ARCHIVUM MATHEMATICUM (BRNO)

Tomus 39 (2003), $247-256$

THE CANONICAL TENSOR FIELDS OF TYPE $(1,1)$ ON $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$

PAWEE MICHALEC

Abstract

We prove that every natural affinor on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)$ is proportional to the identity affinor if $\operatorname{dim} M \geq 3$.

0. Introduction

For every n-dimensional manifold M we have the vector bundle
$J^{r}\left(\odot^{2} T^{*}\right)(M)=\left\{j_{x}^{r} \tau \mid \tau\right.$ is a symmetric tensor field type $(0,2)$ on $\left.M, x \in M\right\}$.
Every local diffeomorphism $\varphi: M \rightarrow N$ between n-manifolds gives a vector bundle homomorphism $J^{r}\left(\odot^{2} T^{*}\right)(\varphi): J^{r}\left(\odot^{2} T^{*}\right)(M) \rightarrow J^{r}\left(\odot^{2} T^{*}\right)(N), j_{x}^{r} \tau \rightarrow$ $j_{\varphi(x)}^{r}\left(\varphi_{*} \tau\right)$. Functor $J^{r}\left(\odot^{2} T^{*}\right): \mathcal{M} f_{n} \rightarrow \mathcal{V B}$ is a vector natural bundle over n-manifolds in the sense of [5]. Let $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}: \mathcal{M} f_{n} \rightarrow \mathcal{V} \mathcal{B}$ be the dual vector bundle, $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)=\left(J^{r}\left(\odot^{2} T^{*}\right)(M)\right)^{*},\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(\varphi)=\left(J^{r}\left(\odot^{2} T^{*}\right)\left(\varphi^{-1}\right)\right)^{*}$ for M and φ as above.

An affinor on a manifold M is a tensor field of type $(1,1)$ on M.
A natural affinor Q on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ is a system of affinors

$$
Q: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M) \rightarrow T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)
$$

on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)$ for every n-manifold M satisfying the naturality condition $T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(\varphi) \circ Q=Q \circ T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(\varphi)$ for every local diffeomorphism φ : $M \rightarrow N$ between n-manifolds.

In this paper we prove, that every natural affinor Q on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ over n manifolds is proportional to the identity affinor if $n \geq 3$.

The proof of the classification theorem is based on the method from paper [7], where there are determined the natural affinors on $\left(J^{r}\left(\bigwedge^{2} T^{*}\right)\right)^{*}$. However the proof is different, because the tensor field $d x^{1} \odot d x^{1}$ on \mathbf{R}^{n} is non-zero, in contrast to $d x^{1} \wedge d x^{1}$.

[^0]Natural affinors on some natural bundle F can be used to study torsions $[Q, \Gamma]$ of a connection Γ of F. That is why, the natural affinors have been study in many papers, [1] .. [11], e.t.c.

The usual coordinates on \mathbf{R}^{n} are denoted by x^{i}. The canonical vector fields on \mathbf{R}^{n} are denoted by $\partial_{i}=\frac{\partial}{\partial x^{2}}$.

All manifolds are assumed to be finite dimensional and smooth, i.e. of class C^{∞}. Mappings between manifolds are assumed to be smooth.

1. The linear natural transformations $T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$

A natural transformation $T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ over n-manifolds is a system of fibred maps

$$
A: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M) \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)
$$

over id_{M} for every n-manifold M such that

$$
\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(f) \circ A=A \circ T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(f)
$$

for every local diffeomorphism $f: M \rightarrow N$ between n-manifolds.
A natural transformation $A: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ is called linear if A gives a linear map $T_{y}\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M) \rightarrow\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)\right)_{x}$ for any $y \in$ $\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)\right)_{x}, x \in M$.

Theorem 1. If $n \geq 3$ and r are natural numbers, then every linear natural transformation $A: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ over n-manifolds is equal to 0 .

The proof of Theorem 1 will occupy Sections $2-6$.

2. The reducibility propositions

Every element from the fibre $\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$ is a linear combination of all elements $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)^{*}$, where $\alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, i \leq j, i, j=$ $1, \ldots, n$. The elements $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)^{*}$ are dual basis to the basis $j_{0}^{r}\left(x^{\alpha} d x^{i} \odot\right.$ $\left.d x^{j}\right)$ of $\left(J^{r}\left(\odot^{2} T^{*}\right)\left(\mathbf{R}^{n}\right)\right)_{0}$.

Consider a linear natural transformation $A: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$.
Lemma 1. Suppose A satisfies

$$
\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right\rangle=0
$$

for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}, \alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, i \leq j, i, j=$ $1, \ldots, n$. Then $A=0$.

Proof. If assumptions of Lemma 1 meets, then $A(u)=0$ for every $u \in$ $\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Let $w \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)\right)_{x}, x \in M$. There exists a chart $\varphi: M \supset U \rightarrow \mathbf{R}^{n}$ such that $\varphi(x)=0$ and U is open subset including x. Since A is invariant with respect to φ, we have $A(w)=T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\varphi^{-1}\right)(A(u))$, where $u=T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(\varphi)(w) \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Then $A(w)=0$, because $A(u)=0$. That is why $A=0$. The lemma is proved.

Lemma 2. Suppose that

$$
\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \odot d x^{1}\right)\right\rangle=\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \odot d x^{2}\right)\right\rangle=0
$$

for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}, \alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, i \leq j, i, j=$ $1, \ldots, n$. Then $A=0$.

Proof. Let $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}, \alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, i \leq j, i, j=$ $1, \ldots, n$. It is enough to prove, that $\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right\rangle=0$.

Consider two cases
a) $i=j$. Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a diffeomorphism transforming x^{i} into x^{1} and x^{α} into $x^{\tilde{\alpha}}$ for some $\tilde{\alpha} \in(\mathbf{N} \cup\{0\})^{n},|\tilde{\alpha}| \leq r$. From the invariance of A with respect to φ and the assumption of Lemma 2, we have $\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{i}\right)\right\rangle=$ $\left\langle A(\tilde{u}), j_{0}^{r}\left(x^{\tilde{\alpha}} d x^{1} \odot d x^{1}\right)\right\rangle=0$, where $\tilde{u}=T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(\varphi)(u)$
b) $i \neq j$. Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a diffeomorphism transforming x^{i} in x^{1}, x^{j} in x^{2} and x^{α} in $x^{\tilde{\alpha}}$ for some $\tilde{\alpha} \in(\mathbf{N} \cup\{0\})^{n},|\tilde{\alpha}| \leq r$. From invariance of A with respect to φ and the assumption of Lemma 2, we have $\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right\rangle=$ $\left\langle A(\tilde{u}), j_{0}^{r}\left(x^{\tilde{\alpha}} d x^{1} \odot d x^{2}\right)\right\rangle=0$, where $\tilde{u}=T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(\varphi)(u)$.

Lemma 3. Suppose A satisfies

$$
\begin{aligned}
\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{1}\right)\right\rangle & =\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{1}\right)\right\rangle \\
=\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle & =\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0
\end{aligned}
$$

for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}, \alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, i \leq j, i, j=$ $1, \ldots, n$. Then $A=0$.

Proof. Let $\alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}, \alpha \neq e_{3}=$ $(0,0,1,0, \ldots, 0) \in(\mathbf{N} \cup\{0\})^{n}$.
On the strength of Lemma 2 it is enough to prove that

$$
\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \odot d x^{1}\right)\right\rangle=\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \odot d x^{2}\right)\right\rangle=0
$$

We can set that $\alpha \neq 0$. Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a diffeomorphism transforming x^{1} in x^{1}, x^{2} in x^{2} and $x^{3}+x^{\alpha}$ in x^{3}. From the invariance of A with respect to φ and the assumption of Lemma 3, we have

$$
\begin{aligned}
\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \odot d x^{1}\right)\right\rangle & =\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{1}\right)\right\rangle+\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \odot d x^{1}\right)\right\rangle \\
& =\left\langle A(u), j_{0}^{r}\left(\left(x^{3}+x^{\alpha}\right) d x^{1} \odot d x^{1}\right)\right\rangle \\
& =\left\langle A(\tilde{u}), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{1}\right)\right\rangle=0
\end{aligned}
$$

where $\tilde{u}=T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(\varphi)(u)$.
Similarly $\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \odot d x^{2}\right)\right\rangle=0$.

Lemma 4. Suppose that

$$
\left\langle A(u), d x^{1} \odot d x^{2}\right\rangle=\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0
$$

for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Then $A=0$.

Proof. By Lemma 3 it is sufficient to show that

$$
\left\langle A(u), d x^{1} \odot d x^{1}\right\rangle=\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{1}\right)\right\rangle=0
$$

for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$.
Let $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Consider a diffeomorphism $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ transforming x^{1} in x^{1}, x^{2} in $x^{1}+x^{2}$ and x^{3} in x^{3}. Then from the invariance of A with respect to φ and the assumption of lemma, we have

$$
\begin{aligned}
0 & =\left\langle A(\tilde{u}), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle \\
& =\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot\left(d x^{1}+d x^{2}\right)\right)\right\rangle \\
& =\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{1}\right)\right\rangle+\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle
\end{aligned}
$$

where $\tilde{u}=T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\varphi^{-1}\right)(u)$. So $\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{1}\right)\right\rangle=0$.
Similarly $\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{1}\right)\right\rangle=0$.
Using Lemma 4 we see that Theorem 1 will be proved after proving the following two propositions.

Proposition 1. We have

$$
\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=0
$$

for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$.
Proposition 2. We have

$$
\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0
$$

for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$.

3. Some notations

We have the obvious trivialization

$$
\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0} \cong \mathbf{R}^{n} \times\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0} \times\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}
$$

given by $\left(u_{1}, u_{2}, u_{3}\right) \rightarrow\left(\tilde{u}_{1}\right)^{C}\left(u_{2}\right)+\frac{d}{d t}{ }_{\mid t=0}\left(u_{2}+t u_{3}\right)$, where \tilde{u}_{1} is the constant vector field on \mathbf{R}^{n} such that $\tilde{u}_{1_{\mathrm{l}}}=u_{1} \in \mathbf{R}^{n} \cong T_{0} \mathbf{R}^{n}$ and $\left(\tilde{u}_{1}\right)^{C}$ is the complete lift of \tilde{u}_{1} to $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$.
Each $u_{\tau} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}, \tau=2,3$ can be expressed in the form

$$
u_{\tau}=\sum u_{\tau, \alpha, i, j}\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)^{*}
$$

where the sum is over all $\alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, i \leq j, i, j=1, \ldots, n$.
It defines $u_{\tau, \alpha, i, j}$ for each u_{τ} as above.

4. Proof of Proposition 1

We start with the following lemma.
Lemma 5. There exists the number $\lambda \in \mathbf{R}$ such that

$$
\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=\lambda u_{3,(0), 1,2}
$$

for every $u=\left(u_{1}, u_{2}, u_{3}\right) \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$.

Proof. Let $\Phi: \mathbf{R}^{n} \times\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0} \times\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0} \rightarrow \mathbf{R}$ be such that

$$
\Phi\left(u_{1}, u_{2}, u_{3}\right)=\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle
$$

where $u=\left(u_{1}, u_{2}, u_{3}\right), u_{1}=\left(u_{1}^{\iota}\right) \in \mathbf{R}^{n}, \iota=1, \ldots, n, u_{2} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$, $u_{3} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$.
The invariance of A with respect to the homotheties $a_{t}=\left(t^{1} x^{1}, \ldots, t^{n} x^{n}\right)$ for $t=\left(t^{1}, \ldots, t^{n}\right) \in \mathbf{R}_{+}^{n}$ gives the homogeneous condition

$$
\Phi\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(a_{t}\right)(u)\right)=t^{1} t^{2} \Phi(u) .
$$

Then from the homogeneous function theorem, [5], it follows that $\Phi(u)$ is the linear combination of monomials in $u_{1}^{\iota}, u_{\tau, \alpha, i, j}$ of weight $t^{1} t^{2}$. Moreover $\Phi\left(u_{1}, u_{2}, u_{3}\right)$ is linear in u_{1}, u_{3} for u_{2}, since A is linear. It implies the lemma.

In particular from Lemma 5 it follows that

$$
\begin{equation*}
\left\langle A\left(\partial_{1 \mid w}^{C}\right), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=\left\langle A\left(e_{1}, w, 0\right), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=0 \tag{*}
\end{equation*}
$$

for every $w \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$, where $\partial_{1}=\frac{\partial}{\partial x^{1}}$ and ()C is the complete lift to $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$.

We are now in position to prove Proposition 1. Let λ be from Lemma 5. It is enough to prove that λ is equal to 0 .

We see that $\lambda=\left\langle A\left(0,0,\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle$.
We have

$$
\begin{align*}
0 & =\left\langle A\left(\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}, j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle \\
& =(r+1)\left\langle A\left(0, w,\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}+\ldots\right), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle \tag{**}\\
& =(r+1)\left\langle A\left(0,0,\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle
\end{align*}
$$

where $w=\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \odot d x^{2}\right)\right)^{*}$ and the dots is a linear combination of the $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)^{*}$ with $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)^{*} \neq\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}$.
It remains to explain $(* *)$.
At first we show the second equality in $(* *)$. Let φ_{t} be the flow of $\left(x^{1}\right)^{r+1} \partial_{1}$. We have the following sequences of equalities

$$
\begin{aligned}
\left.\left\langle\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}, j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle & =\left\langle\frac{d}{d t}\right| t=0 \\
& =\frac{d}{d t}{ }_{\mid t=0}\left\langle\left(J^{r}\left(\odot^{2}\left(T^{*}\right)\right)_{0}^{2}\left(T^{*}\right)\right)_{0}^{*}\left(\varphi_{t}\right)(w), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle \\
& =\frac{d}{d t}{ }_{\mid t=0}^{r}\left\langle w, j_{0}^{r}\left(\left(\varphi_{-t}^{1}\right)_{*} d x^{1} \odot d x^{2}\right)\right\rangle \\
& =\left\langle w, j_{0}^{r}\left(\frac{d}{d t}\right)\right\rangle \\
& \left.=\left\langle w, j_{0}^{r}\left(L_{(x-t}\right)_{*} d x^{1} \odot d x^{2}\right)\right\rangle \\
& \left.=(r+1)\left\langle w, j_{0}^{r+1}\left(\left(x_{1}\right)^{r} d x^{1} \odot d x^{2}\right)\right)\right\rangle \\
& \left.\left.\odot d x^{2}\right)\right\rangle=r+1
\end{aligned}
$$

Then $\left(\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}=(r+1)\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}+\ldots$ under the canonical isomorphism $V_{w}\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right) \cong\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. So we have the second equality in $(* *)$.

The last equality in $(* *)$ is clear because of Lemma 5 .
We can prove the first equality in $(* *)$ as follows. Vector fields $\partial_{1}+\left(x^{1}\right)^{r+1} \partial_{1}$ and ∂_{1} have the same r-jets at $0 \in \mathbf{R}^{n}$. Then, by [12], there exists a diffeomorphism $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $j_{0}^{r+1} \varphi=$ id and $\varphi_{*} \partial_{1}=\partial_{1}+\left(x^{1}\right)^{r+1} \partial_{1}$ in a certain neighborhood of 0 . Obviously, φ preserves $j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)$ that is $j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)=$ $J_{0}^{r}\left(\odot^{2} T^{*}\right)(\varphi)\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)$ because $j_{0}^{r+1} \varphi=\mathrm{id}$. Then, using the invariance of A with respect to φ, from $(*)$ it follows that $\left\langle A\left(\partial_{1}+\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}, j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=$ $\left\langle A\left(\partial_{1 \mid w}^{C}\right), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=0$ for every $w \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Now, using the linearity of A, we end the proof of the first equality of $(* *)$.

The proof of Proposition 1 is complete.

5. Proof of Proposition 2

The proof of Proposition 2 is similar to the proof of Proposition 1. We start with the following lemma.

Lemma 6. For every $u=\left(u^{1}, u^{2}, u^{3}\right) \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$ we have

$$
\begin{aligned}
\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle= & a u_{1}^{1} u_{2,(0), 2,3}+b u_{1}^{2} u_{2,(0), 1,3}+c u_{1}^{3} u_{2,(0), 1,2} \\
& +e u_{3, e_{2}, 2,3}+f u_{3, e_{2}, 1,3}+g u_{3, e_{3}, 1,2}
\end{aligned}
$$

where $e_{i}=(0,0, \ldots, 1,0, \ldots, 0) \in(\mathbf{N} \cup\{0\})^{n}$, 1 in i-position.
Proof. We will use the similar arguments as in the proof of Lemma 5.
Let $\Phi: \mathbf{R}^{n} \times\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0} \times\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0} \rightarrow \mathbf{R}$ such that

$$
\Phi\left(u_{1}, u_{2}, u_{3}\right)=\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle
$$

$u=\left(u_{1}, u_{2}, u_{3}\right), u_{1}=\left(u_{1}^{\iota}\right) \in \mathbf{R}^{n}, \iota=1, \ldots, n, u_{2} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}, u_{3} \in$ $\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. The invariance of A with respect to the homotheties $a_{t}=$ $\left(t^{1} x^{1}, \ldots, t^{n} x^{n}\right)$ for $t=\left(t^{1}, \ldots, t^{n}\right) \in \mathbf{R}_{+}^{n}$ gives the homogeneous condition

$$
\Phi\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(a_{t}\right)(u)\right)=t^{1} t^{2} t^{3} \Phi(u)
$$

Then from the homogeneous function theorem, [5], it follows that $\Phi(u)$ is the linear combination of monomials in $u_{1}^{\iota}, u_{\tau, \alpha, i, j}$ of weight $t^{1} t^{2} t^{3}$. Moreover $\Phi\left(u_{1}, u_{2}, u_{3}\right)$ is linear in u_{1} and u_{3} for u_{2}, since A is linear. It implies the lemma.

To prove Proposition 2 we have to show that $a=b=c=e=f=g=0$. We need the following lemmas.

Lemma 7. For every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$ we have

$$
\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=-\left\langle A\left(u^{\prime}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle,
$$

where u^{\prime} is the image of u by $\left(x^{2}, x^{3}, x^{1}\right) \times \operatorname{id}_{\mathbf{R}^{n-3}}$.

Proof. Consider $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Let \tilde{u} be the image of u by $\varphi=$ $\left(x^{1}+x^{1} x^{3}, x^{2}, \ldots, x^{n}\right)$. From Proposition 1 we have

$$
\left\langle A(\tilde{u}), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle=0 .
$$

Using the invariance of A with respect to φ^{-1} we have

$$
\begin{aligned}
0 & =\left\langle A(u), j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right\rangle \\
& =\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle+\left\langle A(u), j_{0}^{r}\left(x^{1} d x^{2} \odot d x^{3}\right)\right\rangle
\end{aligned}
$$

because φ^{-1} preserves A, it transforms \tilde{u} in u and $j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)$ in $j_{0}^{r}\left(d x^{1} \odot\right.$ $\left.d x^{2}\right)+j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)+j_{0}^{r}\left(x^{1} d x^{2} \odot d x^{3}\right)$. So, $\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=-\langle A(u)$, $\left.j_{0}^{r}\left(x^{1} d x^{2} \odot d x^{3}\right)\right\rangle$. Hence we have the lemma because $\left(x^{2}, x^{3}, x^{1}\right) \times \mathbf{R}^{n-3}$ sends u in u^{\prime} and $j_{0}^{r}\left(x^{1} d x^{2} \odot d x^{3}\right)$ in $j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)$.
Lemma 8. We have $g=f=e=0$.
Proof. Obviously

$$
g=\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle
$$

by Lemma 6 . Similarly

$$
\begin{aligned}
& f=\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{2} d x^{1} \odot d x^{3}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle \\
& e=\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{1} d x^{2} \odot d x^{3}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle
\end{aligned}
$$

So, to prove Lemma 8 we have to show

$$
\begin{aligned}
& \left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle \\
& \quad=\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{2} d x^{1} \odot d x^{3}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle \\
& \quad=\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{1} d x^{2} \odot d x^{3}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0 .
\end{aligned}
$$

We can see that $\left(x^{2}, x^{3}, x^{1}\right) \times \operatorname{id}_{\mathbf{R}^{n-3}}$ sends $\left(j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right)^{*}$ in $\left(j_{0}^{r}\left(x^{2} d x^{1} \odot\right.\right.$ $\left.\left.d x^{3}\right)\right)^{*}$ and $\left(j_{0}^{r}\left(x^{2} d x^{1} \odot d x^{3}\right)\right)^{*}$ in $\left(j_{0}^{r}\left(x^{1} d x^{2} \odot d x^{3}\right)\right)^{*}$. Then using Lemma 7 it is enough to verify that $\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0$. So, it is enough to prove the sequence of equalities:

$$
\begin{aligned}
0 & =\left\langle A\left(\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid w}^{C}, j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle \\
& =r\left\langle A\left(0, w,\left(j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle \\
& =r\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle,
\end{aligned}
$$

where $w=\left(j_{0}^{r}\left(x^{3}\left(x^{1}\right)^{r-1} d x^{1} \odot d x^{2}\right)\right)^{*} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$.
The third equality in $(* * *)$ is clear on the basis of Lemma 6.
Let us explain the first equality in $(* * *)$. Vector fields $\partial_{1}+\left(x^{1}\right)^{r} \partial_{1}$ and ∂_{1} have the same $(r-1)$-jets at $0 \in \mathbf{R}^{n}$. Then, by [12] there exist a diffeomorphism $\varphi=\varphi_{1} \times \operatorname{id}_{\mathbf{R}^{n-1}}: \mathbf{R}^{n}=\mathbf{R} \times \mathbf{R}^{n-1} \rightarrow \mathbf{R}^{n}=\mathbf{R} \times \mathbf{R}^{n-1}$ such that $\varphi_{1}: \mathbf{R} \rightarrow \mathbf{R}, j_{0}^{r} \varphi=$ id and $\varphi_{*} \partial_{1}=\partial_{1}+\left(x^{1}\right)^{r} \partial_{1}$ in a certain neighborhood of $0 \in \mathbf{R}^{n}$. Let φ^{-1} sends ω in $\tilde{\omega}$. Then $\tilde{\omega}$ is a linear combination of the elements $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)^{*} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$ for $r \geq|\alpha| \geq 1$, $i, j=1, \ldots n, i \leq j$. (For $\left\langle\tilde{\omega}, j_{0}^{r}\left(d x^{i} \odot d x^{j}\right)\right\rangle=\left\langle\omega, j_{0}^{r}\left(d\left(x^{i} \circ \varphi^{-1}\right) \odot d\left(x^{i} \circ \varphi^{-1}\right)\right)\right\rangle=$ 0.) Then, by Lemma $6,\left\langle A\left(\partial_{1 \mid \tilde{\omega}}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=\left\langle A\left(e_{1}, \tilde{\omega}, 0\right), j_{0}^{r}\left(x^{3} d x^{1} \odot\right.\right.$
$\left.\left.d x^{2}\right)\right\rangle=0\left(\right.$ as $\left.j_{0}^{r} \varphi=\mathrm{id}\right)$. Then from naturality of A with respect to φ we obtain $\left\langle A\left(\left(\partial_{1}+\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid \omega}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0$. Now, using the linearity of A we have $\left\langle A\left(\left(\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid \omega}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0$. This ends the proof of the first equality in $(* * *)$.

Let us explain the second equality in $(* * *)$. Analysing the flow of vector field $\left(x^{1}\right)^{r} \partial_{1}$ and taking $\omega=\left(j_{0}^{r}\left(x^{3}\left(x^{1}\right)^{r-1} d x^{1} \odot d x^{2}\right)\right)^{*} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$ we have (similarly as in the justification of the second equality of $(* *)$)

$$
\begin{aligned}
\left\langle\left(\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid \omega}^{C}, j_{0}^{r}\left(\alpha d x^{i} \odot d x^{j}\right)\right\rangle= & \left\langle\omega, j_{0}^{r}\left(L_{\left(x^{1}\right)^{r} \partial^{1}}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)\right\rangle \\
= & \left\langle\omega, \alpha_{1} j_{0}^{r}\left(\left(x^{1}\right)^{r-1} x^{\alpha} d x^{i} \odot d x^{j}\right)\right\rangle \\
& +\left\langle\omega, j_{0}^{r}\left(x^{\alpha} \delta_{1}^{i} r\left(x^{1}\right)^{r-1} d x^{1} \odot d x^{j}\right)\right\rangle
\end{aligned}
$$

where δ_{1}^{i} is the Kronecker delta.
Since $\omega=\left(j_{0}^{r}\left(x^{3}\left(x^{1}\right)^{r-1} d x^{1} \odot d x^{2}\right)\right)^{*}$ the last sum is equal to r if $\alpha=e_{3}$ and $(i, j)=(1,2)$, and 0 in the other cases. Then $\left.\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid \omega}^{C}=r\left(j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right)^{*}$. This ends the proof of the second equality of $(* * *)$.
The proof of Lemma 8 is complete.
Lemma 9. We have $a=b=c=0$.
Proof. Using Lemma 7 (similarly as for $g=f=e$) it is sufficient to prove that $c=0$, i.e. $\left\langle A\left(\partial_{3 \mid\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle=0$.
But we have
$(* * * *)$

$$
\begin{aligned}
0 & =\left\langle A\left(\partial_{3 \mid\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \odot d x^{2}\right)\right)^{*}}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle \\
& =\left\langle A\left(\partial_{3 \mid\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}+\ldots}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle \\
& =\left\langleA \left(\partial_{\left.\left.3 \mid\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)\right\rangle,}\right.\right.
\end{aligned}
$$

where the dots is the linear combination of elements $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \odot d x^{j}\right)\right)^{*} \neq\left(j_{0}^{r}\left(d x^{1} \odot\right.\right.$ $\left.\left.d x^{2}\right)\right)^{*}, \alpha \in(\mathbf{N} \cup\{0\})^{n},|\alpha| \leq r, i \leq j, i, j=1, \ldots, n$.

Equalities first and third are clear because of Lemma 6.
Let us explain the second equality. Consider the local diffeomorphism $\varphi=$ $\left(x^{1}+\frac{1}{r+1}\left(x^{1}\right)^{r+1}, x^{2}, \ldots, x^{n}\right)^{-1}$. We see that φ^{-1} preserves $j_{0}^{r}\left(x^{3} d x^{1} \odot d x^{2}\right)$ and ∂_{3}. Moreover φ^{-1} sends $\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \odot d x^{2}\right)\right)^{*}$ in $\left(j_{0}^{r}\left(d x^{1} \odot d x^{2}\right)\right)^{*}+\ldots$, where the dots is as above. Now, by the invariance of A with respect to φ^{-1} we get the second equality $\operatorname{in}(* * * *)$.
The proof of Lemma 9 is complete.
The proof of Proposition 2 is complete.
The proof of Theorem 1 is complete.

7. The natural affinors on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ of Vertical type

A natural affinor $Q: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ is of vertical type if the image of Q is in the vertical space $V\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)$ for every n-manifolds M.

We have the natural isomorphism

$$
V\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M) \cong\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M) \times\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M)
$$

given by $\left.(u, w)=\frac{d}{d t} \right\rvert\, t=0(u+t v), u, v \in\left(J^{r}\left(\odot^{2} T^{*}\right)\right)_{x}^{*}(M), x \in M$, and the natural projection $p r_{2}: V\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} M \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} M$ on the second factor.

Let $Q: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ be a natural affinor of vertical type. Composing Q with $p r_{2}$ we get a natural linear transformation $p r_{2} \circ Q: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ over n-manifolds. It is equal to 0 because of Theorem 1. So, we have the following corollary.

Corollary 1. Let $n \geq 3$, r be natural numbers. Every natural affinor Q of vertical type on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ over n-manifolds is equal to 0 .

8. The linear natural transformations $T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T$

Let π be the projection of natural bundle $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$. Then the tangent $\operatorname{map} T \pi_{M}: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}(M) \rightarrow T M$ defines a linear natural transformation $T \pi: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T$. (The definition of a linear natural transformation $T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T$ over n-manifolds is similar to the one in Section 1.)

Theorem 2. Let n and r be natural numbers. Every linear natural transformation $B: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T$ over n-manifolds is proportional to $T \pi$.

9. Proof of Theorem 2

Consider a linear natural transformation $B: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T$. We have
Lemma 10. If $\left\langle B(u), d_{0} x^{1}\right\rangle=0$ for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$ then $B=0$.

Proof. The proof of Lemma 10 is similar to the proofs of Lemmas $1-4$. From the invariance of B with respect to the coordinate permutation we see that $\left\langle B(u), d_{0} x^{i}\right\rangle=0$ for $i=1, \ldots, n$ and $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. So $B(u)=0$ for every $u \in\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Then using the invariance of B with respect to the charts we obtain that $B=0$.

Lemma 11. We have $\left\langle B(u), d_{0} x^{1}\right\rangle=\lambda u_{1}^{1}$ for some $\lambda \in \mathbf{R}$, where $u=\left(u_{1}, u_{2}, u_{3}\right)$, $u_{1}=\left(u_{1}^{\iota}\right) \in \mathbf{R}^{n}, \iota=1, \ldots, n$, and $u_{2}, u_{3} \in\left(\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$.
Proof. The proof of Lemma 11 is similar to the proof of Lemma 5.
Lemma 11 shows that $\left\langle(B-\lambda T \pi)(u), d_{0} x^{1}\right\rangle=0$ for every $u \in$ $\left(T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}\left(\mathbf{R}^{n}\right)\right)_{0}$. Then $B-\lambda T \pi=0$ by Lemma 10, i.e. $B=\lambda T \pi$.

The proof of Theorem 2 is complete.

10. The main Result

The main result of the present paper is the following theorem.
Theorem 3. Let $n \geq 3$ and r be natural numbers. Every natural affinor Q : $T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ on $\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ over n-manifolds is proportional to the identity affinor.

Proof. The composition $T \pi \circ Q: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T$ is a linear natural transformation. Hence, by Theorem $2, T \pi \circ Q=\lambda T \pi$ for some $\lambda \in \mathbf{R}$. Then $Q-\lambda \mathrm{id}: T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*} \rightarrow T\left(J^{r}\left(\odot^{2} T^{*}\right)\right)^{*}$ is a natural affinor of vertical type, because $T \pi \circ(Q-\lambda \mathrm{id})=T \pi \circ Q-\lambda T \pi=0$. From Corollary 1 we obtain that $Q-\lambda \mathrm{id}=0$. Thus $Q=\lambda \mathrm{id}$. The proof of Theorem 3 is complete.

References

[1] Doupovec, M., Kolář, I., Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205-209.
[2] Doupovec, M., Kurek, J., Torsions of connections of higher order cotangent bundles, Czech. Math. J. (to appear).
[3] Gancarzewicz, J., Kolář, I., Natural affinors on the extended r-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo, 1993, 95-100.
[4] Kolář, I., Modugno, M., Torsion of connections on some natural bundles, Diff. Geom. and Appl. 2(1992), 1-16.
[5] Kolář. I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, SpringerVerlag, Berlin 1993.
[6] Kurek, J., Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175-180.
[7] Mikulski, W. M., The natural affinors on dual r-jet prolongation of bundles of 2-forms, Ann. UMCS Lublin 2002, (to appear).
[8] Mikulski, W. M., Natural affinors on r-jet prolongation of the tangant bundle, Arch. Math. (Brno) 34 (2) (1998). 321-328.
[9] Mikulski, W. M., The natural affinors on $\otimes^{k} T^{(k)}$, Note di Matematica vol. 19-n. 2. (1999), 269-274.
[10] Mikulski, W. M., The natural affinors on generalized higher order tangent bundles, Rend. Mat. Roma vol. 21. (2001). (to appear).
[11] Mikulski, W. M., Natural affinors on $\left(J^{r, s, q}\left(\cdot, \mathbf{R}^{1,1}\right)_{0}\right)^{*}$, Coment. Math. Carolinae 42 (2001), (to appear).
[12] Zajtz, A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169-178.

Institute of Mathematics, Cracow University of Technology
31-155 Kraków, ul. Warszawska 24, POLAND
E-mail: pmichale@usk.pk.edu.pl

[^0]: 2000 Mathematics Subject Classification: 58A20.
 Key words and phrases: natural affinor, natural bundle, natural transformation.
 Received December 1, 2001.

