CHARACTERIZATIONS OF RANDOM APPROXIMATIONS

ABDUL RAHIM KHAN AND NAWAB HUSSAIN

Abstract

Some characterizations of random approximations are obtained in a locally convex space through duality theory.

1. Introduction and preliminaries

Random approximation theory has received much attention after the publication of survey paper by Bharucha-Reid [3] in 1976. The interested reader is referred to recent papers in normed space framework by Tan and Yaun [11], Sehgal and Singh [10], Papageorgiou [7], Lin [5], Beg and Shahzad [2] and Beg [1]. The interplay between random approximation and random fixed point results is interesting and valuable (see for example [5], [7] and [11]). The applications of this closely related concept to random differential equations and integral equations in the context of Banach spaces may be found in Itoh [4] and O'Regan [6] respectively. So random approximations are needed in the study of random equations. Recently, Beg [1] obtained a characterization of random approximations in a normed space by employing the Hahn-Banach separation theorem. Characterization theorems of best approximation in the locally convex space setting have been considered in [8]. In this paper, we establish the characterizations concerning existence of random approximation in locally convex spaces by using the Hahn Banach extension theorem and a result of Tukey [13] about separation of convex sets; in particular Theorem 1 provides a random version of Theorem 2.1 of Rao and Elumalai [8] and Theorem 2 sets an analogue for metrizable locally convex spaces of the theorem due to Beg [1].

We now fix our terminology. Let (Ω, Σ) be a measurable space where Σ is a sigma algebra of subsets of Ω and M a subset of a locally convex space E over the field F of real or complex numbers. A map $T: \Omega \times M \rightarrow E$ is called a random operator if for each fixed $x \in M$, the map $T(\cdot, x): \Omega \rightarrow E$ is measurable. Let (E, d) be a metrizable locally convex space.

[^0](i) The ball with radius r and centre at x is defined as $B_{r}(x)=\{z \in E$: $d(z, x) \leq r\}$; in particular the ball $B_{r}(0)$ has centre at 0 .
(ii) $d(x, M)=\inf _{u \in M} d(x, u)$.
(iii) $P_{M}(x)=\{y \in M: d(x, y)=d(x, M)\}$ (set of best approximations of x from $M)$.
(iv) For a ball $B_{r}(0)$ in (E, d), the set $\{z \in E: d(z, 0)=r\}$ is called metric boundary of $B_{r}(0)$. In general, the topological boundary of $B_{r}(0)$ is contained in its metric boundary. In case metric and topological boundaries of $B_{r}(0)$ coincide, we say $B_{r}(0)$ is bounding (cf. [12]).
In this note, cl, int, E^{*} and $E \backslash M$ denote the closure, interior, dual of E and difference of sets E and M, respectively.

2. Results

Theorem 1. Let E be a separable locallay convex space with family P of seminorms and M a subspace of E. Suppose $T: \Omega \times M \rightarrow E$ is a random operator and $\xi: \Omega \rightarrow M$ a measurable map such that $T(\omega, \xi(\omega)) \in E \backslash M$. Then ξ is a random best approximation for T (i.e., $p(\xi(\omega)-T(\omega, \xi(\omega)))=d_{p}(T(\omega, \xi(\omega)), M)$ for each $p \in P)$ if and only if for every $p \in P$ there exists $f^{p} \in E^{*}$ such that
(a) $f^{p}(g)=0$ for all $g \in M$.
(b) $\left|f^{p}(T(\omega, \xi(\omega))-\xi(\omega))\right|=p(T(\omega, \xi(\omega))-\xi(\omega))$.
(c) $\mid f^{p}(T(\omega, \xi(\omega))-g \mid \leq p(T(\omega, \xi(\omega))-g)$ for all $g \in M$.

Proof. Suppose that ξ is a random approximation for T. Then for each $p \in P$ and $g \in M$,

$$
p(T(\omega, \xi(\omega))-\xi(\omega)) \leq p(T(\omega, \xi(\omega))-g)
$$

In particular, for any $0 \neq \alpha \in F$ and $g \in M$,

$$
\begin{equation*}
p(T(\omega, \xi(\omega))-\xi(\omega)) \leq p\left(T(\omega, \xi(\omega))-\left(\xi(\omega)-\frac{g}{\alpha}\right)\right) \tag{i}
\end{equation*}
$$

Let $B=\{g+\alpha(T(\omega, \xi(\omega))-\xi(\omega)): \alpha \in F\}$.
Define f_{0}^{p} on B by $f_{0}^{p}(g+\alpha[T(\omega, \xi(\omega))-\xi(\omega)])=\alpha p(T(\omega, \xi(\omega))-\xi(\omega))$ for all $g \in M$. Then $f_{0}^{p}(g)=0$ for all $g \in M$ and

$$
f_{0}^{p}(T(\omega, \xi(\omega))-\xi(\omega))=p(T(\omega, \xi(\omega))-\xi(\omega))
$$

For any $\alpha \neq 0$ and $g \in M$, we have

$$
\begin{aligned}
& \left|f_{0}^{p}(g+\alpha[T(\omega, \xi(\omega))-\xi(\omega)])\right|=|\alpha| p(T(\omega, \xi(\omega))-\xi(\omega)) \\
& \quad \leq|\alpha| p\left(T(\omega, \xi(\omega))-\xi(\omega)+\frac{g}{\alpha}\right) \quad(\text { by (i) }) \\
& \quad=p(g+\alpha[T(\omega, \xi(\omega))-\xi(\omega)])
\end{aligned}
$$

For $\alpha=0$ and $g \in M$ this inequality obviously holds.
Hence for each $z \in B$ and for each $p \in P$,

$$
\left|f_{0}^{p}(z)\right| \leq p(z)
$$

Thus by the Hahn-Banach theorem, f_{0}^{p} can be extended to a continuous linear functional f^{p} on E such that $\left|f^{p}(x)\right| \leq p(x)$ for every $x \in E$ and

$$
\left|f^{p}(z)\right|=\left|f_{0}^{p}(z)\right| \quad \text { for each } \quad z \in M
$$

The results (a)-(c) are now evident.
Conversely let the conditions (a)-(c) be satisfied. Then from (b) we get for all $p \in P$ and $g \in M$,

$$
\begin{array}{rlr}
p(T(\omega, \xi(\omega))-\xi(\omega)) & =\left|f^{p}(T(\omega, \xi(\omega))-\xi(\omega))\right| \\
& =\left|f^{p}(T(\omega, \xi(\omega))-g)+f^{p}(g-\xi(\omega))\right| \\
& =\left|f^{p}(T(\omega, \xi(\omega))-g)\right| & (\text { by (a)) } \\
& \leq p(T(\omega, \xi(\omega))-g) \quad & (\text { by }(\mathrm{c})) .
\end{array}
$$

Hence $p(T(\omega, \xi(\omega))-\xi(\omega))=d_{p}(T(\omega, \xi(\omega)), M)$ for all $p \in P$.

We shall follow the argument used in the proof of Theorem 2.3 of Thaheem [12] to prove the following:

Theorem 2. Let (E, d) be a separable metrizable locally convex space with d as invariant metric. Assume that the ball $B_{r}(0)$ is convex and bounding and M a convex subset of E. Let $T: \Omega \times M \rightarrow E$ be a random operator and $\xi: \Omega \rightarrow$ M a measurable map such that $T(\omega, \xi(\omega)) \notin \operatorname{cl}(M)$. Then ξ is a random best approximation for T if and only if there exists a real continuous linear functional $f \in E_{\mathbf{R}}^{*}(\mathbf{R}$ is the set of real numbers) such that
(a) $f(T(\omega, \xi(\omega))-\xi(\omega))=d(T(\omega, \xi(\omega)), \xi(\omega))=r(w)=r$ (say; for notational simplicity).
(b) $f(y-\xi(\omega)) \leq 0$ for all y in M.
(c) $\|f\|_{r}=\sup \left\{|f(z)|: z \in B_{r}(0)\right\}=r$.

Proof. Assume that $d(\xi(\omega), T(\omega, \xi(\omega)))=d(T(\omega, \xi(\omega)), M)$. Then M and $\operatorname{int}\left(B_{r}(T(\omega, \xi(\omega)))\right)$, where $r=d(T(\omega, \xi(\omega)), M)$, are disjoint convex sets. By a result of Tukey [13] (see also Rudin [9]), there is a nonzero continuous real linear functional $f_{\xi(\omega)} \in E_{R}^{*}$ and a real number c such that

$$
\begin{equation*}
f_{\xi(\omega)}(T(\omega, \xi(\omega))-y) \geq c \quad \text { for all } \quad y \in M \tag{ii}
\end{equation*}
$$

and

$$
f_{\xi(\omega)}(T(\omega, \xi(\omega))-z)<c \quad \text { for all } \quad z \in \operatorname{int}\left(B_{r}(T(\omega, \xi(\omega)))\right)
$$

The continuity of $f_{\xi(\omega)}$ implies that

$$
f_{\xi(\omega)}(T(\omega, \xi(\omega))-z) \leq c \quad \text { for all } z \in B_{r}(T(\omega, \xi(\omega)))
$$

Since $\xi(\omega) \in M \cap B_{r}(T(\omega, \xi(\omega)))$, it follows that

$$
\begin{equation*}
f_{\xi(\omega)}(T(\omega, \xi(\omega))-\xi(\omega))=c \tag{iii}
\end{equation*}
$$

Obviously c is nonzero otherwise we get the contradiction that $f_{\xi(\omega)}$ is identically zero.

Put $f=(1 / c) r f_{\xi(\omega)}$. This implies by (iii) that

$$
\begin{gathered}
f(T(\omega, \xi(\omega))-\xi(\omega))=(1 / c) r f_{\xi(\omega)}(T(\omega, \xi(\omega))-\xi(\omega))=r \\
f(y-\xi(\omega))=f(y-T(\omega, \xi(\omega)))+f(T(\omega, \xi(\omega))-\xi(\omega)) \quad(y \in M) \\
=(1 / c) r f_{\xi(\omega)}(y-T(\omega, \xi(\omega)))+(1 / c) r f_{\xi(\omega)}(T(\omega, \xi(\omega))-\xi(\omega)) \\
\leq 0 \quad \text { (by (ii) and (iii)). }
\end{gathered}
$$

It is easy to get by linearity of f that $\|f\|_{r}=r$.
Conversely suppose that there is a real continuous linear functional f satisfying the conditions (a)-(c).

If the conclusion is false, then for some x in M, we have

$$
\begin{equation*}
d(T(\omega, \xi(\omega)), x)<d(T(\omega, \xi(\omega)), \xi(\omega)) \tag{iv}
\end{equation*}
$$

The continuity of scalar multiplication implies that for any $\epsilon>0$, there is $\beta>0$ such that

$$
\begin{equation*}
d(0, \beta T(\omega, \xi(\omega))-\beta x)<\epsilon \tag{v}
\end{equation*}
$$

Consider

$$
\begin{array}{rlrl}
d(0, & (1+\beta)(T(\omega, \xi(\omega))-x)) & \\
& \leq d(0, T(\omega, \xi(\omega))-x)+d(T(\omega, \xi(\omega))-x,(1+\beta)(T(\omega, \xi(\omega))-x)) \\
& =d(0, T(\omega, \xi(\omega))-x)+d(0, \beta T(\omega, \xi(\omega))-\beta x) & & \text { (by invariance of } d) \\
& <d(0, T(\omega, \xi(\omega))-x)+\epsilon & & \text { (by (v)) } \\
& \leq d(T(\omega, \xi(\omega)), \xi(\omega)) & & \text { (by (iv)). }
\end{array}
$$

The above inequality and the fact $f(\xi(\omega)-x) \geq 0$ lead to:

$$
\begin{aligned}
f((1+\beta)(T(\omega, \xi(\omega))-x)) & =(1+\beta) f(T(\omega, \xi(\omega))-x) \\
& \geq(1+\beta) f(T(\omega, \xi(\omega))-\xi(\omega))
\end{aligned}
$$

This implies that $f(T(\omega, \xi(\omega))-\xi(\omega))$ is not the supremum of f over $B_{r}(0)$. This contradiction proves the result.

In case M is a subspace we have the following:
Corollary. Let (E, d) be a separable metrizable locally convex space with invariant metric d and M a subspace of E. Assume that the ball $B_{r}(0)$ is convex and bounding. Suppose that $T: \Omega \times M \rightarrow E$ is a random operator and $\xi: \Omega \rightarrow$ M a measurable map such that $T(\omega, \xi(\omega)) \notin \operatorname{cl}(M)$. Then ξ is a random best approximation for T if and only if there exists a real continuous linear functional $f \in E_{R}^{*}$ such that
(a) $f(T(\omega, \xi(\omega))-\xi(\omega))=d(T(\omega, \xi(\omega)), \xi(\omega))=r(w)=r \quad($ say $)$.
(b) $f(y)=0$ for all y in M.
(c) $\|f\|_{r}=r$.

Acknowledgment. The author A. R. Khan gratefully acknowledges support provided by King Fahd University of Petroleum and Minerals during this research.

References

[1] Beg, I., A characterization of random approximations, Int. J. Math. Math. Sci. 22 (1999), no. 1, 209-211.
[2] Beg, I. and Shahzad, N., Random approximations and random fixed point theorems, J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145-150.
[3] Bharucha-Reid, A. T., Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), no. 5, 641-557.
[4] Itoh, S., Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273.
[5] Lin, T. C., Random approximations and random fixed point theorems for continuous 1-set contractive random maps, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167-1176.
[6] O'Regan, D., A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces, Comput. Math. Appl. 30(9) (1995), 39-49.
[7] Papageorgiou, N. S., Fixed points and best approximations for measurable multifunctions with stochastic domain, Tamkang J. Math. 23 (1992), no. 3, 197-203.
[8] Rao, G. S. and Elumalai, S., Approximation and strong approximation in locally convex spaces, Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13-26.
[9] Rudin, W., Functional Analysis, McGraw-Hill Book Company, New York, 1973.
[10] Sehgal, V. M. and Singh, S. P., On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91-94.
[11] Tan, K. K. and Yuan, X. Z., Random fixed point theorems and approximations in cones, J. Math. Anal. Appl. 185 (1994), no. 2, 378-390.
[12] Thaheem, A. B., Existence of best approximations, Port. Math. 42 (1983-84), no. 4, 435440.
[13] Tukey, J. W., Some notes on the separation axioms of convex sets, Port. Math. 3 (1942), 95-102.

Department of Mathematical Sciences
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
E-mail: arahim@kfupm.edu.sa
(On leave from Bahauddin Zakaria University, Multan, Pakistan)
Centre for Advanced Studies in Pure and Applied Mathematics
Bahauddin Zakariya University
Multan, Pakistan
E-mail: mnawab2000@yahoo.com

[^0]: 2000 Mathematics Subject Classification: 41A65, 46A03, 60 H 25.
 Key words and phrases: locally convex space, measurable map, random approximation, characterization.

 Received April 7, 2001.

