ON THE H-PROPERTY OF SOME BANACH SEQUENCE SPACES

SUTHEP SUANTAI

ABSTRACT. In this paper we define a generalized Cesàro sequence space (p) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space (p) posses property (H) and property (G), and it is rotund, where $p=(p_k)$ is a bounded sequence of positive real numbers with $p_k>1$ for all $k\in\mathbb{N}$.

1. Preliminaries

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called

- a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$ implies x = y;
- b) an *H-point* if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \stackrel{w}{\to} x_0$) implies that $||x_n x|| \to 0$ as $n \to \infty$:
 - c) a denting point if for every $\epsilon > 0$, $x_0 \notin \overline{\text{conv}}\{B(X) \setminus (x_0 + \epsilon B(X))\}.$

A Banach space X is said to be rotund(R), if every point of S(X) is an extreme point.

A Banach space X is said to posses property (H) (property (G)) provided every point of S(X) is H-point (denting point).

For these geometric notions and their role in mathematics we refer to the monographs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3], [7], [8], [9] and [114].

Let us denote by l^0 the space of all real sequences. For $1 \le p < \infty$, the Cesàro sequence space (ces p, for short) is defined by

$$\operatorname{ces}_{p} = \left\{ x \in l^{0} : \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |x(i)| \right)^{p} < \infty \right\}$$

²⁰⁰⁰ Mathematics Subject Classification: 46E30, 46E40, 46B20.

Key words and phrases: H-property, property (G), Cesàro sequence spaces, Luxemburg norm. Received November 13, 2001.

310

equipped with the norm

$$||x|| = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\sum_{i=1}^{n} |x(i)|\right)^{p}\right)^{\frac{1}{p}}$$

S. SUANTAI

This space was introduced by J. S. Shue [16]. It is useful in the theory of matrix operator and others (see [10] and [12]). Some geometric properties of the Cesàro sequence space $\cos p$ were studied by many mathematicians. It is known that $\cos p$ is LUR and posses property (H) (see [12]). Y. A. Cui and H. Hudzik [14] proved that ces_p has the Banach-Saks of type p if p > 1, and it was shown in [5] that ces_{p} has property (β) .

Now, let $p = (p_k)$ be a sequence of positive real numbers with $p_k \geq 1$ for all $k \in \mathbb{N}$. The Nakano sequence space l(p) is defined by

$$l(p) = \{x \in l^0 : \sigma(\lambda x) < \infty \text{ for some } \lambda > 0\},$$

where $\sigma(x) = \sum_{i=1}^{\infty} |x(i)|^{p_i}$. We consider the space l(p) equipped with the norm

$$||x|| = \inf \left\{ \lambda > 0 : \sigma\left(\frac{x}{\lambda}\right) \le 1 \right\},$$

under which it is a Banach space. If $p = (p_k)$ is bounded, we have

$$l(p) = \left\{ x \in l^0 : \sum_{i=1}^{\infty} |x(i)|^{p_i} < \infty \right\}.$$

Several geometric properties of l(p) were studied in [1] and [4].

The Cesàro sequence space ces(p) is defined by

$$ces(p) = \{x \in l^0 : \varrho(\lambda x) < \infty \text{ for some } \lambda > 0\},$$

where $\varrho(x) = \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n}$. We consider the space $\cos(p)$ equipped with the so-called Luxemburg norm

$$||x|| = \inf\left\{\lambda > 0 : \rho\left(\frac{x}{\lambda}\right) \le 1\right\}$$

under which it is a Banach space. If $p = (p_k)$ is bounded, then we have

$$ces(p) = \left\{ x = x(i) : \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |x(i)| \right)^{p_n} < \infty \right\}.$$

W. Sanhan [15] proved that ces(p) is nonsquare when $p_k > 1$ for all $k \in \mathbb{N}$. In this paper, we show that the Cesàro sequence space ces(p) equipped with the Luxemburg norm is rotund (R) and posses property (H) and property (G) when $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$.

Throughout this paper we assume that $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$, and $M = \sup_k p_k$.

2. Main Results

We begin with giving some basic properties of modular on the space ces(p).

Proposition 2.1. The functional ϱ on the Cesàro sequence space cos(p) is a convex modular.

Proof. It is obvious that $\varrho(x) = 0 \Leftrightarrow x = 0$ and $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$. If $x, y \in \text{ces}(p)$ and $\alpha \geq 0$, $\beta \geq 0$ with $\alpha + \beta = 1$, by the convexity of the function $t \to |t|^{p_k}$ for every $k \in \mathbb{N}$, we have

$$\begin{split} \varrho(\alpha x + \beta y) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i) + \beta y(i)| \right)^{p_k} \\ &\leq \sum_{k=1}^{\infty} \left(\alpha \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \beta \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right) \right)^{p_k} \\ &\leq \alpha \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} + \beta \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right)^{p_k} \\ &= \alpha \varrho(x) + \beta \varrho(y) \,. \end{split}$$

Proposition 2.2. For $x \in \text{ces}(p)$, the modular ϱ on ces(p) satisfies the following properties:

- (i) if 0 < a < 1, then $a^M \varrho(\frac{x}{a}) \le \varrho(x)$ and $\varrho(ax) \le a\varrho(x)$,
- (ii) if $a \ge 1$, then $\varrho(x) \le a^M \varrho(\frac{x}{a})$,
- (iii) if $a \ge 1$, then $\varrho(x) \le a\varrho(x) \le \varrho(ax)$.

Proof. It is obvious that (iii) is satisfied by the convexity of ϱ . It remains to prove (i) and (ii).

For 0 < a < 1, we have

$$\begin{split} \varrho(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} = \sum_{k=1}^{\infty} \left(\frac{a}{k} \sum_{i=1}^{k} \left| \frac{x(i)}{a} \right| \right)^{p_k} \\ &= \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x(i)}{a} \right| \right)^{p_k} \ge \sum_{k=1}^{\infty} a^M \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x(i)}{a} \right| \right)^{p_k} \\ &= a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x(i)}{a} \right| \right)^{p_k} = a^M \varrho\left(\frac{x}{a} \right), \end{split}$$

and it implies by the convexity of ρ that $\rho(ax) \leq a\rho(x)$, hence (i) is satisfied.

Now, suppose that $a \geq 1$. Then we have

$$\begin{split} \varrho(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} = \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} \left|\frac{x(i)}{a}\right|\right)^{p_k} \\ &\leq a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} \left|\frac{x(i)}{a}\right|\right)^{p_k} = a^M \varrho\left(\frac{x}{a}\right). \end{split}$$

So (ii) is obtained.

Next, we give some relationships between the modular ϱ and the Luxemburg norm on ces (p).

Proposition 2.3. For any $x \in ces(p)$, we have

- (i) if ||x|| < 1, then $\varrho(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\varrho(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\varrho(x) = 1$,
- (iv) ||x|| < 1 if and only if $\varrho(x) < 1$,
- (v) ||x|| > 1 if and only if $\varrho(x) > 1$,
- (vi) if 0 < a < 1 and ||x|| > a, then $\varrho(x) > a^M$, and
- (vii) if $a \ge 1$ and ||x|| < a, then $\rho(x) < a^M$.

Proof. (i) Let $\varepsilon > 0$ be such that $0 < \varepsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of ||.||, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\varrho(\frac{x}{\lambda}) \le 1$. From Proposition 2.2 (i) and (iii), we have

$$\varrho(x) \le \varrho\left(\frac{(\|x\| + \epsilon)}{\lambda}x\right) = \varrho\left((\|x\| + \epsilon)\frac{x}{\lambda}\right)$$

$$\le (\|x\| + \epsilon)\varrho\left(\frac{x}{\lambda}\right) \le \|x\| + \epsilon,$$

which implies that $\varrho(x) \leq ||x||$, so (i) is satisfied.

(ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{\|x\|-1}{\|x\|}$, then $1 < (1-\epsilon)\|x\| < \|x\|$. By definition of $\|.\|$ and by Proposition 2.2 (i), we have

$$1 < \varrho\left(\frac{x}{(1-\epsilon)\|x\|}\right) \le \frac{1}{(1-\epsilon)\|x\|}\varrho(x),$$

so $(1-\epsilon)\|x\| < \varrho(x)$ for all $\epsilon \in (0, \frac{\|x\|-1}{\|x\|})$. This implies that $\|x\| \le \varrho(x)$, hence (ii) is obtained.

(iii) Assume that $\|x\|=1$. By definition of $\|x\|$, we have that for $\epsilon>0$, there exists $\lambda>0$ such that $1+\epsilon>\lambda>\|x\|$ and $\varrho(\frac{x}{\lambda})\leq 1$. From Proposition 2.2 (ii), we have $\varrho(x)\leq \lambda^M\varrho(\frac{x}{\lambda})\leq \lambda^M<(1+\epsilon)^M$, so $(\varrho(x))^{\frac{1}{M}}<1+\epsilon$ for all $\epsilon>0$, which implies $\varrho(x)\leq 1$. If $\varrho(x)<1$, then we can choose $a\in(0,1)$ such that

 $\varrho(x) < a^M < 1$. From Proposition 2.2 (i), we have $\varrho\left(\frac{x}{a}\right) \leq \frac{1}{a^M}\varrho(x) < 1$, hence $\|x\| \leq a < 1$, which is a contradiction. Therefore $\varrho(x) = 1$.

On the other hand, assume that $\varrho(x) = 1$. Then $||x|| \le 1$. If ||x|| < 1, we have by (i) that $\varrho(x) \le ||x|| < 1$, which contradicts our assumption. Therefore ||x|| = 1.

- (iv) follows directly from (i) and (iii).
- (v) follows from (iii) and (iv).
- (vi) Suppose 0 < a < 1 and ||x|| > a. Then $\left\|\frac{x}{a}\right\| > 1$. By (v), we have $\varrho\left(\frac{x}{a}\right) > 1$. Hence, by Proposition 2.2 (i), we obtain that $\varrho(x) \geq a^M \varrho\left(\frac{x}{a}\right) > a^M$.
- (vii) Suppose $a \ge 1$ and ||x|| < a. Then $\left| \left| \frac{x}{a} \right| < 1$. By (iv), we have $\varrho\left(\frac{x}{a}\right) < 1$. If a = 1, it is obvious that $\varrho(x) < 1 = a^M$. If a > 1, then, by Proposition 2.2 (ii), we obtain that $\varrho(x) \le a^M \varrho\left(\frac{x}{a}\right) < a^M$.

Proposition 2.4. Let (x_n) be a sequence in ces(p).

- (i) If $||x_n|| \to 1$ as $n \to \infty$, then $\varrho(x_n) \to 1$ as $n \to \infty$.
- (ii) If $\varrho(x_n) \to 0$ as $n \to \infty$, then $||x_n|| \to 0$ as $n \to \infty$.

Proof. (i) Suppose $||x_n|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \ge N$. By Proposition 2.3 (vi) and (vii), we have $(1 - \epsilon)^M < \varrho(x_n) < (1 + \epsilon)^M$ for all $n \ge N$, which implies that $\varrho(x_n) \to 1$ as $n \to \infty$.

(ii) Suppose $||x_n|| \not\to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proposition 2.3 (vi), we have $\varrho(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\varrho(x_n) \not\to 0$ as $n \to \infty$.

Next, we shall show that ces(p) has the property (H). To do this, we need a lemma.

Lemma 2.5. Let $x \in \text{ces}(p)$ and $(x_n) \subseteq \text{ces}(p)$. If $\varrho(x_n) \to \rho(x)$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, then $x_n \to x$ as $n \to \infty$.

Proof. Let $\epsilon > 0$ be given. Since $\rho(x) = \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} < \infty$, there is $k_0 \in \mathbb{N}$ such that

(2.1)
$$\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} < \frac{\epsilon}{3} \frac{1}{2^{M+1}}.$$

Since $\rho(x_n) - \sum_{k=1}^{k_0} (\frac{1}{k} \sum_{i=1}^k |x_n(i)|)^{p_k} \to \rho(x) - \sum_{k=1}^{k_0} (\frac{1}{k} \sum_{i=1}^k |x(i)|)^{p_k}$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, there is $n_0 \in \mathbb{N}$ such that

$$(2.2) \qquad \varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} < \varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M}$$

for all $n \geq n_0$, and

(2.3)
$$\sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} < \frac{\epsilon}{3}.$$

for all $n \geq n_0$.

It follows from (2.1), (2.2) and (2.3) that for $n \geq n_0$,

$$\begin{split} \varrho(x_n - x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &= \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &< \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &< \frac{\epsilon}{3} + 2^M \left(\varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(2 \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} \right) \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

This show that $\varrho(x_n-x)\to 0$ as $n\to\infty$. Hence, by Proposition 2.4 (ii), we have $||x_n-x||\to 0$ as $n\to\infty$.

Theorem 2.6. The space ces(p) has the property (H).

Proof. Let $x \in S(\operatorname{ces}(p))$ and $(x_n) \subseteq \operatorname{ces}(p)$ such that $||x_n|| \to 1$ and $x_n \xrightarrow{w} x$ as $n \to \infty$. From Proposition 2.3 (iii), we have $\varrho(x) = 1$, so it follows from Proposition 2.4 (i) that $\varrho(x_n) \to \varrho(x)$ as $n \to \infty$. Since the mapping $p_i : \operatorname{ces}(p) \to \mathbb{R}$, defined by $p_i(y) = y(i)$, is a continuous linear functional on $\operatorname{ces}(p)$, it follows that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. Thus, we obtain by Lemma 2.5 that $x_n \to x$ as $x_n \to x$.

Theorem 2.7. The space ces(p) is rotund.

Proof. Let $x \in S(\cos(p))$ and $y, z \in B(\cos(p))$ with $x = \frac{y+z}{2}$. By Proposition 2.3 and the convexity of ϱ we have

$$1 = \varrho(x) \le \frac{1}{2} (\varrho(y) + \varrho(z)) \le \frac{1}{2} (1+1) = 1,$$

so that $\varrho(x) = \frac{1}{2}(\varrho(y) + \varrho(z)) = 1$. This implies that

$$(2.4) \qquad \left(\frac{1}{k}\sum_{i=1}^{k}\left|\frac{y(i)+z(i)}{2}\right|\right)^{p_k} = \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|y(i)\right|\right)^{p_k} + \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|z(i)\right|\right)^{p_k}$$

for all $k \in \mathbb{N}$.

We shall show that y(i) = z(i) for all $i \in \mathbb{N}$. From (2.4), we have

$$(2.5) |x(1)|^{p_1} = \left| \frac{y(1) + z(1)}{2} \right|^{p_1} = \frac{1}{2} (|y(1)|^{p_1} + |z(1)|^{p_1}).$$

Since the mapping $t \to |t|^{p_1}$ is strictly convex, it implies by (2.5) that y(1) = z(1). Now assume that y(i) = z(i) for all i = 1, 2, 3, ..., k - 1. Then y(i) = z(i) = x(i) for all i = 1, 2, 3, ..., k - 1. From (2.4), we have

$$\left(\frac{1}{k}\sum_{i=1}^{k}\left|\frac{y(i)+z(i)}{2}\right|\right)^{p_{k}} = \left(\frac{\frac{1}{k}\sum_{i=1}^{k}|y(i)|+\frac{1}{k}\sum_{i=1}^{k}|z(i)|}{2}\right)^{p_{k}} \\
= \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}|y(i)|\right)^{p_{k}} + \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}|z(i)|\right)^{p_{k}}$$
(2.6)

By convexity of the mapping $t \to |t|^{p_k}$, it implies that $\frac{1}{k} \sum_{i=1}^k |y(i)| = \frac{1}{k} \sum_{i=1}^k |z(i)|$. Since y(i) = z(i) for all i = 1, 2, 3, ..., k-1, we get that

$$(2.7) |y(k)| = |z(k)|.$$

If y(k) = 0, then we have z(k) = y(k) = 0. Suppose that $y(k) \neq 0$. Then $z(k) \neq 0$. If y(k)z(k) < 0, it follows from (2.7) that y(k) + z(k) = 0. This implies by (2.6) and (2.7) that

$$\left(\frac{1}{k}\sum_{i=1}^{k-1}|x(i)|\right)^{p_k} = \left(\frac{1}{k}\left(\sum_{i=1}^{k-1}|x(i)| + |y(k)|\right)\right)^{p_k},$$

which is a contradiction. Thus, we have y(k)z(k) > 0. This implies by (2.5) that y(k) = z(k). Thus, we have by induction that y(i) = z(i) for all $i \in \mathbb{N}$, so y = z.

Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski proved (cf. Theorem iii [11]) that element x in a bounded closed convex set K of a Banach space is a denting point of K iff x is an H-point of K and x is an extreme point of K. Combining this result with our results (Theorem 2.6 and Theorem 2.7), we obtain the following result.

Corollary 2.8. The space ces(p) has the property (G).

For $1 < r < \infty$, let $p = (p_k)$ with $p_k = r$ for all $k \in \mathbb{N}$. We have that $\operatorname{ces}_r = \operatorname{ces}(p)$, so the following results are obtained directly from Theorem 2.6, Theorem 2.7 and Corollary 2.8, respectively.

Corollary 2.9. For $1 < r < \infty$, the Cesàro sequence space \cos_r has the property (H).

Corollary 2.10. For $1 < r < \infty$, the Cesàro sequence space \cos_r is rotund.

Corollary 2.11. For $1 < r < \infty$, the Cesàro sequence space \cos_r has the property (G).

Acknowledgements. The author would like to thank the Thailand Research Fund for the financial support.

References

- [1] Chen, S. T., Geometry of Orlicz spaces, Dissertationes Math., 1996, pp. 356.
- [2] Cui, Y. A. and Hudzik, H., On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179–187.
- [3] Cui, Y. A., Hudzik, H. and Meng, C., On some local geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143–154.
- [4] Cui, Y. A., Hudzik, H. and Pliciennik, R., Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193–202.
- [5] Cui, Y. A. and Meng, C., Banach-Saks property and property (β) in Cesàro sequence spaces, SEA. Bull. Math. 24 (2000), 201–210.
- [6] Diestel, J., Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [7] Grzaslewicz, R., Hudzik, H. and Kurc, W., Extreme and exposed points in Orlicz spaces, Canad. J. Math. 44 (1992), 505-515.
- [8] Hudzik, H., Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull. 35 (1992), 1–5.
- [9] Hudzik, H. and Pallaschke, D., On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167–185.
- [10] Lee, P. Y., Cesàro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [11] Lin, B.L., Lin, P.K. and Troyanski, S.L., Characterization of denting points, Proc. Amer. Math. Soc. 102 (1988), 526–528.
- [12] Liu, Y. Q., Wu, B. E. and Lee, Y. P., Method of sequence spaces, Guangdong of Science and Technology Press (1996 (in Chinese)).
- [13] Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [14] Pluciennik, R., Wang, T. F. and Zhang, Y. L., H-points and Denting Points in Orlicz Spaces, Comment. Math. Prace Mat. 33 (1993), 135–151.
- [15] Sanhan, W., On geometric properties of some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
- [16] Shue, J. S., Cesàro sequence spaces, Tamkang J. Math. 1 (1970), 143-150.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE CHIANG MAI UNIVERSITY, CHIANG MAI 50200, THAILAND E-mail: scmti005@chiangmai.ac.th