=0}^{m} p^{i}, \quad \text { where } m \text { is a positive integer, } \quad j=1,2 \tag{2}
\end{equation*}
$$

Lemma 1. Let $z(t)$ be an n times differentiable function on \mathbb{R}_{+}of constant sign, $z^{(n)}(t) \not \equiv 0$ on $\left[T_{0}, \infty\right)$ which satisfies $z^{(n)}(t) z(t) \geq 0$. Then there is an integer l, $0 \leq l \leq n$ and $t_{1} \geq T_{0}$ such that $n+l$ is even and for all $t \geq t_{1}$

$$
\begin{align*}
z(t) z^{(i)}(t)>0, & 0 \leq i \leq \ell \\
(-1)^{i-\ell} z(t) z^{(i)}(t)>0, & \ell \leq i \leq n \tag{3}
\end{align*}
$$

Lemma 1 is a well-known lemma of Kiguradze [5].
A function $z(t)$ satisfying (3) is said to be a function of degree l. The set of all functions of degree l is denoted by \mathcal{N}_{l}. If we denote by \mathcal{N} the set of all functions satisfying $z^{(n)}(t) z(t) \geq 0$ then the set \mathcal{N} has the following decomposition

$$
\mathcal{N}=\mathcal{N}_{0} \cup \mathcal{N}_{2} \cup \cdots \cup \mathcal{N}_{n} .
$$

Lemma 2. Let $y(t)$ be a positive function of degree $\ell, \ell \geq 2$. Then

$$
\begin{equation*}
y(t) \geq \int_{t_{1}}^{t} y^{(\ell-1)}(s) \frac{(t-s)^{\ell-2}}{(\ell-2)!} d s \tag{4}
\end{equation*}
$$

The proof of this lemma is immediate from integration the identity $y^{(l-1)}(t)=$ $y^{(l-1)}(t)$.
Theorem 1. Assume that m is a positive integer. Let

$$
\begin{equation*}
\sigma_{1}(t)<t-\tau, \quad \sigma_{1}(t) \in C^{1}, \quad \sigma_{1}^{\prime}(t) \geq 0 \tag{5}
\end{equation*}
$$

Further assume that the differential equation

$$
\begin{equation*}
y^{(n)}(t)+\frac{1}{p} q_{1}(t) y\left(\sigma_{1}(t)+\tau\right)=0 \tag{6}
\end{equation*}
$$

is oscillatory and the differential inequality

$$
\begin{equation*}
z^{(n)}(t)-Q_{1}(t) z\left(\sigma_{1}(t)\right) \geq 0 \tag{7}
\end{equation*}
$$

has no solution of degree 0. Then every nonoscillatory solution of Eq. (1) tends to ∞ as $t \rightarrow \infty$.

Proof. Without loss of generality let $x(t)$ be an eventually positive solution of Eq. (1) and define

$$
\begin{equation*}
z(t)=x(t)-p x(t-\tau) \tag{8}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
z(t)<x(t) \tag{9}
\end{equation*}
$$

From Eq. (1) we have $z^{(n)}(t)>0$ for all large t, say $t \geq t_{0}$. Thus $z^{(i)}(t)$ are monotonous, $i=0,1, \ldots, n-1$. If $z(t)<0$ eventually, then we set $u(t)=-z(t)$. In the view of (8)

$$
x(t-\tau)>\frac{1}{p} u(t)
$$

that is

$$
x(t)>\frac{1}{p} u(t+\tau) .
$$

One gets that $u(t)$ is a positive solution of the inequality

$$
u^{(n)}(t)+\frac{1}{p} q_{1}(t) u\left(\sigma_{1}(t)+\tau\right) \leq 0
$$

and by Kusano and Naito [1] the corresponding equation

$$
u^{(n)}(t)+\frac{1}{p} q_{1}(t) u\left(\sigma_{1}(t)+\tau\right)=0
$$

has a positive solution $u(t)$. This contradicts that (6) is oscillatory.
Therefore $z(t)>0$. According to Lemma 1 we have two possibilities for $z^{\prime}(t)$:
(a) $z^{\prime}(t)>0$, for $t \geq t_{1} \geq t_{0}$,
(b) $z^{\prime}(t)<0$, for $t \geq t_{1}$.

For case (a) by Lemma 1 we obtain $z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)>0$. It implies that $\lim _{t \rightarrow \infty} z(t)=\infty$ and from (9) also $\lim _{t \rightarrow \infty} x(t)=\infty$.

For case (b) Eq. (1) can be written in the form

$$
z^{(n)}(t)-q_{1}(t) x\left(\sigma_{1}(t)\right)=0
$$

Using (8) we have

$$
z^{(n)}(t)-q_{1}(t) z\left(\sigma_{1}(t)\right)-p q_{1}(t) x\left(\sigma_{1}(t)-\tau\right)=0
$$

Repeating this procedure m-times we arrive at

$$
z^{(n)}(t)-q_{1}(t) \sum_{i=0}^{m} p^{i} z\left(\sigma_{1}(t)-i \tau\right)-p^{m+1} q_{1}(t) x\left(\sigma_{1}(t)-(m+1) \tau\right)=0
$$

Since $z(t)$ is decreasing, we get

$$
z^{(n)}(t)-q_{1}(t) z\left(\sigma_{1}(t)\right) \sum_{i=0}^{m} p^{i} \geq 0
$$

In the view of (2) we have

$$
\begin{equation*}
z^{(n)}(t)-Q_{1}(t) z\left(\sigma_{1}(t)\right) \geq 0 \tag{10}
\end{equation*}
$$

Hence $z(t)$ is a solution of degree 0 of the inequality (10). This is a contradiction.

Corollary 1. Let m be a positive integer. Further assume that (5) holds, differential equation (6) is oscillatory and there exists $k \in\{0,1, \ldots, n-1\}$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{k!(n-k-1)!} \int_{\sigma_{1}(t)}^{t}\left[s-\sigma_{1}(t)\right]^{k}\left[\sigma_{1}(t)-\sigma_{1}(s)\right]^{n-k-1} Q_{1}(s) d s>1 \tag{11}
\end{equation*}
$$

Then every nonoscillatory solution of Eq. (1) tends to ∞ as $t \rightarrow \infty$.
Proof. By [2, Theorem 1] it follows from (11) that the differential inequality (7) has no solution of degree 0 . Our assertion follows from Theorem 1.

Let us consider the $n-$ th order differential equation with an advanced argument of the form

$$
\begin{equation*}
(x(t)-p x(t-\tau))^{(n)}-q_{2}(t) x\left(\sigma_{2}(t)\right)=0 \tag{12}
\end{equation*}
$$

where (i), (ii) holds and moreover
(iv) $q_{2}(t), \sigma_{2}(t) \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), q_{2}(t)$ is positive, $\lim _{t \rightarrow \infty} \sigma_{2}(t)=\infty$.

We introduce the notation

$$
\begin{array}{r}
A_{\ell}(t)=\int_{t}^{\infty} q_{2}(s) \frac{(s-t)^{n-\ell-1}}{(n-\ell-1)!} \times\left[\int_{t}^{\sigma_{2}(s)} \frac{(t-u)^{\ell-2}}{(\ell-2)!} d u\right] d s \tag{13}\\
\quad \text { for } \ell=2,4, \ldots, n-2
\end{array}
$$

Theorem 2. Assume that m is a positive integer and

$$
\begin{equation*}
\sigma_{2}(t)-m \tau>t, \quad \sigma_{2}(t) \in C^{1}, \quad \sigma_{2}^{\prime}(t) \geq 0, \quad 0<p<1 \tag{14}
\end{equation*}
$$

Further assume that

$$
\begin{equation*}
A_{\ell}(t)\left(t-t_{1}\right)>1 \quad \text { for } \quad \ell=2,4, \ldots, n-2 \tag{15}
\end{equation*}
$$

and the differential inequality

$$
\begin{equation*}
z^{(n)}(t)-Q_{2}(t) z\left(\sigma_{2}(t)-m \tau\right) \geq 0 \tag{16}
\end{equation*}
$$

has no solution of degree n. Then every nonoscillatory solution of Eg. (12) is bounded.

Proof. Without loss of generality let $x(t)$ be an eventually positive solution of Eq. (12) and define

$$
\begin{equation*}
z(t)=x(t)-p x(t-\tau) \tag{17}
\end{equation*}
$$

From Eq. (12) we have $z^{(n)}(t)>0$ for all large t, say $t \geq t_{0}$. Thus $z^{i}(t)$ are monotonous, $i=0,1, \ldots, n-1$. If $z(t)<0$ eventually, then

$$
x(t)<p x(t-\tau)<p^{2} x(t-2 \tau)<\cdots<p^{k} x(t-k \tau)
$$

for all large t, which implies $\lim _{t \rightarrow \infty} x(t)=0$.
If $z(t)>0$, then according to a Lemma 1 we have two possibilities for $z^{\prime}(t)$:
(a) $z^{\prime}(t)>0$, for $t \geq t_{1} \geq t_{0}$,
(b) $z^{\prime}(t)<0$, for $t \geq t_{1}$.

For case (a) we have two possibilities:
(i) $\exists \ell \in 2,4, \ldots, n-2$, such that $z(t) \in \mathcal{N}_{\ell}$,
(ii) $\ell=n$, i.e. $z(t) \in \mathcal{N}_{n}$.

For case (i) Eq. (12) can be written in the form

$$
z^{(n)}(t)=q_{2}(t) x\left(\sigma_{2}(t)\right) .
$$

Integrating this equation from t to $\infty n-\ell$ times and taking Lemma 2 into account, one gets

$$
\begin{aligned}
z^{(\ell)}(t) & \geqslant \int_{t}^{\infty} q_{2}(s) x\left(\sigma_{2}(s)\right) \frac{(s-t)^{n-\ell-1}}{(n-\ell-1)!} d s \geqslant \int_{t}^{\infty} q_{2}(s) z\left(\sigma_{2}(s)\right) \frac{(s-t)^{n-\ell-1}}{(n-\ell-1)!} d s \\
& \geqslant \int_{t}^{\infty} q_{2}(s) \frac{(s-t)^{n-\ell-1}}{(n-\ell-1)!} \times\left[\int_{t_{1}}^{\sigma_{2}(s)} z^{(\ell-1)}(u) \frac{(t-u)^{\ell-2}}{(\ell-2)!} d u\right] d s
\end{aligned}
$$

Taking into account that $\sigma_{2}(t)$ is nondecreasing, $t \geq t_{1}$ and $z^{(\ell-1)}(t)$ is increasing, the above inequalities led to

$$
\begin{equation*}
z^{(\ell)}(t) \geq z^{(\ell-1)}(t) A_{\ell}(t) \tag{18}
\end{equation*}
$$

Integration of the identity $z^{(\ell)}(t)=z^{(\ell)}(t)$ from t_{1} to t provides

$$
z^{(\ell-1)}(t) \geqslant \int_{t_{1}}^{t} z^{(\ell)}(s) d s \geqslant z^{(\ell)}(t)\left(t-t_{1}\right), \quad t \geq t_{1}
$$

which in the view of (18) implies

$$
1 \geq\left(t-t_{1}\right) A_{\ell}(t)
$$

This contradicts (15).
For case (ii) Eq. (12) can be written in the form

$$
z^{(n)}(t)-q_{2}(t) x\left(\sigma_{2}(t)\right)=0
$$

Using (17) we have

$$
z^{(n)}(t)-q_{2}(t) z\left(\sigma_{2}(t)\right)-p q_{2}(t) x\left(\sigma_{2}(t)-\tau\right)=0
$$

Repeating this procedure m-times we arrive at

$$
z^{(n)}(t)-q_{2}(t) \sum_{i=0}^{m} p^{i} z\left(\sigma_{2}(t)-i \tau\right)-p^{m+1} q_{2}(t) x\left(\sigma_{2}(t)-(m+1) \tau\right)=0
$$

Since $z(t)$ is increasing, we get

$$
z^{(n)}(t)-q_{2}(t) z\left(\sigma_{2}(t)-m \tau\right) \sum_{i=0}^{m} p^{i} \geq 0
$$

In the view of (2) we have

$$
\begin{equation*}
z^{(n)}(t)-Q_{2}(t) z\left(\sigma_{2}(t)-m \tau\right) \geq 0 \tag{19}
\end{equation*}
$$

Hence $z(t)$ is a solution of degree n of the inequality (19). This is a contradiction.
For case (b) we have $z(t)>0, z^{\prime}(t)<0$. Hence there exists

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(t)=c \geq 0 \tag{20}
\end{equation*}
$$

If $x(t)$ is unbounded eventually, then we can define the sequence $\left\{t_{n}\right\}$ where $t_{n} \rightarrow$ ∞ as $n \rightarrow \infty$ as follows. Let us choose t_{m} for every $m \in \mathbb{N}$ such that

$$
x\left(t_{m}\right)=\max \left\{x(s), t_{0} \leq s \leq t_{m}\right\}
$$

Since

$$
x\left(t_{m}-\tau\right)=\max \left\{x(s), t_{0} \leq s \leq t_{m}-\tau\right\} \leq \max \left\{x(s), t_{0} \leq s \leq t_{m}\right\}=x\left(t_{m}\right)
$$

we have

$$
z\left(t_{m}\right)=x\left(t_{m}\right)-p x\left(t_{m}-\tau\right) \geq x\left(t_{m}\right)-p x\left(t_{m}\right)=(1-p) x\left(t_{m}\right)
$$

This implies $\lim _{t \rightarrow \infty} z(t)=\infty$. This contradicts (20).
Corollary 2. Let m be a positive integer. Further assume that (14) and (15) hold and there exists $k \in\{0,1, \ldots, n-1\}$ such that
(21) $\quad \limsup _{t \rightarrow \infty} \frac{1}{k!(n-k-1)!} \int_{t}^{\sigma_{2}(t)}\left[\sigma_{2}(s)-\sigma_{2}(t)\right]^{k}\left[\sigma_{2}(t)-s\right]^{n-k-1} Q_{2}(s) d s>1$.

Then every nonoscillatory solution of Eq. (12) is bounded.
Proof. By [2, Theorem 4] it follows from (21) that the differential inequality (16) has no solution of degree n. Our assertion follows from Theorem 2 .

Now we want to extend our previous results to more general differential equation. So let us consider the n-th order differential equation with both arguments (advanced and delayed) of the form

$$
\begin{equation*}
(x(t)-p x(t-\tau))^{(n)}-q_{1}(t) x\left(\sigma_{1}(t)\right)-q_{2}(t) x\left(\sigma_{2}(t)\right)=0 \tag{22}
\end{equation*}
$$

where (i), (ii), (iii), (iv) hold.

Theorem 3. Let m be a positive integer. Further assume that (5), (14) and (15) hold, differential equality (6) is oscillatory, differential inequality (7) has no solution of degree 0 and differential inequality (16) has no solution of degree n.

Then every solution of Eg. (22) is oscillatory.
Proof. Without loss of generality let $x(t)$ be an eventually positive solution of Eq. (22). Then $x(t)$ is solution of the inequality

$$
(x(t)-p x(t-\tau))^{(n)}-q_{1}(t) x\left(\sigma_{1}(t) \geq 0 .\right.
$$

Using the same arguments as in Theorem 1 we can prove that $x(t)$ tends to ∞ as $t \rightarrow \infty$.

On the other hand, $x(t)$ is also solution of the inequality

$$
(x(t)-p x(t-\tau))^{(n)}-q_{2}(t) x\left(\sigma_{2}(t) \geq 0\right.
$$

Now arguing exactly as in the proof of Theorem 2 we get that $x(t)$ is bounded. This is a contradiction.

In a paper [2, Theorem 7] Kusano has presented conditions when the functional differential equation

$$
y^{(n)}(t)-q_{1}(t) y\left(\sigma_{1}(t)\right)-q_{2}(t) y\left(\sigma_{2}(t)\right)=0
$$

is oscillatory. We have extended these conditions also for the neutral differential equation of the form (22). In a paper [6] Džurina and Mihalíková have presented sufficient conditions for all bounded solutions of the second order neutral differential equation with a delayed argument to be oscillatory. We have extended these conditions also for the n-th order neutral differential equation involving both delayed and advanced arguments.

References

[1] Kusano, T., Naito, M., Comparison theorems for functional differential equations with deviating argument, J. Math. Soc. Japan 33 (1981).
[2] Kusano, T., On even functional differential equations with advanced and retarded arguments, Differential Equations 45 (1985), 75-84.
[3] Džurina, J., Mihalíková, B., Oscillation criteria for second order neutral differential equations, Math. Bohem. 2 (2000), 145-153.
[4] Džurina, J., Mihalíková, B., Oscillations of advanced differential equations, Fasc. Math. 25 (1995), 95-103.
[5] Kiguradze, I. T., On the oscillation of solutions of the equation $d^{m} u / d t^{m}+a(t)|u|^{n} \operatorname{sign} u=0$, Mat. Sb 65 (1964). (Russian)
[6] Džurina, J., Mihalíková, B., A note of unstable neutral differential equations of the second order, Fasc. Math. 29 (1999), 17-22.

Department of Applied Mathematics and Business Informatics
Faculty of Economics of Technical University Košice
ul. B. Němcovej 32
04001 Košice, Slovak Republic
E-mail: Dasa.Lackova@tuke.sk

