THE COMPLEX GEOMETRY OF AN INTEGRABLE SYSTEM

AHMED LESFARI

Abstract

In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $(2,8)$ and that the flow of the system can be linearized on it.

1. Introduction

Consider a hamiltonian vector fields

$$
\begin{equation*}
\dot{z}=J \frac{\partial H}{\partial z}, \quad z \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where $J=J(z)$ is a skew-symmetric matrix with polynomial entries in z, for which the corresponding Poisson bracket

$$
\left\{H_{i}, H_{j}\right\}=\left\langle\frac{\partial H_{i}}{\partial z}, J \frac{\partial H_{j}}{\partial z}\right\rangle
$$

satisfies the Jacobi identity.
The system (1) with polynomial right hand side will be called algebraic complete integrable when:
a) the system is completely integrable with polynomial invariants, to be precise, the system possesses k polynomial H_{1}, \ldots, H_{k} (functions whose gradients $\partial H_{i} / \partial z$ are null vectors of J) and $m=(n-k) / 2$ polynomial first integrals $H_{k+1}=$ H, \ldots, H_{k+m} in involution $\left(\left\{H_{i}, H_{j}\right\}=0\right)$, which give rise to m commuting vector fields X_{i} generated by (1) applied to $H_{k+i}, 1 \leq i \leq m$; for generic c_{i}, the invariant manifolds

$$
\bigcap_{i=1}^{k+m}\left\{z \in \mathbb{R}^{n}: H_{i}(z)=c_{i}\right\}
$$

[^0]are compact and connected and therefore there exists a diffeomorphism
$$
\bigcap_{i=1}^{k+m}\left\{z \in \mathbb{R}^{n}: H_{i}(z)=c_{i}\right\} \longrightarrow \mathbb{R}^{m} / \text { Lattice } \quad \text { (real tori) }
$$
according to the Arnold-Liouville theorem [3, 18].
b) The invariant manifolds, thought of as affine varieties in \mathbb{C}^{m} (non-compact)
$$
A=\bigcap_{i=1}^{k+m}\left\{z \in \mathbb{C}^{n}: H_{i}(z)=c_{i}\right\}
$$
can be completed into complex algebraic tori \widetilde{A} (abelian varieties) as follows
$$
A=\widetilde{A} \backslash \mathcal{D}
$$
where \mathcal{D} is a divisor in \widetilde{A}. In the natural coordinates $\left(t_{1}, \ldots, t_{m}\right)$ of $\widetilde{A}=\mathbb{C}^{m} /$ Lattice coming from \mathbb{C}^{m}, the functions $z_{i}=z_{i}\left(t_{1}, \ldots, t_{m}\right)$ are meromorphic and in particular (1) defines straight line motion on \widetilde{A}.

Adler and van Moerbeke [1] have developed and used the following algebraic complete integrability criterion: If the hamiltonian system (1) is algebraic complete integrable, then each z_{i} blows up for some value of $t \in \mathbb{C}$ and whenever it blows up, the solution $z(t)$ behaves as a Laurent series

$$
z_{i}=t^{-k_{i}}\left(z_{i}^{(0)}+z_{i}^{(1)} t+z_{i}^{(2)} t^{2}+\cdots\right), \quad k_{i} \in \mathbb{Z}, \quad \text { some } \quad k_{i}>0
$$

which admits dim (phase space) $-1=n-1$ free parameters.
In this paper we consider the following system of differential equations in the unknowns z_{1}, \ldots, z_{4} :

$$
\begin{align*}
& \dot{z}_{1}=z_{3}, \\
& \dot{z}_{2}=z_{4}, \\
& \dot{z}_{3}=\Omega z_{1}-\Omega_{0} z_{2}-z_{1}^{2} z_{2}, \tag{2}\\
& \dot{z}_{4}=\Omega z_{2}-\Omega_{0} z_{1}-z_{1} z_{2}^{2},
\end{align*}
$$

where Ω_{0} and Ω are two arbitrary constants. If $\Omega=\Omega_{0}=0$, this system coincide with the Yang-Mills system (see Appendix 1) describing a homogeneous two-component field having the gauge group $S U(2)$. The solutions of this system can also be related to the coupled nonlinear Schrödinger equations (see Appendix 2). The following two quartics are first integrals for this system

$$
\begin{align*}
H_{1}= & \frac{1}{4} \Omega_{0}\left(z_{1}^{2}+z_{2}^{2}\right)-\frac{1}{2} \Omega z_{1} z_{2}+\frac{1}{4} z_{1}^{2} z_{2}^{2}+\frac{1}{2} z_{3} z_{4} \tag{3}\\
H_{2}= & -\frac{1}{2}\left(\Omega_{0}^{2}-\Omega^{2}\right) z_{1} z_{2}-\frac{1}{2} \Omega z_{3} z_{4}-\frac{1}{4} \Omega_{0}\left(z_{3}^{2}+z_{4}^{2}\right)-\frac{1}{8} \Omega_{0} z_{1} z_{2}\left(z_{1}^{2}+z_{2}^{2}\right) \\
& -\frac{1}{4} \Omega z_{1}^{2} z_{2}^{2}-\frac{1}{16} z_{1}^{2} z_{4}^{2}+\frac{1}{8} z_{1} z_{4} z_{2} z_{3}-\frac{1}{16} z_{2}^{2} z_{3}^{2} . \tag{4}
\end{align*}
$$

The system (2) can be written in the form (1) with $n=4, m=2, k=0$; to be precise

$$
\dot{z}=f(z)=J \frac{\partial H}{\partial z}, \quad z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{\top}
$$

where $H=H_{1}(3)$,

$$
\frac{\partial H}{\partial z}=\left(\frac{\partial H}{\partial z_{1}}, \frac{\partial H}{\partial z_{2}}, \frac{\partial H}{\partial z_{3}} \frac{\partial H}{\partial z_{4}}\right)^{\top}, \quad J=\left(\begin{array}{ll}
0 & I \\
-I & 0
\end{array}\right),
$$

The second flow commuting with the first is regulated by the equations

$$
\dot{z}=J \frac{\partial H_{2}}{\partial z}, \quad z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{\top}
$$

with H_{2} defined by (4) and is written explicitly as

$$
\begin{align*}
& \dot{z}_{1}=\frac{1}{2} \Omega z_{4}+\frac{1}{2} \Omega_{0} z_{3}-\frac{1}{8} z_{2}\left(z_{1} z_{4}-z_{2} z_{3}\right) \\
& \dot{z}_{2}=\frac{1}{2} \Omega z_{3}+\frac{1}{2} \Omega_{0} z_{4}+\frac{1}{8} z_{1}\left(z_{1} z_{4}-z_{2} z_{3}\right) \\
& \dot{z}_{3}=\frac{1}{8} z_{2}\left(4 \Omega^{2}-4 \Omega_{0}^{2}-3 \Omega_{0} z_{1}^{2}-\Omega_{0} z_{2}^{2}-4 \Omega z_{1} z_{2}\right)-\frac{1}{8} z_{4}\left(z_{1} z_{4}-z_{2} z_{3}\right), \tag{5}\\
& \dot{z}_{4}=\frac{1}{8} z_{1}\left(4 \Omega^{2}-4 \Omega_{0}^{2}-\Omega_{0} z_{1}^{2}-3 \Omega_{0} z_{2}^{2}-4 \Omega z_{1} z_{2}\right)+\frac{1}{8} z_{3}\left(z_{1} z_{4}-z_{2} z_{3}\right) .
\end{align*}
$$

The invariant (or level) variety

$$
\begin{equation*}
A=\bigcap_{i=1}^{2}\left\{H_{i}(z)=c_{i}\right\} \subset \mathbb{C}^{4} \tag{6}
\end{equation*}
$$

is a smooth affine surface for generic $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$. So, the question I address is how does one find the compactification of A into an Abelian surface? Now granted the system (2) is integrable, how does one effectively integrate the problem? The proof of the Liouville theorem concerning integrals in involution and invariant tori is non-constructive: neither does it enable you to decide about its integrability, nor does it provide means for integrating the problem. The idea of the direct proof we shall give here is closely related to the geometric spirit of the (real) Arnold-Liouville theorem [3, 18]. Namely, a compact complex n-dimensional variety on which there exist n holomorphic commuting vector fields which are independent at every point is analytically isomorphic to a n-dimensional complex torus $\mathbb{C}^{n} /$ Lattice and the complex flows generated by the vector fields are straight lines on this complex torus. Now, the main problem will be to complete $A(6)$ into a non singular compact complex algebraic variety $\widetilde{A}=A \cup \mathcal{D}$ in such a way that the vector fields (2) and (5) extend holomorphically along the divisor \mathcal{D} and remain independent there. If this is possible, \widetilde{A} is an algebraic complex torus (an abelian variety) and the coordinates z_{i} restricted to A are abelian functions. A naive guess would be
to take the natural compactification \bar{A} of A by projectivizing the equations:

$$
\bar{A}=\bigcap_{i=1}^{2}\left\{H_{i}(Z)=c_{i} Z_{0}^{4}\right\} \subset \mathbb{C P}^{4}
$$

Indeed, this can never work for a general reason: an abelian variety \widetilde{A} of dimension bigger or equal than two is never a complete intersection, that is it can never be descriped in some projective space $\mathbb{C P}^{n}$ by n - $\operatorname{dim} \widetilde{A}$ global polynomial homogeneous equations. In other words, if A is to be the affine part of an abelian surface, \bar{A} must have a singularity somewhere along the locus at infinity $A_{\infty}=\bar{A} \cap\left\{X_{0}=0\right\}$. In fact, we shall show that the existence of meromorphic solutions to the differential equations (2) depending on 3 free parameters can be used to manufacture the tori, without ever going through the delicate procedure of blowing up and down. Information about the tori can then be gathered from the divisor.

2. LAURENT EXPANSIONS SOLUTIONS AND CURVES

Consider points at infinity which are limit points of trajectories of the flow. If the hamiltonian flow (1) is algebraic complete integrable, it means that the variables z_{i} are meromorphic on the torus $\mathbb{C}^{m} /$ Lattice and by compactness they must blow up along a codimension one subvariety (a divisor) $\mathcal{D} \subset \mathbb{C}^{m} /$ Lattice. By the algebraic complete integrability definition, the flow (1) is a straight line motion in $\mathbb{C}^{m} /$ Lattice and thus it must hit the divisor \mathcal{D} in at least one place. Moreover through every point of \mathcal{D}, there is a straight line motion and therefore a Laurent expansion around that point of intersection. Hence the differential equation must admit Laurent expansions which depend on the $m-1$ parameters defining \mathcal{D} and the $m+k$ constants c_{i} defining the torus $\mathbb{C}^{m} /$ Lattice the total count is therefore $n-1=\operatorname{dim}$ (phase space) -1 parameters.

Proposition 1. The pole solutions of the system (2) restricted to the surface A (6) is a curve $\mathcal{D}(8)$ of geometric genus 7 . Its smooth version is a hyperelliptic curve $\mathcal{C}(10)$ of genus 5 , which is a double cover ramified at 4 points of a genus 2 hyperelliptic curve $\mathcal{C}_{0}(11)$.

Proof. The first fact to observe is that if the system (2) is to have Laurent expansions solutions depending on dim (phase space) $-1=3$ free parameters, the solutions must blow up like:

$$
\begin{align*}
& z_{1}=\frac{z_{1}^{(0)}}{t}+z_{1}^{(1)}+z_{1}^{(2)} t+z_{1}^{(3)} t^{2}+z_{1}^{(4)} t^{3}+\cdots \\
& z_{2}=\frac{z_{2}^{(0)}}{t}+z_{2}^{(1)}+z_{2}^{(2)} t+z_{2}^{(3)} t^{2}+z_{2}^{(4)} t^{3}+\cdots \tag{7}\\
& z_{3}=-\frac{z_{1}^{(0)}}{t^{2}}+z_{1}^{(2)}+2 z_{1}^{(3)} t+3 z_{1}^{(4)} t^{2}+\cdots \\
& z_{4}=-\frac{z_{2}^{(0)}}{t^{2}}+z_{2}^{(2)}+2 z_{2}^{(3)} t+3 z_{2}^{(4)} t^{2}+\cdots
\end{align*}
$$

this follows immediately from the differential equations (2). Putting (7) into (2), solving inductively for the $z^{(k)}$, one finds at the $0^{\text {th }}$ step a non-linear equation, and at the $k^{\text {th }}$ step, a linear system of equations. One free parameter α appear at the $0^{\text {th }}$ step and the two remaining ones β, γ at the $k^{\text {th }}$ step, $k=3, k=4$. More precisely, we find

$$
\begin{array}{rlrl}
z_{1}^{(0)} & =\alpha, & z_{1}^{(0)} z_{2}^{(0)} & =-2 \\
z_{1}^{(1)} & =0, & z_{2}^{(1)} & =0 \\
z_{1}^{(2)} & =-\frac{1}{6} \Omega \alpha+\frac{1}{3} \Omega_{0} z_{2}+\frac{1}{12} \alpha^{3} \Omega_{0}, & z_{2}^{(2)} & =-\frac{1}{6} \Omega z_{2}+\frac{1}{3} \Omega_{0} \alpha+\frac{1}{12} z_{2}^{3} \Omega_{0}, \\
z_{1}^{(3)} & =\frac{1}{2} \alpha^{2} \beta, & z_{2}^{(3)} & =\beta \\
z_{1}^{(4)} & =\frac{1}{12} \Omega \Omega_{0} z_{2}+\frac{1}{24} \Omega \alpha^{3} \Omega_{0}-\frac{1}{24} z_{2}^{3} \Omega_{0}^{2}-\frac{1}{48} \alpha^{5} \Omega_{0}^{2}-\frac{1}{2} \alpha^{2} \gamma, & z_{2}^{(4)}=\gamma
\end{array}
$$

Substituting the solutions (7) into $H_{1}=c_{1}$ and $H_{2}=c_{2}$, and equating the t°-terms yields

$$
\begin{aligned}
H_{1}= & -\frac{5}{72} \alpha^{4} \Omega_{0}^{2}+\frac{1}{9} \Omega \alpha^{2} \Omega_{0}-\frac{17}{36} \Omega_{0}^{2}-\frac{7}{36} \Omega^{2}+\frac{5}{36} z_{2}^{4} \Omega_{0}^{2}-\frac{11}{36} \Omega z_{2}^{2} \Omega_{0}-5 \alpha \gamma, \\
H_{2}= & -\frac{9}{4} \alpha^{2} \beta^{2}-\frac{19}{576} \alpha^{6} \Omega_{0}^{3}+\frac{17}{144} \Omega \alpha^{4} \Omega_{0}^{2}-\frac{1}{8} \Omega_{0}^{3} \alpha^{2}-\frac{11}{144} \Omega^{2} \alpha^{2} \Omega_{0}+\frac{7}{36} \Omega^{3} \\
& -\frac{2}{9} \Omega \Omega_{0}^{2}+\frac{11}{576} z_{2}^{6} \Omega_{0}^{3}-\frac{1}{9} \Omega \Omega_{0}^{2} z_{2}^{4}+\frac{1}{12} \Omega_{0}^{3} z_{2}^{2}+\frac{25}{144} \Omega^{2} \Omega_{0} z_{2}^{2}+\frac{9}{8} \Omega_{0} z_{2} \gamma \\
& -\frac{5}{4} \Omega_{0} \alpha^{3} \gamma+3 \Omega \alpha \gamma,
\end{aligned}
$$

with $z_{1}^{(0)} z_{2}^{(0)}=-2$. Eliminating γ from these equations, leads to the followings curve of geometric genus 7,

$$
\begin{equation*}
\mathcal{D}: \alpha^{8} \beta^{2}-P(\alpha)=0 \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
P(\alpha) \equiv & -\frac{1}{144} \Omega_{0}^{3} \alpha^{12}+\frac{7}{324} \Omega \Omega_{0}^{2} \alpha^{10}+\frac{1}{3240} \Omega_{0}\left(35 \Omega_{0}^{2}+360 H_{1}+56 \Omega^{2}\right) \alpha^{8} \\
& -\frac{1}{405}\left(-14 \Omega^{3}+180 H_{2}+108 \Omega H_{1}+45 \Omega \Omega_{0}^{2}\right) \alpha^{6} \\
& -\frac{1}{1620} \Omega_{0}\left(7 \Omega_{0}^{2}-35 \Omega^{2}-324 H_{1}\right) \alpha^{4}+\frac{19}{405} \Omega_{0}^{2} \Omega \alpha^{2}+\frac{8}{81} \Omega_{0}^{3} . \tag{9}
\end{align*}
$$

Its smooth version is the following hyperelliptic curve of genus 5 ,

$$
\begin{equation*}
\mathcal{C}: u^{2}-P(\alpha)=0 \tag{10}
\end{equation*}
$$

It is a double ramified cover of the genus 2 hyperelliptic curve,

$$
\begin{equation*}
\mathcal{C}_{0}: v^{2}-P(\xi)=0 \tag{11}
\end{equation*}
$$

ramified at the four points covering $\xi=0$ and ∞. The polynome $P(\xi)$ of degree 6 is given by (9) with $\xi \equiv \alpha^{2}$. This concludes the proof of Proposition 1.

3. Invariant surfaces as affine part of an abelian surface

We now wish to give a direct geometric proof that the surface $A(6)$ is an affine part of an abelian surface. Let \widetilde{A} be a smooth surface compactifying A. Consider a basis $1, f_{1}, \ldots, f_{N}$ of the vector space

$$
L \equiv L(\mathcal{C})=\{f: f \text { meromorphic on } \widetilde{A},(f) \geq-C\}
$$

of meromorphic functions on \widetilde{A} with at worst a simple pole along \mathcal{C} and the map

$$
\widetilde{A} \rightarrow \mathbb{C P}^{N}, p \longmapsto\left[1, f_{1}(p), \ldots, f_{N}(p)\right]
$$

considered projectively, because if at p some $f_{i}(p)=\infty$, we divide by f_{i} having the highest order pole near p, which makes every element finite. The Kodaira embedding theorem tells us that if the line bundle associated with the divisor is positive, then for $k \in \mathbb{N}$, the functions of $L(k \mathcal{C})$ embed smoothly \widetilde{A} into $\mathbb{C P}^{N}$ and then by Chow's theorem, \widetilde{A} can be realized as an algebraic variety, i.e.,

$$
\widetilde{A}=\bigcap_{i}\left\{z \in \mathbb{C P}^{N}: P_{i}(z)=0\right\}
$$

where $P_{i}(z)$ are homogeneous polynomials. In fact we shall show that the diviseur $2 \mathcal{C}$ provides a smooth embedding into $\mathbb{C P}^{15}$, via the meromorphic section of $L(2 \mathcal{C})$. Put $\mathcal{S} \equiv 2 C$ and let

$$
\chi(\mathcal{S})=\operatorname{dim} H^{0}(\widetilde{A}, \mathcal{O}(\mathcal{S}))-\operatorname{dim} H^{1}(\widetilde{A}, \mathcal{O}(\mathcal{S}))
$$

be the Euler characteristic of S. The adjunction formula and the Riemann-Roch theorem for divisors on abelian surfaces imply that

$$
\begin{aligned}
& g(\mathcal{S})=\frac{K_{\tilde{A}} \cdot \mathcal{S}+\mathcal{S} \cdot \mathcal{S}}{2}+1 \\
& \chi(\mathcal{S})=p_{a}(\widetilde{A})+1+\frac{1}{2}\left(\mathcal{S} \cdot\left(\mathcal{S}-K_{\widetilde{A}}\right)\right)
\end{aligned}
$$

where $\underset{\sim}{g}(\mathcal{S})$ is the geometric genus of \mathcal{S} and $p_{a}(\widetilde{A})$ is the arithmetic genus of \widetilde{A}. Since \widetilde{A} is an abelian surface $\left(K_{\widetilde{A}}=0, p_{a}(\widetilde{A})=-1\right)$,

$$
\begin{aligned}
g(\mathcal{S})-1 & =\frac{\mathcal{S} \cdot \mathcal{S}}{2} \\
& =\chi(\mathcal{S})
\end{aligned}
$$

Using Kodaira-Serre duality [6, p. 153], Kodaira-Nakano vanishing theorem [6, p. 154] and a theorem on theta-functions [6, p.317], it is easy to see that

$$
\begin{align*}
g(\mathcal{S})-1 & =\operatorname{dim} L(\mathcal{S}) \quad\left(\equiv h^{0}(L)\right) \tag{12}\\
& =N+1 \\
& =\delta_{1} \delta_{2}
\end{align*}
$$

where $\delta_{1}, \delta_{2} \in \mathbb{N}$, are the elementary divisors of the polarization of \widetilde{A}.

Proposition 2. The orbits of the vector field (2) running through $\mathcal{S} \equiv 2 \mathcal{C}$ form a smooth surface Δ_{p} near \mathcal{S}. Near $p \in \mathcal{S}$, the surface strip Δ_{p} coincides with \widetilde{A} and $\Delta_{p} \backslash \mathcal{S} \subseteq A ; \Delta_{p}$ is the only part of \widetilde{A} in a small neighbourhood of p. Moreover, the variety

$$
A \cup\left(\bigcup_{p \in \mathcal{S}} \Delta_{p}\right)=\widetilde{A}=A \cup \mathcal{S}
$$

is smooth, compact, connected and embeds smoothly into $\mathbb{C P}^{15}$.
Proof. Based on the above motivation, it is easy to find a set of polynomial functions $\left\{1, f_{1}, \ldots, f_{N}\right\}$ in $L(\mathcal{S})$ such that the embedding of $\mathcal{S} \equiv 2 \mathcal{C}$ with those functions into $\mathbb{C P}^{N}$ yields a curve of genus $N+2$. Straightforward calculation, using asymptotic expansions, shows that the space $L(\mathcal{S})$ is spanned by the following functions

$$
L(\mathcal{S})=\left\{1, f_{1}, \ldots, f_{15}\right\},
$$

where

$$
\begin{aligned}
& f_{1}=z_{1}=\frac{\alpha}{t}+o(t) \\
& f_{2}=z_{2}=\frac{z_{2}^{(0)}}{t}+o(t) \\
& f_{3}=z_{3}=-\frac{\alpha}{t^{2}}+o(t) \\
& f_{4}=z_{4}=-\frac{z_{2}^{(0)}}{t^{2}}+o(t) \\
& f_{5}=z_{1}^{2}=\frac{\alpha^{2}}{t^{2}}+o(t) \\
& f_{6}=z_{2}^{2}=\frac{4}{\alpha^{2} t^{2}}+o(t) \\
& f_{7}=z_{1} z_{2}=-\frac{2}{t^{2}}+o(t), \\
& f_{8}=z_{1} z_{4}-z_{2} z_{3}=\Omega_{0}\left(\alpha^{2}-2\right) \frac{\alpha^{2}+2}{\alpha^{2} t}+o(t) \\
& f_{9}=\left(z_{1} z_{4}-z_{2} z_{3}\right)^{2}=\Omega_{0}^{2}\left(\alpha^{2}-2\right)^{2} \frac{\left(\alpha^{2}+2\right)^{2}}{\alpha^{4} t^{2}}+o(t), \\
& f_{10}=z_{1}\left(z_{1} z_{4}-z_{2} z_{3}\right)=\Omega_{0}\left(\alpha^{2}-2\right) \frac{\alpha^{2}+2}{\alpha t^{2}}+o(t) \\
& f_{11}=z_{2}\left(z_{1} z_{4}-z_{2} z_{3}\right)=-2 \Omega_{0}\left(\alpha^{2}-2\right) \frac{\alpha^{2}+2}{\alpha^{3} t^{2}}+o(t) \\
& f_{12}=z_{3}\left(z_{1} z_{4}-z_{2} z_{3}\right)+\Omega_{0} z_{1}\left(z_{1}^{2}-z_{2}^{2}\right)=-6 \frac{\alpha^{2}}{t^{2}} \beta+o(t) \\
& f_{13}=z_{4}\left(z_{1} z_{4}-z_{2} z_{3}\right)+\Omega_{0} z_{2}\left(z_{1}^{2}-z_{2}^{2}\right)=\frac{12}{t^{2}} \beta+o(t)
\end{aligned}
$$

$$
\begin{aligned}
f_{14} & =\left(z_{1}^{2}-z_{2}^{2}\right) z_{1} z_{2}+2\left(z_{3}^{2}-z_{4}^{2}\right) \\
& =\frac{1}{2}\left(-\Omega_{0} \alpha^{4}+4 \Omega \alpha^{2}-4 \Omega_{0}\right)\left(\alpha^{2}+2\right) \frac{\alpha^{2}-2}{t^{2} \alpha^{4}}+o(t), \\
f_{15} & =z_{1} z_{2}\left(z_{1} z_{4}-z_{2} z_{3}\right)-2 \Omega_{0}\left(z_{1} z_{3}-z_{2} z_{4}\right)-2 \Omega\left(z_{1} z_{4}-z_{2} z_{3}\right) \\
& =-\frac{12}{t^{2}} \alpha \beta+o(t)
\end{aligned}
$$

The map

$$
\begin{aligned}
& \mathcal{S} \rightarrow \mathbb{C P}^{15} \\
& p \mapsto \lim _{t \rightarrow 0} t^{2}\left(1, f_{1}(p), \ldots, f_{15}(p)\right) \\
& \quad=\left(0,0,0, f_{3}^{(0)}(p), \ldots, f_{7}^{(0)}(p), 0, f_{9}^{(0)}(p), \ldots, f_{15}^{(0)}(p)\right)
\end{aligned}
$$

maps the curve \mathcal{S} into $\widetilde{\mathcal{S}} \subseteq \mathbb{C} \mathbb{P}^{15}$ and the genus of \mathcal{S} is 17 , satisfying the requirement (12). Let $\Delta_{p} \subset \mathbb{C P}^{15}$ be the surface formed by the divisor \mathcal{S} with fibres defined by the flow (for small t) departing from the points of \mathcal{S} in a neighbourhood of the point $p \in \mathcal{S}$. Let $\mathcal{H} \subset \mathbb{C P}^{15}$ be a hyperplane transversal to the direction of the flow at p and consider the segment of the curve \mathcal{S}^{\prime} defined by $\mathcal{S}^{\prime}=\mathcal{H} \cap \Delta_{p}$. If \mathcal{S}^{\prime} is smooth, then using the implicit function theorem the surface Δ_{p} is smooth. But if \mathcal{S}^{\prime} is singular at 0 , then Δ_{p} would be singular along the trajectory (t-axis) which go immediately into the affine part A. Hence, A would be singular which is a contradiction because A is the fibre of a morphism from \mathbb{C}^{4} to \mathbb{C}^{2} and so smooth for almost all the two constants of the motion c_{i}. Next, let \bar{A} be the projective closure of A into $\mathbb{C P}^{4}$, let $Z=\left(Z_{0}, Z_{1}, Z_{2}, Z_{3}, Z_{4}\right) \in \mathbb{C P}^{4}$ and let $A_{\infty}=\bar{A} \cap\left\{Z_{0}=0\right\}$ be the locus at infinity. Consider the map

$$
f: \bar{A} \subseteq \mathbb{C P}^{4} \rightarrow \mathbb{C P}^{15}, Z \mapsto f(Z)
$$

where $f=\left(1, f_{1}, \ldots, f_{15}\right) \in L(\mathcal{S})$ and let $\widetilde{A}=f(\bar{A})$. In a neighbourhood $V(p) \subseteq$ $\mathbb{C P}^{15}$ of p, we have $\Delta_{p}=\widetilde{A}$ and $\Delta_{p} \backslash \mathcal{S} \subseteq A ; \Delta_{p}$ is the only part of \widetilde{A} in a small neighbourhood of p. Otherwise there would exist an element of surface $\Delta_{p}^{\prime} \subseteq \widetilde{A}$ intersecting Δ_{p} at $p \in \mathcal{S}$. Let $g_{X_{1}}^{t}(p)$ be the orbit going with the vector field (2) through p. We have

$$
\begin{aligned}
\operatorname{orbit}\left\{g_{X_{1}}^{t}(p), 0<|t|<\varepsilon\right\} & =\left(\Delta_{p} \cap \Delta_{p}^{\prime}\right) \backslash A \\
\Delta_{p} \cap \Delta_{p}^{\prime} & =t \text {-axis }
\end{aligned}
$$

Hence A would be singular along the t-axis which is impossible. Since the variety $\bar{A} \cap\left\{Z_{0} \neq 0\right\}$ is irreductible and since the generic hyperplane section $\mathcal{H}_{\text {generic }}$ of \bar{A} is also irreducible, all hyperplane sections are connected and hence A_{∞} is also connected. Now, consider the graph $\Gamma_{f} \subseteq \mathbb{C P}^{4} \times \mathbb{C P}^{15}$ of the map f, which is irreducible together with \bar{A}. It follows from the irreducibility of A_{∞} that a generic hyperplane section $\Gamma_{f} \cap\left\{\mathcal{H}_{\text {generic }} \times \mathbb{C P}^{15}\right\}$ is irreducible, hence the special hyperplane section $\Gamma_{f} \bigcap\left\{\left\{Z_{0}=0\right\} \times \mathbb{C P}^{15}\right\}$ is connected and therefore the projection
map

$$
\operatorname{proj}_{\mathbb{C P}^{15}}\left[\Gamma_{f} \cap\left\{\left\{Z_{0}=0\right\} \times \mathbb{C P}^{15}\right\}\right]=f\left(A_{\infty}\right) \equiv \mathcal{S},
$$

is connected; a projection maintains connectivity by continuity. Hence, the variety

$$
A \cup\left(\bigcup_{p \in \mathcal{S}} \Delta_{p}\right)=\widetilde{A}=A \cup \mathcal{S}
$$

is compact, connected and embeds smoothly into $\mathbb{C P}^{15}$ via f. This completes the proof of Proposition 2.

Proposition 3. The variety \widetilde{A} comes equipped with two everywhere independent commuting vector fields, which extend holomorphically on \widetilde{A}.

Proof. Let $g^{t_{1}}$ and $g^{t_{2}}$ be the flows generated respectively by vector fields (2) and (5). For $p \in \mathcal{S}$ and for small $\varepsilon>0, g^{t_{1}}(p), \forall t_{1}, 0<\left|t_{1}\right|<\varepsilon$, is well defined and $g^{t_{1}}(p) \in A$. Then we may define $g^{t_{2}}$ on A by

$$
g^{t_{2}}(q)=g^{-t_{1}} g^{t_{2}} g^{t_{1}}(q), q \in U(p)=g^{-t_{1}}\left(U\left(g^{t_{1}}(p)\right)\right),
$$

where $U(p)$ is a neighbourhood of p. By commutativity one can see that $g^{t_{2}}$ is independent of t_{1};

$$
\begin{aligned}
g^{-t_{1}-\varepsilon_{1}} g^{t_{2}} g^{t_{1}+\varepsilon_{1}}(q) & =g^{-t_{1}} g^{-\varepsilon_{1}} g^{t_{2}} g^{t_{1}} g^{\varepsilon_{1}}, \\
& =g^{-t_{1}} g^{t_{2}} g^{t_{1}}(q) .
\end{aligned}
$$

We affirm that $g^{t_{2}}(q)$ is holomorphic away from S. This because $g^{t_{2}} g^{t_{1}}(q)$ is holomorphic away from \mathcal{S} and that $g^{t_{1}}$ is holomorphic in $U(p)$ and maps biholomorphically $U(p)$ onto $U\left(g^{t_{1}}(p)\right)$. This finishes Proposition 3 .

Proposition 4. The affine surface A (6) defined by the intersection of two quartics completes into an abelian surface $\widetilde{A} \simeq a$ complex algebraic torus $\mathbb{C}^{2} /$ period lattice. The system of differential equations (2) is algebraic complete integrable and the corresponding flow evolues on this torus.

Proof. Since the flows $g^{t_{1}}$ and $g^{t_{2}}$ are holomorphic and independent on \mathcal{S}, we can show along the same lines as in the Arnold-Liouville theorem that \widetilde{A} is a torus. And that will done, by considering the holomorphic map

$$
\mathbb{C}^{2} \longrightarrow \widetilde{A},\left(t_{1}, t_{2}\right) \longmapsto g^{t_{1}} g^{t_{2}}(p),
$$

for a fixed origin $p \in A$. Then

$$
\text { lattice }=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2}: g^{t_{1}} g^{t_{2}}(p)=p\right\}
$$

is a lattice of \mathbb{C}^{2} and hence $\mathbb{C}^{2} /$ lattice $\rightarrow \widetilde{A}$ is a biholomorphic diffeomorphism. Therefore $\widetilde{A} \subseteq \mathbb{C P}^{15}$ is conformal to a complex torus $\mathbb{C}^{2} /$ lattice and an abelian surface as a consequence of Chow theorem. This establishes Proposition 4.

4. Abelian surface of polarization $(2,8)$, Prym and Jacobian VARIETIES

We can go further and describe what abelian surfaces arise this way. The system (2) can then be solved by quadratures, that is to say their solutions can be expressed in terms of Abelian integrals. We make also a few comments about the relation between the abelian variety \widetilde{A}, the Prym variety $\operatorname{Prym}\left(\mathcal{C} / \mathcal{C}_{0}\right)$ and the Jacobian variety Jac (C).
Proposition 5. The flow (2) evolues on abelian surfaces $\widetilde{A} \subseteq \mathbb{C P}^{15}$ of period matrix

$$
\left(\begin{array}{cccc}
2 & 0 & a & c \\
0 & 8 & c & b
\end{array}\right), \quad \operatorname{Im}\left(\begin{array}{cc}
a & c \\
c & b
\end{array}\right)>0
$$

and it will be expressed in terms of abelian integrals, involving the differentials (15).

Proof. Note that the affine invariant surface $A(6)$, has the following involution

$$
\sigma:\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \longmapsto\left(-z_{1},-z_{2},-z_{3},-z_{4}\right)
$$

which amounts to a reflection about some appropriately chosen origin on A. This map acts on the parameters of the Laurent solutions (7) as follows

$$
(t, \alpha, \beta) \longmapsto(-t,-\alpha, \beta) .
$$

Since L is symmetric $\left(\sigma^{*} L \simeq L\right), \sigma$ can be lifted to L as an involution $\widetilde{\sigma}$ in two ways differing in sign and for each section (theta-function) $s \in H^{0}(L)$, we therefore have $\widetilde{\sigma} s= \pm s$. Recall that a section $s \in H^{0}(L)$ is called even (resp. odd) if $\widetilde{\sigma} s=+s$ (resp. $\tilde{\sigma} s=-s$). Under $\widetilde{\sigma}$ the vector space $H^{0}(L)$ splits into an even and odd subspace

$$
H^{0}(L)=H^{0}(L)^{\text {even }} \oplus H^{0}(L)^{\text {odd }}
$$

with $H^{0}(L)^{\text {even }}$ containing all the even sections and $H^{0}(L)^{\text {odd }}$ all odd ones. Using the inverse formula [21, p.331], we see after a small computation that

$$
\begin{align*}
& h^{0}(L)^{\text {even }} \equiv \operatorname{dim} H^{0}(L)^{\text {even }}= \begin{cases}\frac{\delta_{1} \delta_{2}}{2}+2\left(1+\left[\frac{\delta_{2}}{2}\right]-\frac{\delta_{2}}{2}\right) & \text { for even } \delta_{1} \\
\frac{\delta_{1} \delta_{2}}{2}+\left(1+\left[\frac{\delta_{2}}{2}\right]-\frac{\delta_{2}}{2}\right) & \text { for odd } \delta_{1}\end{cases} \\
& h^{0}(L)^{\text {odd }} \equiv \operatorname{dim} H^{0}(L)^{\text {odd }}= \begin{cases}\frac{\delta_{1} \delta_{2}}{2}-2\left(1+\left[\frac{\delta_{2}}{2}\right]-\frac{\delta_{2}}{2}\right) & \text { for even } \delta_{1} \\
\frac{\delta_{1} \delta_{2}}{2}-\left(1+\left[\frac{\delta_{2}}{2}\right]-\frac{\delta_{2}}{2}\right) & \text { for odd } \delta_{1}\end{cases} \tag{13}
\end{align*}
$$

By the classification theory of ample line bundles on abelian varieties and Proposition $4, \widetilde{A} \simeq \mathbb{C}^{2} / L_{\Omega}$ with period lattice given by the columns of the matrix

$$
\left.\Omega=\left(\begin{array}{llll}
\delta_{1} & 0 & a & c \\
0 & \delta_{2} & c & b
\end{array}\right), \quad \operatorname{Im}\left(\begin{array}{cc}
a & c \\
c & b
\end{array}\right)\right\rangle 0
$$

according to (12), with

$$
\delta_{1} \delta_{2}=h^{0}(L)=g(S)-1=16, \quad \delta_{1} \mid \delta_{2}, \delta_{i} \in \mathbb{N}^{*}
$$

Hence we have the following possibilities: (i) $\delta_{1}=1, \delta_{2}=16$ and (ii) $\delta_{1}=2$, $\delta_{2}=8$. From formula (13), the corresponding line bundle L has in case (i), 9 even sections, 7 odd ones and in cases (ii) 10 even sections, 6 odd ones. Among the functions of L, there are 10 even and 6 odd functions for the involution σ, showing that cases $(i i)$ is the only alternative and the period matrices have the form

$$
\left(\begin{array}{cccc}
2 & 0 & a & c \\
0 & 8 & c & b
\end{array}\right), \quad \operatorname{Im}\left(\begin{array}{cc}
a & c \\
c & b
\end{array}\right)>0 .
$$

Consider on \widetilde{A} the holomorphic 1-forms $d t_{1}$ and $d t_{2}$ defined by

$$
d t_{i}\left(X_{j}\right)=\delta_{i j}
$$

where X_{1} is the flow (2) and X_{2} the other flow (5) commuting with the first. The holomorphic differentials on \mathcal{C} can be spanned as well by

$$
\begin{equation*}
\omega_{k}=\frac{\alpha^{k-1} d \alpha}{\sqrt{P(\alpha)}}, \quad 1 \leq k \leq 5 \tag{14}
\end{equation*}
$$

The restriction of $d t_{1}$ and $d t_{2}$ to the curve \mathcal{C} are easily computed:

$$
\begin{align*}
& \left.d t_{1}\right|_{\mathcal{C}}=\omega_{2}=\frac{\alpha d \alpha}{\sqrt{P(\alpha)}} \tag{15}\\
& \left.d t_{2}\right|_{\mathcal{C}}=\omega_{4}=\frac{\alpha^{3} d \alpha}{\sqrt{P(\alpha)}}
\end{align*}
$$

This ends the proof of Proposition 5.
Finally we make a few comments about the relation between the abelian variety \widetilde{A}, the Prym variety $\operatorname{Prym}\left(\mathcal{C} / \mathcal{C}_{0}\right)$ and the jacobian variety $\operatorname{Jac}(\mathcal{C})$. As pointed out before, \mathcal{C} is a double ramified cover of a hyperelliptic curve \mathcal{C}_{0} of genus 2 , whose sheets are interchanged by the involution $(\alpha, u) \longmapsto(-\alpha, u)$. Hence

$$
\operatorname{Jac}(\mathcal{C})=\operatorname{Prym}\left(\mathcal{C} / \mathcal{C}_{0}\right) \oplus \operatorname{Jac}\left(\mathcal{C}_{0}\right)
$$

Since the space of holomorphic differentials splits according to odd and even differentials respectively (for that involution)

$$
\Omega(\mathcal{C})=\left\{\omega_{1}, \omega_{3}, \omega_{5}\right\} \oplus\left\{\omega_{2}, \omega_{4}\right\}
$$

the flows evolve on the 3 -dimensional $\operatorname{Prym}\left(\mathcal{C} / \mathcal{C}_{0}\right)$ and therefore

$$
\widetilde{A} \subseteq \operatorname{Prym}\left(\mathcal{C} / \mathcal{C}_{0}\right)
$$

Its differentials restricted to the curve \mathcal{C} are given by ω_{1}, ω_{3} and ω_{5}. This shows that $\operatorname{Prym}\left(\mathcal{C} / \mathcal{C}_{0}\right)$ splits further, up to isogenies, into an elliptic curve \mathcal{E} and the 3 -dimensional invariant torus \widetilde{A} :

$$
\operatorname{Prym}\left(\mathcal{C} / \mathcal{C}_{0}\right)=\tilde{A} \oplus \mathcal{E}
$$

The torus \widetilde{A} can also be regarded as a double cover of the Jacobi variety $\operatorname{Jac}\left(\mathcal{C}_{0}\right)$ and the system (2) can be integrated in terms of genus 2 hyperelliptic functions
of time. The differentials $d t_{1}$ and $d t_{2}$, corresponding to the flows (2) and (5), restricted to the curve \mathcal{C}, go down to \mathcal{C}_{0}. Indeed, using (15)

$$
\begin{aligned}
& \left.d t_{1}\right|_{\mathcal{C}}=\omega_{2}=\frac{\alpha d \alpha}{\sqrt{P(\alpha)}}=\frac{d \xi}{\sqrt{P(\xi)}} \\
& \left.d t_{2}\right|_{C}=\omega_{4}=\frac{\alpha^{3} d \alpha}{\sqrt{P(\alpha)}}=\frac{\xi d \xi}{\sqrt{P(\xi)}}
\end{aligned}
$$

yielding the two hyperelliptic differentials on \mathcal{C}_{0}.
Appendix 1. Consider the Yang-Mills system for a field with gauge group $S U(2)$:

$$
D_{k} F_{k l}=\frac{\partial F_{k l}}{\partial x_{k}}+\left[A_{k}, F_{k l}\right]=0
$$

where $F_{k l}, A_{k} \in T_{e} S U(2), 1 \leq k, l \leq 4$ and

$$
F_{k l}=\frac{\partial A_{l}}{\partial x_{k}}-\frac{\partial A_{k}}{\partial x_{l}}+\left[A_{k}, A_{l}\right]
$$

In the case of homogeneous two-component field,

$$
\frac{\partial A_{l}}{\partial x_{k}}=0(k \neq 1), A_{1}=A_{2}=0, A_{3}=n_{1} U_{1}, A_{4}=n_{2} U_{2}
$$

where $n_{1,2}=$ constant, $n_{1}=\left[n_{2},\left[n_{1}, n_{2}\right]\right], n_{2}=\left[n_{1},\left[n_{2}, n_{1}\right]\right]$ and the system becomes

$$
\begin{aligned}
& \frac{\partial^{2} U_{1}}{\partial t^{2}}+U_{1} U_{2}^{2}=0 \\
& \frac{\partial^{2} U_{2}}{\partial t^{2}}+U_{2} U_{1}^{2}=0
\end{aligned}
$$

with $t=x_{1}$. By setting

$$
\begin{array}{llrl}
U_{1} & =\frac{1}{2}(\sqrt[4]{2})^{3} z_{1}, & \frac{\partial U_{1}}{\partial t} & =\frac{\sqrt{2}(1-i)}{4}\left(z_{3}+i z_{4}\right) \\
U_{2} & =\frac{1}{2}(\sqrt[4]{2})^{3} z_{2}, & \frac{\partial U_{2}}{\partial t} & =\frac{\sqrt{2}(1+i)}{4}\left(z_{3}-i z_{4}\right)
\end{array}
$$

Yang-Mills equations are reduced to hamiltonian system with the hamiltonian

$$
H=\frac{1}{2} z_{3} z_{4}+\frac{1}{4} z_{1}^{2} z_{2}^{2}
$$

which obviously coincides with (3) for $\Omega=\Omega_{0}=0$.
Appendix 2. It's well known [5] that the system of two coupled nonlinear Schrödinger equations is given by

$$
\begin{aligned}
& i \frac{\partial A}{\partial Z}+\frac{1}{2} \frac{\partial^{2} A}{\partial T^{2}}+\sigma B+\left(|A|^{2}+\gamma|B|^{2}\right) A=0 \\
& i \frac{\partial B}{\partial Z}+\frac{1}{2} \frac{\partial^{2} B}{\partial T^{2}}+\sigma A+\left(|B|^{2}+\gamma|A|^{2}\right) B=0
\end{aligned}
$$

Making the change of variables

$$
\begin{aligned}
A & =\frac{\sqrt{2}}{2}(u+i v), & z & =\frac{1}{2}(\gamma+1) Z \\
B & =\frac{\sqrt{2}}{2}(u-i v), & t & =\sqrt{(\gamma+1) T}
\end{aligned}
$$

gives the system

$$
\begin{aligned}
& i \frac{\partial u}{\partial z}+\frac{\partial^{2} u}{\partial t^{2}}+\Omega_{0} u+\frac{2}{3}\left(|u|^{2}+|v|^{2}\right) u+\frac{1}{3}\left(u^{2}+v^{2}\right) \bar{u}=0 \\
& i \frac{\partial v}{\partial z}+\frac{\partial^{2} v}{\partial t^{2}}+\Omega_{0} v+\frac{2}{3}\left(|u|^{2}+|v|^{2}\right) v+\frac{1}{3}\left(u^{2}+v^{2}\right) \bar{v}=0
\end{aligned}
$$

where $\Omega_{0}=\frac{2}{3} \sigma$. We seek solutions of these equations in the following form:

$$
\begin{aligned}
& u(z, t)=\frac{1}{2}\left(z_{1}+z_{2}\right)(t) \exp (i \Omega z) \\
& v(z, t)=\frac{1}{2 i}\left(z_{1}-z_{2}\right) \exp (i \Omega z)
\end{aligned}
$$

where $z_{1}(t)$ and $z_{2}(t)$ are two functions and Ω is an arbitrary constant. Then we obtain the system

$$
\begin{aligned}
& \ddot{z}_{1}=\Omega z_{1}-\Omega_{0} z_{2}-z_{1}^{2} z_{2}, \\
& \ddot{z}_{2}=\Omega z_{2}-\Omega_{0} z_{1}-z_{1} z_{2}^{2},
\end{aligned}
$$

with hamiltonian

$$
H_{1}=\frac{1}{4} \Omega_{0}\left(z_{1}^{2}+z_{2}^{2}\right)-\frac{1}{2} \Omega z_{1} z_{2}+\frac{1}{4} z_{1}^{2} z_{2}^{2}+\frac{1}{2} z_{3} z_{4}
$$

which obviously coincides with (3).

References

[1] Adler, M., van Moerbeke, P., The algebraic complete integrability of geodesic flow on $S O(4)$, Invent. Math. 67 (1982), 297-331.
[2] Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J., Geometry of algebraic curves I, Springer-Verlag, 1994.
[3] Arnold, V.I., Mathematical methods in classical mechanics, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[4] Belokolos, E. D., Bobenko, A.I., Enolskii, V. Z., Its, A. R., Matveev, V. B., AlgebroGeometric approach to nonlinear integrable equations, Springer-Verlag, 1994.
[5] Christiansen, P. L., Eilbeck, J. C., Enolskii, V. Z., Kostov, N. A., Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London Ser. A 451 (1995), 685-700.
[6] Griffiths, P. A., Harris, J., Principles of algebraic geometry, Wiley-Interscience, 1978.
[7] Haine, L., Geodesic flow on $S O(4)$ and Abelian surfaces, Math. Ann. 263 (1983), 435-472.
[8] Lesfari, A., Une approche systématique à la résolution du corps solide de Kowalewski, C. R. Acad. Sc. Paris, série I, t. 302 (1986), 347-350.
[9] Lesfari, A., Abelian surfaces and Kowalewski's top, Ann. Scient. École Norm. Sup. 4, 21 (1988), 193-223.
[10] Lesfari, A., On affine surface that can be completed by a smooth curve, Results Math. 35 (1999), 107-118.
[11] Lesfari, A., Une méthode de compactification de variétés liées aux systèmes dynamiques, Les cahiers de la recherche, Rectorat-Université Hassan II-Aïn Chock, Casablanca, Maroc, Vol. I, No. 1, (1999), 147-157.
[12] Lesfari A., Geodesic flow on SO(4), Kac-Moody Lie algebra and singularities in the complex t-plane, Publ. Mat. 43 (1999), 261-279.
[13] Lesfari, A., Completely integrable systems: Jacobi's heritage, J. Geom. Phys. 31 (1999), 265-286.
[14] Lesfari, A., The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch's case, Nonlinear Differential Equations Appl. 8 (2001), 1-13.
[15] Lesfari, A., The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability, Rep. Math. Phys. 47 (2001), 9-20.
[16] Lesfari, A., A new class of integrable systems, Arch. Math. 77 (2001), 347-353.
[17] Lesfari, A., The Hénon-Heiles system via the Kowalewski-Painlevé analysis, Int. J. Theor. Phys. Group Theory Nonlinear Opt. 9, $\mathrm{N}^{\circ} 4$ (2003), 305-330.
[18] Lesfari, A., Le théorème d'Arnold-Liouville et ses conséquences, Elem. Math. 58, Issue 1 (2003), 6-20.
[19] Lesfari, A., Le système différentiel de Hénon-Heiles et les variétés Prym, Pacific J. Math. 212, No. 1 (2003), 125-132.
[20] Mumford, D., Tata lectures on theta II, Progr. Math., Birkhaüser, Boston, 1982.
[21] Mumford, D., On the equations defining Abelian varieties, Invent. Math. 1 (1966), 287-354.
[22] Perelomov, A. M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser, 1990.

Department of Mathematics, Faculty of Sciences
University of Chouaïb Doukkali, B.P. 20, El-Jadida, Morocco
E-mail: lesfari@ucd.ac.ma lesfariahmed@yahoo.fr

[^0]: 2000 Mathematics Subject Classification: 70H06, 37J35, 14H70, 14K20.
 Key words and phrases: integrable systems, curves, abelian varieties.
 Received March 29, 2000.

