THE CANONICAL TENSOR FIELDS OF TYPE (1,1) ON $(J^r(\odot^2T^*))^*$

PAWEŁ MICHALEC

ABSTRACT. We prove that every natural affinor on $(J^r(\odot^2 T^*))^*(M)$ is proportional to the identity affinor if dim $M \geq 3$.

0. INTRODUCTION

For every n-dimensional manifold M we have the vector bundle

 $J^{r}(\odot^{2}T^{*})(M) = \{j_{x}^{r}\tau | \tau \text{ is a symmetric tensor field type } (0,2) \text{ on } M, x \in M\}.$

Every local diffeomorphism $\varphi : M \to N$ between *n*-manifolds gives a vector bundle homomorphism $J^r(\odot^2 T^*)(\varphi) : J^r(\odot^2 T^*)(M) \to J^r(\odot^2 T^*)(N), \ j_x^r \tau \to j_{\varphi(x)}^r(\varphi_*\tau)$. Functor $J^r(\odot^2 T^*) : \mathcal{M}f_n \to \mathcal{VB}$ is a vector natural bundle over *n*-manifolds in the sense of [5]. Let $(J^r(\odot^2 T^*))^* : \mathcal{M}f_n \to \mathcal{VB}$ be the dual vector bundle, $(J^r(\odot^2 T^*))^*(M) = (J^r(\odot^2 T^*)(M))^*, \ (J^r(\odot^2 T^*))^*(\varphi) = (J^r(\odot^2 T^*)(\varphi^{-1}))^*$ for *M* and φ as above.

An affinor on a manifold M is a tensor field of type (1,1) on M.

A natural affinor Q on $(J^r(\odot^2 T^*))^*$ is a system of affinors

$$Q: T(J^{r}(\odot^{2}T^{*}))^{*}(M) \to T(J^{r}(\odot^{2}T^{*}))^{*}(M)$$

on $(J^r(\odot^2 T^*))^*(M)$ for every *n*-manifold M satisfying the naturality condition $T(J^r(\odot^2 T^*))^*(\varphi) \circ Q = Q \circ T(J^r(\odot^2 T^*))^*(\varphi)$ for every local diffeomorphism $\varphi : M \to N$ between *n*-manifolds.

In this paper we prove, that every natural affinor Q on $(J^r(\odot^2 T^*))^*$ over *n*-manifolds is proportional to the identity affinor if $n \geq 3$.

The proof of the classification theorem is based on the method from paper [7], where there are determined the natural affinors on $(J^r(\bigwedge^2 T^*))^*$. However the proof is different, because the tensor field $dx^1 \odot dx^1$ on \mathbf{R}^n is non-zero, in contrast to $dx^1 \wedge dx^1$.

²⁰⁰⁰ Mathematics Subject Classification: 58A20.

Key words and phrases: natural affinor, natural bundle, natural transformation. Received December 1, 2001.

Natural affinors on some natural bundle F can be used to study torsions $[Q, \Gamma]$ of a connection Γ of F. That is why, the natural affinors have been study in many papers, $[1] \ldots [11]$, e.t.c.

The usual coordinates on \mathbb{R}^n are denoted by x^i . The canonical vector fields on \mathbb{R}^n are denoted by $\partial_i = \frac{\partial}{\partial x^i}$.

All manifolds are assumed to be finite dimensional and smooth, i.e. of class C^{∞} . Mappings between manifolds are assumed to be smooth.

1. The linear natural transformations $T(J^r(\odot^2 T^*))^* \to (J^r(\odot^2 T^*))^*$

A natural transformation $T(J^r(\odot^2 T^*))^* \to (J^r(\odot^2 T^*))^*$ over *n*-manifolds is a system of fibred maps

$$A: T(J^{r}(\odot^{2}T^{*}))^{*}(M) \to (J^{r}(\odot^{2}T^{*}))^{*}(M)$$

over id_M for every *n*-manifold M such that

$$(J^{r}(\odot^{2}T^{*}))^{*}(f) \circ A = A \circ T(J^{r}(\odot^{2}T^{*}))^{*}(f)$$

for every local diffeomorphism $f: M \to N$ between *n*-manifolds.

A natural transformation $A : T(J^r(\odot^2 T^*))^* \to (J^r(\odot^2 T^*))^*$ is called linear if A gives a linear map $T_y(J^r(\odot^2 T^*))^*(M) \to ((J^r(\odot^2 T^*))^*(M))_x$ for any $y \in ((J^r(\odot^2 T^*))^*(M))_x, x \in M$.

Theorem 1. If $n \ge 3$ and r are natural numbers, then every linear natural transformation $A: T(J^r(\odot^2 T^*))^* \to (J^r(\odot^2 T^*))^*$ over n-manifolds is equal to 0.

The proof of Theorem 1 will occupy Sections 2-6.

2. The reducibility propositions

Every element from the fibre $((J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$ is a linear combination of all elements $(j_0^r(x^{\alpha} dx^i \odot dx^j))^*$, where $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \leq r$, $i \leq j$, $i, j = 1, \ldots, n$. The elements $(j_0^r(x^{\alpha} dx^i \odot dx^j))^*$ are dual basis to the basis $j_0^r(x^{\alpha} dx^i \odot dx^j) dx^j$ of $(J^r(\odot^2 T^*)(\mathbf{R}^n))_0$.

Consider a linear natural transformation $A: T(J^r(\odot^2 T^*))^* \to (J^r(\odot^2 T^*))^*$.

Lemma 1. Suppose A satisfies

$$\langle A(u), j_0^r(x^{\alpha} dx^i \odot dx^j) \rangle = 0$$

for every $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$, $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \le r$, $i \le j$, i, j = 1, ..., n. Then A = 0.

Proof. If assumptions of Lemma 1 meets, then A(u) = 0 for every $u \in (T(J^r(\odot^2T^*))^*(\mathbf{R}^n))_0$. Let $w \in (T(J^r(\odot^2T^*))^*(M))_x$, $x \in M$. There exists a chart $\varphi : M \supset U \to \mathbf{R}^n$ such that $\varphi(x) = 0$ and U is open subset including x. Since A is invariant with respect to φ , we have $A(w) = T(J^r(\odot^2T^*))^*(\varphi^{-1})(A(u))$, where $u = T(J^r(\odot^2T^*))^*(\varphi)(w) \in (T(J^r(\odot^2T^*))^*(\mathbf{R}^n))_0$. Then A(w) = 0, because A(u) = 0. That is why A = 0. The lemma is proved.

Lemma 2. Suppose that

 $\langle A(u), j_0^r(x^{\alpha} dx^1 \odot dx^1) \rangle = \langle A(u), j_0^r(x^{\alpha} dx^1 \odot dx^2) \rangle = 0$ for every $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$, $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \le r$, $i \le j$, $i, j = 1, \ldots, n$. Then A = 0.

Proof. Let $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$, $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \leq r$, $i \leq j$, $i, j = 1, \ldots, n$. It is enough to prove, that $\langle A(u), j_0^r(x^\alpha dx^i \odot dx^j) \rangle = 0$.

Consider two cases

a) i = j. Let $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ be a diffeomorphism transforming x^i into x^1 and x^{α} into $x^{\tilde{\alpha}}$ for some $\tilde{\alpha} \in (\mathbf{N} \cup \{0\})^n$, $|\tilde{\alpha}| \leq r$. From the invariance of A with respect to φ and the assumption of Lemma 2, we have $\langle A(u), j_0^r(x^{\alpha} dx^i \odot dx^i) \rangle = \langle A(\tilde{u}), j_0^r(x^{\tilde{\alpha}} dx^1 \odot dx^1) \rangle = 0$, where $\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi)(u)$

b) $i \neq j$. Let $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ be a diffeomorphism transforming x^i in x^1 , x^j in x^2 and x^{α} in $x^{\tilde{\alpha}}$ for some $\tilde{\alpha} \in (\mathbf{N} \cup \{0\})^n$, $|\tilde{\alpha}| \leq r$. From invariance of A with respect to φ and the assumption of Lemma 2, we have $\langle A(u), j_0^r(x^{\alpha} dx^i \odot dx^j) \rangle = \langle A(\tilde{u}), j_0^r(x^{\tilde{\alpha}} dx^1 \odot dx^2) \rangle = 0$, where $\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi)(u)$.

Lemma 3. Suppose A satisfies

$$\begin{split} \langle A(u), \, j_0^r(dx^1 \odot dx^1) \rangle &= \langle A(u), \, j_0^r(x^3 \, dx^1 \odot dx^1) \rangle \\ &= \langle A(u), \, j_0^r(dx^1 \odot dx^2) \rangle = \langle A(u), \, j_0^r(x^3 \, dx^1 \odot dx^2) \rangle = 0 \end{split}$$

for every $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$, $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \le r$, $i \le j$, i, j = 1, ..., n. Then A = 0.

Proof. Let $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \leq r, u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0, \alpha \neq e_3 = (0, 0, 1, 0, \dots, 0) \in (\mathbf{N} \cup \{0\})^n$.

On the strength of Lemma 2 it is enough to prove that

$$\langle A(u), j_0^r(x^{lpha} \, dx^1 \odot dx^1) \rangle = \langle A(u), j_0^r(x^{lpha} \, dx^1 \odot dx^2) \rangle = 0.$$

We can set that $\alpha \neq 0$. Let $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ be a diffeomorphism transforming x^1 in x^1 , x^2 in x^2 and $x^3 + x^{\alpha}$ in x^3 . From the invariance of A with respect to φ and the assumption of Lemma 3, we have

$$\begin{split} \langle A(u), j_0^r(x^{\alpha} \, dx^1 \odot dx^1) \rangle &= \langle A(u), j_0^r(x^3 \, dx^1 \odot dx^1) \rangle + \langle A(u), j_0^r(x^{\alpha} \, dx^1 \odot dx^1) \rangle \\ &= \langle A(u), j_0^r((x^3 + x^{\alpha}) \, dx^1 \odot dx^1) \rangle \\ &= \langle A(\tilde{u}), j_0^r(x^3 \, dx^1 \odot dx^1) \rangle = 0 \end{split}$$

where $\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi)(u)$. Similarly $\langle A(u), j_0^r(x^\alpha dx^1 \odot dx^2) \rangle = 0$.

Lemma 4. Suppose that

 $\langle A(u), dx^1 \odot dx^2 \rangle = \langle A(u), j_0^r(x^3 dx^1 \odot dx^2) \rangle = 0$ for every $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$. Then A = 0. **Proof.** By Lemma 3 it is sufficient to show that

$$\langle A(u), \, dx^1 \odot dx^1 \rangle = \langle A(u), \, j_0^r(x^3 \, dx^1 \odot dx^1) \rangle = 0$$

for every $u \in \left(T(J^r(\odot^2 T^*))^*(\mathbf{R}^n)\right)_0$.

Let $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$. Consider a diffeomorphism $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ transforming x^1 in x^1 , x^2 in $x^1 + x^2$ and x^3 in x^3 . Then from the invariance of A with respect to φ and the assumption of lemma, we have

$$\begin{aligned} 0 &= \langle A(\tilde{u}), \, j_0^r(dx^1 \odot dx^2) \rangle \\ &= \langle A(u), \, j_0^r(dx^1 \odot (dx^1 + dx^2)) \rangle \\ &= \langle A(u), \, j_0^r(dx^1 \odot dx^1) \rangle + \langle A(u), \, j_0^r(dx^1 \odot dx^2) \rangle \;, \end{aligned}$$

where $\tilde{u} = T(J^r(\odot^2 T^*))^*(\varphi^{-1})(u)$. So $\langle A(u), j_0^r(dx^1 \odot dx^1) \rangle = 0$. Similarly $\langle A(u), j_0^r(x^3 dx^1 \odot dx^1) \rangle = 0$.

Using Lemma 4 we see that Theorem 1 will be proved after proving the following two propositions.

 \Box

Proposition 1. We have

$$\langle A(u), \, j_0^r(dx^1 \odot dx^2) \rangle = 0$$

for every $u \in \left(T(J^r(\odot^2 T^*))^*(\mathbf{R}^n)\right)_0$.

Proposition 2. We have

$$\langle A(u), j_0^r(x^3 dx^1 \odot dx^2) \rangle = 0$$

for every $u \in \left(T(J^r(\odot^2 T^*))^*(\mathbf{R}^n)\right)_0$.

3. Some notations

We have the obvious trivialization

$$\left(T(J^r(\odot^2 T^*))^*(\mathbf{R}^n)\right)_0 \cong \mathbf{R}^n \times \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n)\right)_0 \times \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n)\right)_0$$

given by $(u_1, u_2, u_3) \to (\tilde{u}_1)^C (u_2) + \frac{d}{dt}_{|t=0} (u_2 + tu_3)$, where \tilde{u}_1 is the constant vector field on \mathbf{R}^n such that $\tilde{u}_{1|_0} = u_1 \in \mathbf{R}^n \cong T_0 \mathbf{R}^n$ and $(\tilde{u}_1)^C$ is the complete lift of \tilde{u}_1 to $(J^r(\odot^2 T^*))^*$.

Each $u_{\tau} \in ((J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0, \tau = 2, 3$ can be expressed in the form

 $u_{\tau} = \sum u_{\tau,\alpha,i,j} (j_0^r (x^{\alpha} \, dx^i \odot dx^j))^* \,,$

where the sum is over all $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \leq r$, $i \leq j$, i, j = 1, ..., n. It defines $u_{\tau,\alpha,i,j}$ for each u_{τ} as above.

4. Proof of Proposition 1

We start with the following lemma.

Lemma 5. There exists the number $\lambda \in \mathbf{R}$ such that

$$\begin{split} \langle A(u), \, j_0^r(\, dx^1 \odot dx^2) \rangle &= \lambda u_{3,(0),1,2} \\ for \ every \ u = (u_1, u_2, u_3) \in \left(T(J^r(\odot^2 T^*))^*(\mathbf{R}^n) \right)_0. \end{split}$$

250

Proof. Let $\Phi : \mathbf{R}^n \times \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n) \right)_0 \times \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n) \right)_0 \to \mathbf{R}$ be such that

$$\Phi(u_1, u_2, u_3) = \langle A(u), j_0^r(dx^1 \odot dx^2) \rangle,$$

where $u = (u_1, u_2, u_3), u_1 = (u_1^{\iota}) \in \mathbf{R}^n, \iota = 1, \dots, n, u_2 \in \left((J^r(\odot^2 T^*))^* (\mathbf{R}^n) \right)_0, u_3 \in \left((J^r(\odot^2 T^*))^* (\mathbf{R}^n) \right)_0.$

The invariance of A with respect to the homotheties $a_t = (t^1 x^1, \ldots, t^n x^n)$ for $t = (t^1, \ldots, t^n) \in \mathbf{R}^n_+$ gives the homogeneous condition

$$\Phi(T(J^{r}(\odot^{2}T^{*}))^{*}(a_{t})(u)) = t^{1}t^{2}\Phi(u).$$

Then from the homogeneous function theorem, [5], it follows that $\Phi(u)$ is the linear combination of monomials in u_1^{ι} , $u_{\tau,\alpha,i,j}$ of weight t^1t^2 . Moreover $\Phi(u_1, u_2, u_3)$ is linear in u_1, u_3 for u_2 , since A is linear. It implies the lemma.

In particular from Lemma 5 it follows that

$$(*) \qquad \langle A(\partial_{1|w}^C), j_0^r(dx^1 \odot dx^2) \rangle = \langle A(e_1, w, 0), j_0^r(dx^1 \odot dx^2) \rangle = 0$$

for every $w \in ((J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$, where $\partial_1 = \frac{\partial}{\partial x^1}$ and $()^C$ is the complete lift to $(J^r(\odot^2 T^*))^*$.

We are now in position to prove Proposition 1. Let λ be from Lemma 5. It is enough to prove that λ is equal to 0.

We see that $\lambda = \langle A(0, 0, (j_0^r(dx^1 \odot dx^2))^*), j_0^r(dx^1 \odot dx^2) \rangle$. We have

$$\begin{aligned} 0 &= \langle A((x^1)^{r+1}\partial_1)^C_{|w}, \, j^r_0(\,dx^1\odot dx^2) \rangle \\ (**) &= (r+1)\langle A(0,w,(j^r_0(\,dx^1\odot dx^2))^* + \dots), \, j^r_0(\,dx^1\odot dx^2) \rangle \\ &= (r+1)\langle A(0,0,(j^r_0(\,dx^1\odot dx^2))^*), \, j^r_0(\,dx^1\odot dx^2) \rangle, \end{aligned}$$

where $w = (j_0^r((x^1)^r dx^1 \odot dx^2))^*$ and the dots is a linear combination of the $(j_0^r(x^\alpha dx^i \odot dx^j))^*$ with $(j_0^r(x^\alpha dx^i \odot dx^j))^* \neq (j_0^r(dx^1 \odot dx^2))^*$. It remains to explain (**).

At first we show the second equality in (**). Let φ_t be the flow of $(x^1)^{r+1}\partial_1$. We have the following sequences of equalities

$$\begin{split} \langle (x^1)^{r+1} \partial_1 \rangle_{|w}^C, \, j_0^r(\,dx^1 \odot dx^2) \rangle &= \langle \frac{d}{dt}_{|t=0} (J^r(\odot^2 T^*))_0^*(\varphi_t)(w), \, j_0^r(\,dx^1 \odot dx^2) \rangle \\ &= \frac{d}{dt}_{|t=0} \langle (J^r(\odot^2 T^*))_0^*(\varphi_t)(w), \, j_0^r(\,dx^1 \odot dx^2) \rangle \\ &= \frac{d}{dt}_{|t=0} \langle w, \, j_0^r((\varphi_{-t})_* \,dx^1 \odot dx^2) \rangle \\ &= \langle w, \, j_0^r(\frac{d}{dt}_{t=0}(\varphi_{-t})_* \,dx^1 \odot dx^2) \rangle \\ &= \langle w, \, j_0^r(L_{(x^1)^{r+1}\partial_1}(\,dx^1 \odot dx^2)) \rangle \\ &= (r+1) \langle w, \, j_0^r((x^1)^r \,dx^1 \odot dx^2) \rangle = r+1 \,. \end{split}$$

Then $((x^1)^{r+1}\partial_1)_{|w}^C = (r+1)(j_0^r(dx^1 \odot dx^2))^* + \dots$ under the canonical isomorphism $V_w((J^r(\odot^2T^*))^*(\mathbf{R}^n)) \cong ((J^r(\odot^2T^*))^*(\mathbf{R}^n))_0$. So we have the second equality in (**).

The last equality in (**) is clear because of Lemma 5.

We can prove the first equality in (**) as follows. Vector fields $\partial_1 + (x^1)^{r+1} \partial_1$ and ∂_1 have the same *r*-jets at $0 \in \mathbf{R}^n$. Then, by [12], there exists a diffeomorphism $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ such that $j_0^{r+1}\varphi = \operatorname{id}$ and $\varphi_*\partial_1 = \partial_1 + (x^1)^{r+1}\partial_1$ in a certain neighborhood of 0. Obviously, φ preserves $j_0^r(dx^1 \odot dx^2)$ that is $j_0^r(dx^1 \odot dx^2) = J_0^r(\odot^2 T^*)(\varphi) (j_0^r(dx^1 \odot dx^2))$ because $j_0^{r+1}\varphi = \operatorname{id}$. Then, using the invariance of A with respect to φ , from (*) it follows that $\langle A(\partial_1 + (x^1)^{r+1}\partial_1)_{|w}^C, j_0^r(dx^1 \odot dx^2) \rangle = \langle A(\partial_{1|w}^C), j_0^r(dx^1 \odot dx^2) \rangle = 0$ for every $w \in ((J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$. Now, using the linearity of A, we end the proof of the first equality of (**).

The proof of Proposition 1 is complete.

5. Proof of Proposition 2

The proof of Proposition 2 is similar to the proof of Proposition 1. We start with the following lemma.

Lemma 6. For every $u = (u^1, u^2, u^3) \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$ we have

$$\begin{split} \langle A(u),\, j_0^r(x^3\,dx^1\odot dx^2)\rangle &= au_1^1 u_{2,(0),2,3} + bu_1^2 u_{2,(0),1,3} + cu_1^3 u_{2,(0),1,2} \\ &\quad + eu_{3,e_2,2,3} + fu_{3,e_2,1,3} + gu_{3,e_3,1,2} \end{split}$$

where $e_i = (0, 0, \dots, 1, 0, \dots, 0) \in (\mathbf{N} \cup \{0\})^n$, 1 in *i*-position.

Proof. We will use the similar arguments as in the proof of Lemma 5. Let $\Phi : \mathbf{R}^n \times \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n) \right)_0 \times \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n) \right)_0 \to \mathbf{R}$ such that

$$\Phi(u_1, u_2, u_3) = \langle A(u), j_0^r(x^3 \, dx^1 \odot dx^2) \rangle$$

 $u = (u_1, u_2, u_3), u_1 = (u_1^{\iota}) \in \mathbf{R}^n, \iota = 1, \dots, n, u_2 \in \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n) \right)_0, u_3 \in \left((J^r(\odot^2 T^*))^*(\mathbf{R}^n) \right)_0.$ The invariance of A with respect to the homotheties $a_t = (t^1 x^1, \dots, t^n x^n)$ for $t = (t^1, \dots, t^n) \in \mathbf{R}^n_+$ gives the homogeneous condition

$$\Phi(T(J^r(\odot^2 T^*))^*(a_t)(u)) = t^1 t^2 t^3 \Phi(u).$$

Then from the homogeneous function theorem, [5], it follows that $\Phi(u)$ is the linear combination of monomials in u_1^{ι} , $u_{\tau,\alpha,i,j}$ of weight $t^1t^2t^3$. Moreover $\Phi(u_1, u_2, u_3)$ is linear in u_1 and u_3 for u_2 , since A is linear. It implies the lemma.

To prove Proposition 2 we have to show that a = b = c = e = f = g = 0. We need the following lemmas.

Lemma 7. For every $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$ we have

$$\langle A(u), j_0^r(x^3 dx^1 \odot dx^2) \rangle = -\langle A(u'), j_0^r(x^3 dx^1 \odot dx^2) \rangle,$$

where u' is the image of u by $(x^2, x^3, x^1) \times \operatorname{id}_{\mathbf{R}^{n-3}}$.

252

Proof. Consider $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$. Let \tilde{u} be the image of u by $\varphi = (x^1 + x^1 x^3, x^2, \ldots, x^n)$. From Proposition 1 we have

$$A(\tilde{u}), \, j_0^r(\, dx^1 \odot dx^2) \rangle = \langle A(u), \, j_0^r(\, dx^1 \odot dx^2) \rangle = 0 \, .$$

Using the invariance of A with respect to φ^{-1} we have

$$0 = \langle A(u), j_0^r (dx^1 \odot dx^2) \rangle$$

= $\langle A(u), j_0^r (x^3 dx^1 \odot dx^2) \rangle + \langle A(u), j_0^r (x^1 dx^2 \odot dx^3) \rangle$

because φ^{-1} preserves A, it transforms \tilde{u} in u and $j_0^r(dx^1 \odot dx^2)$ in $j_0^r(dx^1 \odot dx^2) + j_0^r(x^1 dx^2 \odot dx^3) + j_0^r(x^1 dx^2 \odot dx^3)$. So, $\langle A(u), j_0^r(x^3 dx^1 \odot dx^2) \rangle = -\langle A(u), j_0^r(x^1 dx^2 \odot dx^3) \rangle$. Hence we have the lemma because $(x^2, x^3, x^1) \times \mathbf{R}^{n-3}$ sends u in u' and $j_0^r(x^1 dx^2 \odot dx^3)$ in $j_0^r(x^3 dx^1 \odot dx^2)$.

Lemma 8. We have g = f = e = 0.

Proof. Obviously

$$g = \langle A(0,0, (j_0^r(x^3 \, dx^1 \odot dx^2))^*), \, j_0^r(x^3 \, dx^1 \odot dx^2) \rangle$$

by Lemma 6. Similarly

$$\begin{split} f &= \langle A(0,0,(j_0^r(x^2\,dx^1\odot dx^3))^*), \, j_0^r(x^3\,dx^1\odot dx^2)\rangle\,,\\ e &= \langle A(0,0,(j_0^r(x^1\,dx^2\odot dx^3))^*), \, j_0^r(x^3\,dx^1\odot dx^2)\rangle\,. \end{split}$$

So, to prove Lemma 8 we have to show

$$\begin{aligned} \langle A(0,0,(j_0^r(x^3\,dx^1\odot dx^2))^*), \, j_0^r(x^3\,dx^1\odot dx^2) \rangle \\ &= \langle A(0,0,(j_0^r(x^2\,dx^1\odot dx^3))^*), \, j_0^r(x^3\,dx^1\odot dx^2) \rangle \\ &= \langle A(0,0,(j_0^r(x^1\,dx^2\odot dx^3))^*), \, j_0^r(x^3\,dx^1\odot dx^2) \rangle = 0 \end{aligned}$$

We can see that $(x^2, x^3, x^1) \times \operatorname{id}_{\mathbf{R}^{n-3}}$ sends $(j_0^r(x^3 \, dx^1 \odot dx^2))^*$ in $(j_0^r(x^2 \, dx^1 \odot dx^3))^*$ and $(j_0^r(x^2 \, dx^1 \odot dx^3))^*$ in $(j_0^r(x^1 \, dx^2 \odot dx^3))^*$. Then using Lemma 7 it is enough to verify that $\langle A(0, 0, (j_0^r(x^3 \, dx^1 \odot dx^2))^*), j_0^r(x^3 \, dx^1 \odot dx^2) \rangle = 0$. So, it is enough to prove the sequence of equalities:

$$\begin{aligned} 0 &= \langle A((x^1)^r \partial_1)^C_{|w}, \, j_0^r (x^3 \, dx^1 \odot dx^2) \rangle \\ (***) &= r \langle A(0, w, (j_0^r (x^3 \, dx^1 \odot dx^2))^*), \, j_0^r (x^3 \, dx^1 \odot dx^2) \rangle \\ &= r \langle A(0, 0, (j_0^r (x^3 \, dx^1 \odot dx^2))^*), \, j_0^r (x^3 \, dx^1 \odot dx^2) \rangle \;, \end{aligned}$$

where $w = (j_0^r (x^3 (x^1)^{r-1} dx^1 \odot dx^2))^* \in ((J^r (\odot^2 T^*))^* (\mathbf{R}^n))_0.$

The third equality in (* * *) is clear on the basis of Lemma 6.

Let us explain the first equality in (* * *). Vector fields $\partial_1 + (x^1)^r \partial_1$ and ∂_1 have the same (r-1)-jets at $0 \in \mathbf{R}^n$. Then, by [12] there exist a diffeomorphism $\varphi = \varphi_1 \times \mathrm{id}_{\mathbf{R}^{n-1}} : \mathbf{R}^n = \mathbf{R} \times \mathbf{R}^{n-1} \to \mathbf{R}^n = \mathbf{R} \times \mathbf{R}^{n-1}$ such that $\varphi_1 : \mathbf{R} \to \mathbf{R}, \ j_0^r \varphi = \mathrm{id}$ and $\varphi_* \partial_1 = \partial_1 + (x^1)^r \partial_1$ in a certain neighborhood of $0 \in \mathbf{R}^n$. Let φ^{-1} sends ω in $\tilde{\omega}$. Then $\tilde{\omega}$ is a linear combination of the elements $(j_0^r(x^\alpha dx^i \odot dx^j))^* \in ((J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$ for $r \ge |\alpha| \ge 1$, $i, j = 1, \ldots n, i \le j$. (For $\langle \tilde{\omega}, j_0^r(dx^i \odot dx^j) \rangle = \langle \omega, j_0^r(d(x^i \circ \varphi^{-1}) \odot d(x^i \circ \varphi^{-1})) \rangle = 0$.) Then, by Lemma 6, $\langle A(\partial_{1|\tilde{\omega}}^C), j_0^r(x^3 dx^1 \odot dx^2) \rangle = \langle A(e_1, \tilde{\omega}, 0), j_0^r(x^3 dx^1 \odot dx^2) \rangle = \langle A(e_1, \tilde{\omega}, 0), j_0^r(x^3 dx^1 \odot dx^2) \rangle$

 $dx^2\rangle\rangle = 0$ (as $j_0^r \varphi = \mathrm{id}$). Then from naturality of A with respect to φ we obtain $\langle A((\partial_1 + (x^1)^r \partial_1)_{|\omega}^C), j_0^r(x^3 dx^1 \odot dx^2) \rangle = 0$. Now, using the linearity of A we have $\langle A(((x^1)^r \partial_1)_{|\omega}^C), j_0^r(x^3 dx^1 \odot dx^2) \rangle = 0$. This ends the proof of the first equality in (***).

Let us explain the second equality in (***). Analysing the flow of vector field $(x^1)^r \partial_1$ and taking $\omega = (j_0^r (x^3 (x^1)^{r-1} dx^1 \odot dx^2))^* \in ((J^r (\odot^2 T^*))^* (\mathbf{R}^n))_0$ we have (similarly as in the justification of the second equality of (**))

$$\begin{split} \langle ((x^1)^r \partial_1)_{|\omega}^C, \, j_0^r(\alpha \, dx^i \odot dx^j) \rangle &= \langle \omega, \, j_0^r(L_{(x^1)^r \partial^1}(x^\alpha dx^i \odot dx^j)) \rangle \\ &= \langle \omega, \, \alpha_1 j_0^r((x^1)^{r-1}x^\alpha \, dx^i \odot dx^j) \rangle \\ &+ \langle \omega, \, j_0^r(x^\alpha \delta_1^i r(x^1)^{r-1} \, dx^1 \odot dx^j) \rangle \,, \end{split}$$

where δ_1^i is the Kronecker delta.

Since $\omega = (j_0^r (x^3 (x^1)^{r-1} dx^1 \odot dx^2))^*$ the last sum is equal to r if $\alpha = e_3$ and (i, j) = (1, 2), and 0 in the other cases. Then $(x^1)^r \partial_1 |_{\omega}^C = r(j_0^r (x^3 dx^1 \odot dx^2))^*$. This ends the proof of the second equality of (* * *). The proof of Lemma 8 is complete.

Lemma 9. We have a = b = c = 0.

Proof. Using Lemma 7 (similarly as for g = f = e) it is sufficient to prove that c = 0, i.e. $\langle A(\partial^C_{3|(j^r_0(dx^1 \odot dx^2))^*}), j^r_0(x^3 dx^1 \odot dx^2) \rangle = 0$. But we have

$$\begin{array}{l} 0 = \langle A(\partial_{3|(j_{0}^{r}((x^{1})^{r} dx^{1} \odot dx^{2}))^{*}}), \, j_{0}^{r}(x^{3} dx^{1} \odot dx^{2}) \rangle \\ (****) \qquad \qquad = \langle A(\partial_{3|(j_{0}^{r}(dx^{1} \odot dx^{2}))^{*} + \ldots}), \, j_{0}^{r}(x^{3} dx^{1} \odot dx^{2}) \rangle \\ = \langle A(\partial_{3|(j_{0}^{r}(dx^{1} \odot dx^{2}))^{*}}), \, j_{0}^{r}(x^{3} dx^{1} \odot dx^{2}) \rangle , \end{array}$$

where the dots is the linear combination of elements $(j_0^r(x^{\alpha} dx^i \odot dx^j))^* \neq (j_0^r(dx^1 \odot dx^2))^*$, $\alpha \in (\mathbf{N} \cup \{0\})^n$, $|\alpha| \leq r$, $i \leq j$, $i, j = 1, \ldots, n$.

Equalities first and third are clear because of Lemma 6.

Let us explain the second equality. Consider the local diffeomorphism $\varphi = (x^1 + \frac{1}{r+1}(x^1)^{r+1}, x^2, \dots, x^n)^{-1}$. We see that φ^{-1} preserves $j_0^r(x^3 dx^1 \odot dx^2)$ and ∂_3 . Moreover φ^{-1} sends $(j_0^r((x^1)^r dx^1 \odot dx^2))^*$ in $(j_0^r(dx^1 \odot dx^2))^* + \dots$, where the dots is as above. Now, by the invariance of A with respect to φ^{-1} we get the second equality in(* * * *).

The proof of Lemma 9 is complete.	
The proof of Proposition 2 is complete.	
The proof of Theorem 1 is complete.	

7. The natural affinors on $(J^r(\odot^2 T^*))^*$ of vertical type

A natural affinor $Q : T(J^r(\odot^2 T^*))^* \to T(J^r(\odot^2 T^*))^*$ on $(J^r(\odot^2 T^*))^*$ is of vertical type if the image of Q is in the vertical space $V(J^r(\odot^2 T^*))^*(M)$ for every *n*-manifolds M.

We have the natural isomorphism

$$V(J^{r}(\odot^{2}T^{*}))^{*}(M) \cong (J^{r}(\odot^{2}T^{*}))^{*}(M) \times (J^{r}(\odot^{2}T^{*}))^{*}(M)$$

given by $(u, w) = \frac{d}{dt}|_{t=0}(u+tv), u, v \in (J^r(\odot^2 T^*))^*_x(M), x \in M$, and the natural projection $pr_2: V(J^r(\odot^2 T^*))^*M \to (J^r(\odot^2 T^*))^*M$ on the second factor.

Let $Q: T(J^r(\odot^2 T^*))^* \to T(J^r(\odot^2 T^*))^*$ on $(J^r(\odot^2 T^*))^*$ be a natural affinor of vertical type. Composing Q with pr_2 we get a natural linear transformation $pr_2 \circ Q: T(J^r(\odot^2 T^*))^* \to (J^r(\odot^2 T^*))^*$ over *n*-manifolds. It is equal to 0 because of Theorem 1. So, we have the following corollary.

Corollary 1. Let $n \ge 3$, r be natural numbers. Every natural affinor Q of vertical type on $(J^r(\odot^2T^*))^*$ over n-manifolds is equal to 0.

8. The linear natural transformations $T(J^r(\odot^2 T^*))^* \to T$

Let π be the projection of natural bundle $(J^r(\odot^2 T^*))^*$. Then the tangent map $T\pi_M : T(J^r(\odot^2 T^*))^*(M) \to TM$ defines a linear natural transformation $T\pi : T(J^r(\odot^2 T^*))^* \to T$. (The definition of a linear natural transformation $T(J^r(\odot^2 T^*))^* \to T$ over *n*-manifolds is similar to the one in Section 1.)

Theorem 2. Let n and r be natural numbers. Every linear natural transformation $B: T(J^r(\odot^2T^*))^* \to T$ over n-manifolds is proportional to $T\pi$.

9. Proof of Theorem 2

Consider a linear natural transformation $B: T(J^r(\odot^2 T^*))^* \to T$. We have

Lemma 10. If $\langle B(u), d_0 x^1 \rangle = 0$ for every $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$ then B = 0.

Proof. The proof of Lemma 10 is similar to the proofs of Lemmas 1 – 4. From the invariance of B with respect to the coordinate permutation we see that $\langle B(u), d_0x^i \rangle = 0$ for i = 1, ..., n and $u \in (T(J^r(\odot^2T^*))^*(\mathbf{R}^n))_0$. So B(u) = 0 for every $u \in (T(J^r(\odot^2T^*))^*(\mathbf{R}^n))_0$. Then using the invariance of B with respect to the charts we obtain that B = 0.

Lemma 11. We have $\langle B(u), d_0 x^1 \rangle = \lambda u_1^1$ for some $\lambda \in \mathbf{R}$, where $u = (u_1, u_2, u_3)$, $u_1 = (u_1^{\iota}) \in \mathbf{R}^n$, $\iota = 1, ..., n$, and $u_2, u_3 \in ((J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$.

Proof. The proof of Lemma 11 is similar to the proof of Lemma 5. Lemma 11 shows that $\langle (B - \lambda T \pi)(u), d_0 x^1 \rangle = 0$ for every $u \in (T(J^r(\odot^2 T^*))^*(\mathbf{R}^n))_0$. Then $B - \lambda T \pi = 0$ by Lemma 10, i.e. $B = \lambda T \pi$. The proof of Theorem 2 is complete.

P. MICHALEC

10. The main result

The main result of the present paper is the following theorem.

Theorem 3. Let $n \geq 3$ and r be natural numbers. Every natural affinor Q: $T(J^r(\odot^2 T^*))^* \to T(J^r(\odot^2 T^*))^*$ on $(J^r(\odot^2 T^*))^*$ over n-manifolds is proportional to the identity affinor.

Proof. The composition $T\pi \circ Q : T(J^r(\odot^2 T^*))^* \to T$ is a linear natural transformation. Hence, by Theorem 2, $T\pi \circ Q = \lambda T\pi$ for some $\lambda \in \mathbf{R}$. Then $Q - \lambda \operatorname{id} : T(J^r(\odot^2 T^*))^* \to T(J^r(\odot^2 T^*))^*$ is a natural affinor of vertical type, because $T\pi \circ (Q - \lambda \operatorname{id}) = T\pi \circ Q - \lambda T\pi = 0$. From Corollary 1 we obtain that $Q - \lambda \operatorname{id} = 0$. Thus $Q = \lambda \operatorname{id}$. The proof of Theorem 3 is complete.

References

- Doupovec, M., Kolář, I., Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205-209.
- Doupovec, M., Kurek, J., Torsions of connections of higher order cotangent bundles, Czech. Math. J. (to appear).
- Gancarzewicz, J., Kolář, I., Natural affinors on the extended r-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo, 1993, 95-100.
- [4] Kolář, I., Modugno, M., Torsion of connections on some natural bundles, Diff. Geom. and Appl. 2(1992), 1-16.
- [5] Kolář. I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin 1993.
- [6] Kurek, J., Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175-180.
- [7] Mikulski, W. M., The natural affinors on dual r-jet prolongation of bundles of 2-forms, Ann. UMCS Lublin 2002, (to appear).
- [8] Mikulski, W. M., Natural affinors on r-jet prolongation of the tangant bundle, Arch. Math. (Brno) 34 (2) (1998). 321-328.
- [9] Mikulski, W. M., The natural affinors on $\otimes^k T^{(k)}$, Note di Matematica vol. 19-n. 2. (1999), 269-274.
- [10] Mikulski, W. M., The natural affinors on generalized higher order tangent bundles, Rend. Mat. Roma vol. 21. (2001). (to appear).
- [11] Mikulski, W. M., Natural affinors on $(J^{r,s,q}(\cdot, \mathbf{R}^{1,1})_0)^*$, Coment. Math. Carolinae 42 (2001), (to appear).
- [12] Zajtz, A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169-178.

INSTITUTE OF MATHEMATICS, CRACOW UNIVERSITY OF TECHNOLOGY 31-155 KRAKÓW, UL. WARSZAWSKA 24, POLAND *E-mail:* pmichale@usk.pk.edu.pl