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THE MOVING FRAMES FOR DIFFERENTIAL EQUATIONS

I. THE CHANGE OF INDEPENDENT VARIABLE

VÁCLAV TRYHUK, OLDŘICH DLOUHÝ

Abstract. The article concerns the symmetries of differential equations with
short digressions to the underdetermined case and the relevant differential
equations with delay. It may be regarded as an introduction into the method
of moving frames relieved of the geometrical aspects: the stress is made on
the technique of calculations employing only the most fundamental properties
of differential forms.

The present Part I is devoted to a single ordinary differential equation
subjected to the change of the independent variable, the unknown function

is preserved.

Preface

The E. Cartan’s moving frames are eventually well-established in differential
geometry, we may even refer to the recent systematical textbook [13]. This is
however only a rather particular case of his approach to the “general equivalence
method” based on the theory of pseudogroups [6] and namely the equivalence
of differential equations and variational problem do not fit well into the narrow
schema of differential geometry dealing only with the Lie groups. Recently sev-
eral introductory articles and books devoted to the method of moving frames in
the theory of differential equations were appearing, we can mention the beauti-
ful booklet [9] and literature therein. Unfortunately, all they employ the actual
geometrical language of G-structures and fibered spaces with many subtle and
cumbersome concepts which are in principle needles in practice and even obscure
the general principles of the method. So we return to the original E. Cartan‘s
conception [6] which admits an alternative elementary exposition, see also [7]. It
seems to be more transparent from the technical point of view: only the quite
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fundamental properties of differential forms, namely the exterior differential and
the Frobenius theorem, are enough to resolve a large spectrum of problems.

In this Part I of the article, we deal with the equivalence and symmetries of the
ordinary differential equations y(n) = f(x, y, y′, . . . , y(n−1)), n ≤ 4, with respect
to the pseudogroup of transformations x̄ = ϕ(x) of the independent variable if the
unknown function ȳ = y is preserved. Especially the instructive particular case
n = 2 is thoroughly discussed and provides a succint self-contained introduction
into the method of moving frames. The next subcase n = 3 provides a rather unex-
pected alternative way to the “dispersion theory” by O. Bor̊uvka. Such favourable
results should not be expected in n > 3 where the resulting formulae became
rather complicated, so we briefly mention only the concluding case n = 4. (The
case n = 1 is quite easy, of course, and therefore omitted here.)

For technical reasons, the exposition is carried out in C∞-smooth and real-
valued category. Every particular result can be nevertheless easily adapted to
fulfill appropriately weakened smoothness assumptions.

The second order equation

1. The pseudogroup. In this Part I of the article, the pseudogroup under
consideration will consist of all invertible transformations ϕ : D(ϕ) → R(ϕ),
where D(ϕ),R(ϕ) ⊂ R are open subsets, see Remark 3 at the end of the article.
In alternative classical notation,

x̄ = ϕ(x) , (x ∈ D(ϕ)) , x = ϕ−1(x̄) (x̄ ∈ R(ϕ)) ,(1)

where the definition domains will not be (as a rule) explicitly mentioned. The
pseudogroup will be applied to curves y = y(x) (x ∈ D(y)) in such manner that the
values are preserved: this curve turns into the transformed one y = ȳ(x̄) = y(ϕ(x)),
(x ∈ D(ϕ) ∩ D(y)). In slightly abbreviated notation we have the formulae

y = ȳ, y′ = ȳ′ϕ′, y′′ = ȳ′′ϕ′2 + ȳ′ϕ′′, . . .
(

y′ =
dy

dx
, ȳ′ =

dȳ

dx̄
, y′′ =

d2y

dx2
, ȳ′′ =

d2ȳ

dx̄2
. . .

)

,
(2)

for the transformed derivatives. (In alternative terms, formulae (2) provide a pro-

longation of the transformations (1) of the pseudogroup on the infinite-dimensional
space x, y, y′, y′′, . . . including all derivatives.)

2. Setting the problem. The pseudogroup will be applied to differential equa-
tions. Our main task is the equivalence problem: whether a given equation
y′′ = f(x, y, y′) could be transformed into another given equation ȳ′′ = f̄(x̄, ȳ, ȳ′)
by a substitution (1), (2). (One can observe that this is the case if and only if
f̄ = f/ϕ′2−y′ϕ′′/ϕ′3 but this is of a little use and we shall not directly employ such
explicit formula as the most important condition.) Then the symmetry problem

concerning the transformation of an equation y′′ = f into itself (when f = f̄) may
be regarded as a particular subcase. Roughly saying, the strategy rests on the
study of various differential forms (the moving coframes) that are preserved after
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applying (1), (2). They will depend on certain parameters but a reduction pro-

cedure may lead to parameter-free (the Maurer–Cartan) forms and even to many
invariant functions (and a generalized Frenet coframe) which explicitly resolve the
equivalence problem.

3. Moving (co)frames. The pseudogroup (1) is (trivially) characterized by the
property of preserving the form ω0 = Adx, where A 6= 0 is a new variable. In more
detail, if the transformed variables x̄, ȳ, ȳ′, . . . depend on the original variables
x, y, y′, . . . and the identity

ω0 = Adx = Ā dx̄ = ω̄0

holds true, then necessarily x̄ = ϕ(x) is a function of x. MoreoverA 6= 0, Ā = A/ϕ′

ensures the invertibility of ϕ and the invariance of ω0.
On the other hand, the equation y′′ = f can be represented by the Pfaffian

system

ϑ1 = dy − y′ dx = 0 , ϑ2 = dy′ − f dx = 0 ,(3)

the equation ȳ′′ = f̄ by the analogous system

ϑ̄1 = dȳ − ȳ′ dx̄ = 0 , ϑ̄2 = dȳ′ − f̄ dx̄ = 0 .(4)

In the equivalence transformation, ϑi need not be transformed into ϑ̄i individually
but the system (3) should be transformed into the system (4). More explicitly, the
equivalence of equations y′′ = f and ȳ′′ = f̄ takes place if and only if

ϑ̄1 = Bϑ1 + Cϑ2 , ϑ̄2 = Dϑ1 +Eϑ2 (BE 6= CD)

with certain coefficients B, C, D, E after applying the equivalence transformation
(1), (2).

Still better and more symmetrically: we shall introduce the differential forms

ω1 = Bϑ1 + Cϑ2 , ω2 = Dϑ1 +Eϑ2 , ω̄1 = B̄ϑ̄1 + C̄ϑ̄2 , ω̄2 = D̄ϑ̄1 + Ēϑ̄2

with new variables B, . . . , Ē (where BE 6= CD, B̄Ē 6= C̄D̄ is assumed) and then
the equalities ω1 = ω̄1, ω2 = ω̄2 with appropriately transformed parameters ensure
the equivalence of systems (3) and (4).

Conclusion. The equivalence problem is alternatively expressed by the invariance
requirements

ωi = ω̄i (i = 0, 1, 2), y = ȳ(5)

for the desired equivalence transformation (1). One can observe that then the
equality of differentials

dωi = dω̄i (i = 0, 1, 2), dy = dȳ(6)

follows, too. The reduction procedure (specifying the values A, B, C, Ā, B̄, C̄ )
will employ certain interrelations between (5) and (6).
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4. The reduction of parameters. In the family of all forms ω1 (B, C variable)
there exists a unique form which is a linear combination of a form ω0 (with A
appropriately chosen) and dy. This is the form dy − y′ dx. So choosing B = 1,
C = 0, A = y′ we have performed the first step of the reduction: we have the
simplified forms

ω0 = y′ dx, ω1 = dy − y′ dx = dy − ω0

which are necessarilly transformed (in view of the uniqueness) into the dashed
counterparts by the equivalence transformation:

ω0 = ω̄0 = ȳ′ dx̄ , ω1 = ω̄1 = dȳ − ω̄0 .

(The equalities ω1 = ϑ1, ω̄1 = ϑ̄1 are a mere lucky accident.) Continuing in this
way,

dω1 = dx ∧ dy′ = ω0 ∧
1

y′
(dy′ − fdx) ,

where the factor 1
y′

(dy′−f dx) is uniquely determined under the requirement that

it should be a linear combination of ϑ1 and ϑ2 (equivalently: of ω1 and ω2). It
follows that we have the simplified form ω2 which turns into the dashed counterpart
by the equivalence transformation:

ω2 =
1

y′
(dy′ − f dx) =

1

ȳ′
(dȳ′ − f̄ dx̄) = ω̄2 .

In other words, we have performed the reduction D = 0, E = 1/y′ (and D̄ = 0,
Ē = 1/ȳ′). The reduction procedure is done.

5. The concluding step. The differentials dω1 = −dω0 = ω0 ∧ ω2 already
were employed and the equations dωi = dω̄i (i = 0, 1) do not bring any novelty.
However

dω2 = dx ∧ d

(

f

y′

)

= ω0 ∧ (I dy + Jω2) , I =
fy

y′2
, J =

(

f

y′

)

y′

(7)

by direct verification (see also the formula (8) below) and analogously for dω̄2.
Then the equation dω2 = dω̄2 implies the invariance of the corresponding coeffi-
cients: I = Ī , J = J̄ . In more details,

F (x, y, y′) = F̄ (ϕ, y,
y′

ϕ′
)(8)

holds true with F = I, J for the equivalence transformation.
On this occasion, two notes of general nature are in order. First, the differential

of any function F = F (x, y, y′) admits the unique developments

dF = Fx dx + Fy dy + Fy′ dy′ =
∂F

∂ω0
ω0 +

∂F

∂dy
dy +

∂F

∂ω2
ω2 ,(9)

where we have introduced the covariant derivatives

∂F

∂ω0
=

1

y′
(Fx + fFy′) ,

∂F

∂ dy
= Fy ,

∂F

∂ω2
= y′Fy′ .(10)
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If this F is an invariant (i.e., F = F̄ is preserved in the equivalences and therefore
dF = dF̄ ) then all the covariant derivatives are clearly invariants, too. Second,
the identity

0 = d2ω2 = d(ω0 ∧ (I dy + Jω2)) = ω0 ∧ (ω2 ∧ I dy − dI ∧ dy − dJ ∧ ω2)

yields the important Bianchi relation

Jy = y′Iy + I(11)

if the developments (9) of differentials dI , dJ are inserted.

6. Digression: the implementation result. Arbitrary functions I = I(x, y, y′),
J = J(x, y, y′) satisfying (11) can be realized as invariants of a differential equation

y′′ = f(x, y, y′).

Proof. Asssuming I , J for known, the function f is a solution of the overdeter-
mined system

fy = Iy′2 , fy′ = Jy′ +
f

y′
(12)

with the only compatibility condition (11). We may choose M = M(x, y, y′)
satisfying I = My and then (11) reads Jy = y′Myy′ +My, hence

J = y′My′ +M +N = (y′M)y′ +N

for appropriate function N = N(x, y′). On the other hand, f = My′2 + L with
appropriate L = L(x, y′) in virtue of (121). Then (122) turns into the condition
N = (L/y′)y′ for the function L. It follows that

f = My′2 + L , L = y′
∫

Ndy′(+y′Q(x))(13)

where the last summand is the integration constant.

7. The equivalence problem. Before passing to the problem proper, let us
recall our results. The equivalence of differential equations y′′ = f and ȳ′′ = f̄ is

expressed by the invariance requirements

ω0 = ω̄0 , ω2 = ω̄2 , y = ȳ(14)

(the equality ω1 = ω̄1 may be omitted ). We moreover have the invariants I = Ī
and J = J̄ and many other invariants arising from them by repeated covariant

derivations.

(ι) The general case. Assume that there exist three functionally independent
invariants, e.g., the invariants y, I, J . We know that the equivalence transformation

(1) (if it exists) satisfies (8) with F equal to any of the functions

I, J,
∂I

∂ω0
,
∂J

∂ω0
,
∂I

∂ dy
,
∂J

∂ dy
,
∂I

∂ω2
,
∂J

∂ω2
.(15)

More interesting is the converse assertion that the equivalence transformations are

characterized by the latter property. In particular, they can be determined by using
the invariants (15).
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Proof. Let (15) be invariants for a transformation (1). Then I = Ī , J = J̄ (cf.
(151,2)) ensures dI = dĪ, dJ = dJ̄ and, by using the developments (9) and the
identities F = F̄ with F equal to either of the remaining functions (15 3−8), we
obtain

∂F

∂ω0
(ω0 − ω̄0) +

∂F

∂ dy
(dy − dȳ) +

∂F

∂ω2
(ω2 − ω̄2) = 0 (F = I, J) .

However y = ȳ hence dy = dȳ and it follows that (14) is satisfied.

In fact the proof gives even the stronger result: if the overdetermined implicit

system (8) with F equal to any of the functions (15) has a solution ϕ = ϕ(x, y, y ′),
ϕ′ = ϕ′(x, y, y′), then the functions ϕ, ϕ′ do not depend on the variables y, y′,
moreover ϕ′ = dϕ/dx is the true derivative, and the equivalence of equations

y′′ = f and ȳ′′ = f̄ is realized.

(ιι) The lower symmetry case. Let us assume the existence of exactly two
functionally independent invariants, i.e., let all invariants be of the kind g(y, F )
where F is a fixed invariant (depending on y′). In particular ∂F/∂ω2 = y′Fy′ =
g(y, F ). This may be regarded as a differential equation for F and it follows that
F = G(y, c(x, y)y′) with appropriate G, c. Clearly K = c(x, y)y′ is an invariant
(and c 6= 0). We may choose K instead of F . Then the analogous argument
applied to ∂K/∂ dy = cyy

′ = g(y, cy′) implies that necessarily c(x, y) = a(x)b(y).
So we have an invariantK = a(x)y′ since the invariant factor b(y) may be omitted.

With this preliminary result, let us determine the function f . Assuming I =
g(y,K) = My(y,K, ) then f = My′2+N where N = N(x, y′) cannot be arbitrarily
chosen since the covariant derivative

∂K

∂ω0
= a′ + (My′2 +N)

a

y′
= MK +

1

y′

(

a′

a
+
N

y′

)

K

must be a function of only y and K. It follows that a′/a+N/y′ = 0. So we deal
with the differential equation

y′′ = M(y, a(x)y′)y′2 −
a′(x)

a(x)
y′ .(16)

The equivalence transformation (1) on the counterpart equation

ȳ′′ = M̄(y, ā(x̄)ȳ′)ȳ′2 −
ā′(x̄)

ā(x̄)
ȳ′

is given by the first order equation ā(ϕ)ϕ′ = a(x) for the function ϕ (direct veri-
fication). In particular, we have a one-parameter pseudogroup of symmetries (1)
of the equation (16) satisfying a(ϕ)ϕ′ = a(x).

(ιιι) The higher symmetry case. Let I = I(y), J = J(y) be functions of mere
y. Then Jy = I and we may choose M = J , N = 0 in Section 6 to obtain the
differential equation

y′′ = J(y)y′2 +Q(x)y′(17)
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(see also articles [10], [1], [14]). The equivalent equation necessarily is of the kind
ȳ′′ = J(ȳ)ȳ′2 + Q̄(x̄)ȳ′ and then the transformation rules (2) give the differential
equation

ϕ′′ + Q̄(ϕ)ϕ′2 = Q(x)ϕ′(18)

for the equivalence transformation ϕ (direct verification). In particular, there is
a two-parameter pseudogroup of symmetries (1) of the equation (17) satisfying
ϕ′′ +Q(ϕ)ϕ′2 = Q(x)ϕ′.

(ιν) Continuation. The results of the preceding point (ιιι) admit certain not
self-evident interpretation. For this aim, let us introduce the composition function
G(y). Then the equation (17) leads to the symmetrical relation

G′2(z′′ −Q(x)z′) = z′2(G′′ − J(y)G′)(19)

between functions G = G(y) and z = z(x) = G(y(x)). One can observe that
z′(x) 6= 0 (G′(y) 6= 0) on every nonconstant solution of the equation z ′′ = Q(x)z′

(G′′ = J(y)G′). It follows that every nonconstant solution y = y(x) of (17)
provides a bijective correspondence between solutions of equations z ′′ = Q(x)z′

and G′′ = J(y)G′. In other terms, the equation (17) provides the equivalence
transformations between the mentioned equations.

The third order equations

8. Moving frames. We are passing to the equivalence problem with respect to
the pseudogroup (1), (2) for the equations y′′′ = f(x, y, y′, y′′). Analogously as
above, there is the form ω0 = y′ dx with the invariance property ω0 = y′dx =
ȳ′dx̄ = ω̄0. On the other hand, the primary differential equation y′′′ = f can be
represented by the Pfaffian system

ϑ1 = dy − y′ dx = 0 , ϑ2 = dy′ − y′′ dx = 0 , ϑ3 = dy′′ − f dx = 0 .(20)

It is transformed into the system

ϑ̄1 = dȳ − ȳ′dx̄ = 0 , ϑ̄2 = dȳ′ − ȳ′′ dx̄ = 0 , ϑ̄3 = dȳ′′ − f̄ dx̄ = 0(21)

corresponding to the equivalent equation

ȳ′′′ = f̄(x̄, ȳ, ȳ′, ȳ′′) , f̄ =
f

ϕ′3
− 3

ϕ′′

ϕ′′4
y′′ −

1

ϕ′2

(

ϕ′′′

ϕ′
−

3

2

ϕ′′2

ϕ′2

)

y′ .(22)

Recall that the forms ϑi need not be transformed into each ϑ̄i individually, however,
appropriate linear combinations of ϑi will have this favourable property. We shall
not explicitly introduce the relevant linear combinations of forms ϑi with uncertain
parameters (like in Section 3) since the simple method of Section 4 can be closely
simulated.

First of all, we again have the invariant form ω1 = dy − y′dx = dy − ω0. Then
the exterior derivative

dω1 = ω0 ∧
1

y′
(dy′ − y′′ dx) = ω̄0 ∧

1

ȳ′
(dȳ′ − ȳ′′ dx̄) = dω̄1
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of the equality ω1 = ω̄1 leads to the next invariant form ω2 = 1
y′

(dy′−y′′ dx) quite

analogously as in Section 4. Continuing in this way, clearly

dω2 = ω0 ∧ ω3 , ω3 =
1

y′2

(

dy′′ − f dx−
y′′

y′
(dy′ − y′′ dx)

)

.

The factor ω3 is unique (under the additional requirement that it should be a linear
combination of forms (20)), hence invariant for the equivalence transformation:

ω3 = ω̄3 =
1

ȳ′2

(

dȳ′′ − f̄ dx̄−
ȳ′′

ȳ′
(dȳ′ − ȳ′′ dx̄)

)

.

The reduction is done and the sought forms ωi (i = 0, . . . , 3) for the equivalence
transformation are determined.

9. The concluding step. The differentials dωi (i = 0, . . . , 2) do not provide any
useful information at this place, however, the differential

dω3 = ω0 ∧ (I dy + Jω2 +Kω3) − ω2 ∧ ω3

where

I =
fy

y′3
, J =

1

y′3
(y′fy′ + y′′fy′′ − f) , K =

fy′′

y′
− 3

y′′

y′2

(direct verification) provides the invariants for the equivalence transformation.
Then the developments of differentials

dF = Fx dx+ Fy dy + Fy′ dy′ + Fy′′ dy′′ =
∂F

∂ω0
ω0 +

∂F

∂ dy
dy +

∂F

∂ω2
ω2 +

∂F

∂ω3
ω3

with coefficients of the covariant derivatives
∂F

∂ω0
=

1

y′
(Fx + y′′Fy′ + fFy′′) ,

∂F

∂ dy
= Fy ,

∂F

∂ω2
= y′Fy′ + y′′Fy′′ ,

∂F

∂ω3
= y′2Fy′′

(direct verification) still provide the new invariants when applied to an invariant
function F = F̄ . Moreover the Bianchi relations

Jy = 2I + y′Iy′ + y′′Iy′′ , Ky = y′2Iy′′ , y′2Jy′′ = K + y′Ky′ + y′′Ky′′

easily follow from the identity d2ω3 = 0 when the developments of differentials dI ,
dJ , dK in terms of covariant derivatives are inserted.

10. Notes to the equivalence problem. To pleasure the reader, we shall follow
an alternative way. Omiting the implementation result, let us directly deal with
the equivalence of equations y′′′ = f and ȳ′′′ = f̄ . It is expressed by the invariance

requirements

ωi = ω̄i (i = 0, 2, 3) , y = ȳ .(23)

We have moreover obtained the additional equations

F (x, y, y′, y′′) = F̄

(

ϕ, y,
y′

ϕ′
,
y′′

ϕ′2
−
ϕ′′

ϕ′3

)

(24)

for all invariants F .
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(ι) The general case. Assume that there exist four functionally independent
invariants, e.g., the invariants y, I , J , K. Then the equivalence transformations

are alternatively characterized by the overdetermined implicit system (24) where F
runs over invariants y, I, J , K and their first order covariant derivatives. The
proof may be omitted.

(ιι) The lower symmetry case. Assume that there exist exactly three function-
ally independent invariants denoted y, F = F (x, y, y′, y′′), G = G(x, y, y′, y′′) of
the equation y′′′ = f . Then this equation has a one-parameter pseudogroup of
symmetries. (Hint: apply the Frobenius theorem to equations (23) constrained
moreover by F = F̄ and G = Ḡ.) By a change of independent variable x̄ = ψ(x),
the pseudogroup will consist of the transformations x̄ → x̄+ const . and it follows
that the transformed equation is of the kind ȳ′′′ = h(ȳ, ȳ′, ȳ′′) with the right hand
side independent of x̄. Passing to the original equation, it reads y′′′ = f(x, y, y′, y′′)
where

f = h

(

y,
y′

ψ′
,
y′′

ψ′2
− y′

ψ′′

ψ′3

)

ψ′3 + 3
ψ′′

ψ′
y′′ +

(

ψ′′′

ψ′
− 3

ψ′′2

ψ′2

)

y′(25)

(use formulae (2) with ϕ replaced by ψ). One can verify that the result is quite
correct: the differential invariants I , J , K and their covariant derivatives can be
represented as the composed functions of the kind

g(y, F,G)
(

F =
y′

ψ′
, G =

y′′

ψ′2
− y′

ψ′′

ψ′3

)

(26)

where F , G itself are invariants. (One can also obtain formula like (16) if 1/ψ′ =
a, −ψ′′/ψ′2 = a′, −ψ′′′/ψ′2 + 2ψ′′2/ψ′3 = a′′ is substituted into (25).) The
pseudogroup symmetries (1) of the equation are given by the invariance of F :
ȳ′/ψ′(ϕ) = y′/ψ′ where ȳ′ϕ′ = y′, that is,

a(ϕ)ϕ′ = a(x) (a = 1/ψ′) ,(27)

in well accordance with (ιι) of Section 7.
The more general equivalence problem is quite clear. The equation y′′′ = f with

f given by (25) can be transformed only into equation ȳ′′′ = f̄ where f̄ is given
analogously as (25). Then the equivalences (2) satisfy ā(ϕ)ϕ′ = a(x) (a = 1/ψ′,
ā = 1/ψ̄′) like in Section 7.

(ιιι) The middle symmetry case. Assume that there exist exactly two func-
tionally independent invariants. Then the equation admit a two-parameter sym-
metry pseudogroup which consist of transformations x̄ → Const . · x + const .
(Const . 6= 0) after appropriate change x̄ = ψ(x) of the independent variable. It
follows easily that the transformed equation is of the kind ȳ′′′ = h(ȳ, ȳ′′/y′2)y′3

(we assume y′ 6= 0 for simplicity here). Passing to the original variables, it reads
y′′′ = f(x, y, y′, y′′) where

f = h

(

y,
y′′

y′2
−

ψ′′

ψ′y′

)

y′3 + 3
ψ′′

ψ′
y′′ +

(

ψ′′′

ψ′
− 3

ψ′′2

ψ′2

)

y′.(28)
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We obtain the unexpected invariant

F =
y′′

y′2
−

ψ′′

ψ′y′

such that all invariants of the equation can be expressed in terms of y and F .
The pseudogroup of all symmetries (1) is defined by the equality F = F̄ which
simplifies to the condition

ϕ′′ +
ψ′′(ϕ)

ψ′(ϕ)
ϕ′2 =

ψ′′(x)

ψ′(x)
ϕ′ .(29)

One can observe that this is the equation (18) with Q = Q̄ = ψ′′/ψ′ inserted. The
more general equivalence problem leads just to the equation (18) and need not any
comments.

(ιν) The higher symmetry case. If all invariants are depending only on the vari-
able y, the equation y′′′ = f admits a three-parameter pseudogroup of symmetries.
It is not difficult to explicitly find the shape of the function f :

y′′′ =
1

2
J(y)y′3 +

3

2

y′′2

y′
+Q(x)y′ .(30)

The equivalences (1) with analogous equations ȳ′′′ = f̄ (with J = J̄ but another
function Q̄) are defined by the equation

ϕ′′′

ϕ′
−

3

2

ϕ′′2

ϕ′2
+ Q̄(ϕ)ϕ′2 = Q(x)(31)

(direct verification using (21) and transformation formulae (2) for the derivatives).

(ν) Continuation. We mention a certain alternative interpretation of the latter
result. For this aim, let us introduce the composition function G(y). Then the
equation (30) leads to the symmetrical relation

G′2({z, x} −Q(x)) = z′2
(

{G, y} −
1

2
J(y)

)

(32)

between functions G = G(y) and z = z(x) = G(y(x)), where

{y, x} =
y′′′

y′
−

3

2

y′′2

y′2

denotes the familiar Schwarz derivatives. (Hint: Insert the inversion y = F (G) of
G = G(y) into (30) which is better rewritten as {y, x} = 1

2Jy
′2 +Q to obtain

{G, x} +G′2{F,G} = {F (G), x} = {y, x} =
1

2
Jy′2 +Q

by using the familiar identity for the derivatives of composed functions. However,
{F,G} + F ′2{G, y} = {G(F ), y} = {y, y} = 0 for the mutually inverse functions
y = F (G), G = G(y) and (32) easily follows since z ′F ′ = y′ = z′/G′.) It fol-
lows that nonconstant solutions y = y(x) of equation (30) provides a bijective
correspondence between solutions of equations {z, x} = Q(x) and {G, y} = 1

2J(y).
There moreover exists a close interrelation between equations {u, x} = q(x) and
v′′ = q(x)v (which need not be recalled here) and it follows that solutions y = y(x)
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of the equation (30) also concerns the equivalence transformations between linear
differential equations z′′ = Q(x)z and G′′ = 1

2J(y)G.

The fourth order equation

11. Survey of results. Dealing with the equivalence theory for the equations
y(4) = f(x, y, y′, y′′, y′′′) with respect to the pseudogroup (1), (2), one can obtain
the invariant forms

ω0 = y′ dx , ω1 = dy − ω0 , ω2 =
1

y′
(dy′ − y′′ dx) ,

ω3 =
1

y′2
(dy′′ − y′′′ dx− y′′ω2) , ω4 =

1

y′3
(dy′′′ − f dx− y′′′ω2 − 3y′y′′ω3)

(and dy). Recall that the equation y(4) = f is equivalent to the Pfaffian system
ωi = 0 (i = 1, . . . , 4) consisting of invariant equations. The formulae

−dω0 = dω1 = ω0 ∧ ω2 , dω2 = ω0 ∧ ω3 , dω3 = ω3 ∧ ω2 + ω0 ∧ ω4 ,

dω4 = 2ω4 ∧ ω2 + ω0 ∧ (I dy + Jω2 +Kω3 + Lω4)

hold true where

I =
fy

y′4
, J =

1

y′4
(y′fy′ + y′′fy′′ + y′′′fy′′′ − f) ,

K =
1

y′2

(

fy′′ + 3
y′′

y′
fy′′′ − 4

y′′′

y′
− 3

y′′2

y′2

)

, L =
1

y′

(

fy′′′ − 6
y′′

y′

)

are invariant functions. Other invariant functions can be obtained by using co-
variant derivations

∂F

∂ω0
=

1

y′
(Fx + y′′Fy′ + y′′′Fy′′ + fFy′′′) ,

∂F

∂ dy
= fy ,

∂F

∂ω2
= y′Fy′ + y′′Fy′′ + y′′′Fy′′′ ,

∂F

∂ω3
= y′2

(

Fy′′ + 3
y′′

y′
Fy′′′

)

,

∂F

∂ω4
= y′3Fy′′′

of any invariant F . The Bianchi relations written in terms of them are shorter:

∂J

∂ dy
=

∂I

∂ω2
+ 3I ,

∂J

∂ω3
=
∂K

∂ω2
+ 2K ,

∂J

∂ω4
=

∂L

∂ω2
+ L ,

∂K

∂ω4
=

∂L

∂ω3
+ 2 ,

∂K

∂ dy
=

∂I

∂ω3
,

∂L

∂ dy
=

∂I

∂ω4

(33)

and they conclude the short surwey of necessary results. For the convenience, we
state the transformations of third order derivatives

y′′′ = ȳ′′′ϕ′3 + 3ȳ′′ϕ′ϕ′′ + ȳ′ϕ′′′

to complete the formulae (2) and the transformed equation ȳ(4) = f̄ where f̄ =
f̄(x̄, ȳ, ȳ′, ȳ′′, ȳ′′′) can be calculated from the equation

f = f̄ϕ′4 + 6ȳ′′′ϕ′2ϕ′′ + ȳ′(3ϕ′′2 + 4ϕ′ϕ′′′) + ȳ′ϕ′4
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for the fourth order derivatives.

12. Few notes to the equivalence problem. The equivalences between equa-
tions y(4) = f and ȳ(4) = f̄ are described by the invariance requirements ωi = ω̄i

(i = 0, 2, 3, 4), y = ȳ. They can be (at least partly) replaced by simpler invari-
ance conditions F = F̄ with various invariants F other than y. Such invariants
F always exist (see below). Analogously as above several possibilities are to be
distiguished.

(ι) The general case. If there exist five functionally independent invariants then
the equivalence problem can be resolved by means of them by resolving a certain
overdetermined implicit system.

(ιι) The lower symmetry case. If exactly four independent invariants exist, the
one-parameter families of equivalences and symmetries appear. They are given
by certain first order differential equation (like (27)) for the function ϕ. Explicit
formulae for the relevant function f (resembling (25)) can be easily obtained.

(ιιι) The middle symmetry case. If there are exactly three functionaly indepen-
dent invariants, the equivalence and symmetries ϕ depend on two parameters and
satisfy certain second order differential equation (analogous to (18) or (29)).

(ιν) The higher symmetry case. If there exists besides y only one functionally
independent invariant F , we obtain three-parameter families of equivalences and
symmetries. The mentioned invariant

F =
1

y′2

(

y′′′

y′
−

3

2

y′′2

y′2
−Q(x)

)

=
1

y′2
(

{y, x} −Q(x)
)

can be obtained by a lengthy analysis of the covariant derivatives (see also (ιι)
Section 7) together with the (not very simple) formula

f = h(y, F )y′4 + 6
y′′

y′

(

y′′′ −
y′′2

y′

)

− 2Qy′′ +Q′y′

for the differential equations under consideration. The equivalences ϕ are given
by the third order equation with F = F̄ which reads

{ϕ, x} + Q̄(ϕ)ϕ′2 = Q(x)(34)

(direct verification) in terms of Schwarz derivatives.

(ν) The impossible case. The assumption that all invariants are functions of
only y contradics the Bianchi relation ∂K/∂ω4 = ∂L/∂ω3 + 2.

Remarks

Remark 1. The symmetry equivalence problem for ordinary differential equa-
tions of the order n + 1 (n ≥ 1) and transformations (1), (2) is solved in [14] by
means of functional equation under the restricted condition

ϕ(n+1) = g(x, ϕ, . . . , ϕ(n)) .
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The problem is resolved by a function

f(x, y, y′, y′′) = a(y)y′3 + p1(x)y
′ + p2(x)y

′′(35)

with conditions

3ϕ′′ = p2(x)ϕ
′ − p2(ϕ)ϕ′2 , ϕ′′′ = p1(x)ϕ

′ + p2(x)ϕ
′′ − p1(ϕ)ϕ′3 ,(36)

for the third order equations and

f(x, y, y′, y′′, y′′′) = b(y)y′4 + p1(x)y
′ + p2(x)y

′′ + p3(x)y
′′′(37)

together with conditions

6ϕ′′ = p3(x)ϕ
′ − p3(ϕ)ϕ′2 ,

3ϕ′′2 + 4ϕ′ϕ′′′ = p2(x)ϕ
′2 + 3p3(x)ϕ

′ϕ′′ − p2(ϕ)ϕ′4 ,(38)

ϕ(4) = p1(x)ϕ
′ + p2(x)ϕ

′′ + p3(x)ϕ
′′′ − p1(ϕ)ϕ′4

for the fourth order equations, respectively.

(ι) Results (35), (36) are equivalent to the higher symmetry case (Section 10
(ιν)) of the equivalence problem for the third order differential equations.

Proof. Indeed, assuming

f(x, y, y′, y′′) = a(y)y′3 + p1(x)y
′ + p2(x)y

′′ =
1

2
J(y)y′3 +

3

2

y′′2

y′
+Q(x)y′(39)

in accordance with (30), (35), we obtain

a(y) =
1

2
J(y) , p2(x) = 3

y′′

y′
, Q(x) = p1(x) +

1

6
p2(x)

2(40)

by means of (39) and invariants

I =
1

y′3
fy , J =

1

y′3
(y′fy′ + y′′fy′′ − f) , K =

1

y′

(

fy′′ − 3
y′′

y′

)

(Section 9). We get

p̄2(ϕ) = 3
ȳ′′(ϕ)

ȳ′(ϕ)
=

3

ϕ′
(
y′′

y′
−
ϕ′′

ϕ′
) =

1

ϕ′
(p2(x) − 3

ϕ′′

ϕ′
) ,(41)

i.e., (361) in accordance with (2). Moreover

ϕ′′′

ϕ′
−

3

2

ϕ′′2

ϕ′2
+ Q̄(ϕ)ϕ′2 −Q =

ϕ′′′

ϕ′
+ p̄1(ϕ)ϕ′2 −

ϕ′′

ϕ′
p2 − p1 = 0

and (362) is satisfied by means of (31), (41). Thus the conditions (31) and (36)
are equivalent and the assertion (ι) is proved.

(ιι) For h(y, F ) = b(y), results (37), (38) are equivalent to the higher symmetry

case (Section 12 (ιν)) of the equivalence problem for the fourth order differential

equations.
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Proof. Assuming

f = b(y)y′4 + p3(x)y
′′′ + p2(x)y

′′ + p1(x)y
′

= h(y, F )y′4 + 6
y′′

y′
(y′′′ −

y′′2

y′
) − 2Qy′′ +Q′y′(42)

(according to Section 12 (ιν) and (37)) we get

b′(y) = hy(y, F ) , b(y) = h(y, F ) ,
1

y′
(p3(x) − 6

y′′

y′
) = hF (y, F )(43)

for

F =
1

y′2
({y, x} −Q(x)) =

1

y′2

(y′′′

y′
−

3

2

y′′2

y′2
−Q(x)

)

by means of invariants

I =
fy

y′4
, J =

1

y′4
(y′fy′ + y′′fy′′ + y′′′fy′′′ − f) ,

K =
1

y′2

(

fy′′ + 3
y′′

y′
fy′′′ − 4

y′′′

y′
− 3

y′′2

y′2

)

, L =
1

y′

(

fy′′′ − 6
y′′

y′

)

.

(Section 11). By solving (43) we have

h(y, F ) = b(y) + kF 3/2 , p3(x) =
3

2
ky′F 1/2 + 6

y′′

y′
,

p2(x) = 2Fy′2 −
9

2
ky′′F 1/2 − 15

y′′2

y′2
+ 4

y′′′

y′
,

(44)

k ∈ R being constant. It holds

p̄3(ϕ) =
3

2

y′

ϕ′
F 1/2 +

6

ϕ′

(

y′′

y′
−
ϕ′′

ϕ′

)

,

p̄2(ϕ) = 2F
y′2

ϕ′2
−

9

2
kF 1/2 1

ϕ′2

(

y′′ − y′
ϕ′′

ϕ′

)

+
1

ϕ′2

(

4
y′′′

y′
+ 18

y′′

y′
ϕ′′

ϕ′
− 4

ϕ′′′

ϕ′
− 15

y′′2

y′2
− 3

ϕ′′2

ϕ′2

)

(45)

by using the transformed derivatives. Hence (38)1,2 are identities. The relationship
between coefficients p1, p2, p3 of a function f and the condition (38)3 we express
only for h(y, F ) = b(y) (k = 0) for simplicity. In such a case,

p3(x) = 6
y′′

y′
, p2(x) = 2Fy′2 − 15

y′′2

y′2
+ 4

y′′′

y′
.(46)

by using (44). We get

y′′′

y′
=

1

6
p′3 +

1

36
p2
3 , F y′2 = {y, x} −Q =

1

3
p′3 −

1

72
p2
3 −Q ,

thus

p2 = p′3 − 2Q−
1

3
p2
3(47)
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by means of (46)1,2 and the invariant F . In a similar way we obtain

p1 = Q′ −
1

6
p3p

′

3 −
1

36
p2
3(48)

in accordance with (42) for h(y, F ) = b(y). Moreover

p̄3(ϕ)ϕ′2 = 6
ȳ′′(ϕ)

ȳ′(ϕ)
ϕ′2 =

(

6
y′′

y′
− 6

ϕ′′

ϕ′

)

ϕ′ = p3ϕ
′ − 6ϕ′′

(see (2)) and

p̄′3(ϕ)ϕ′3 = p′3ϕ
′ − p3ϕ

′′ − 6ϕ′′′ + 12
ϕ′′2

ϕ′

through differentiation. Then

p̄1(ϕ)ϕ′4 = Q̄′(ϕ)ϕ′4 −
1

6
p̄3(ϕ)ϕ′p̄′3(ϕ)ϕ′3 +

1

36
(p̄3(ϕ)ϕ′)3ϕ′

= Q̄′(ϕ)ϕ′4 +
1

36
p3
3ϕ

′ −
1

3
p2
3ϕ

′′ + p3ϕ
′′′ −

1

6
p3p

′

3ϕ
′

+ p′3ϕ
′′ − 6

ϕ′′ϕ′′′

ϕ′
+ 6

ϕ′′3

ϕ′2
.

We derive the relation (38)3. We get

ϕ(4) = Q′ϕ′ − Q̄(ϕ)ϕ′4 + 4Qϕ′′ − 6Q̄(ϕ)ϕ′2ϕ′′ + 3
ϕ′′3

ϕ′2

through differentiation of (34). At the same time

ϕ(4) = p1(x)ϕ
′ + p2(x)ϕ

′′ + p3(x)ϕ
′′′ − p1(ϕ)ϕ′4

=

(

Q′ −
1

6
p3p

′

3 +
1

36
p3
3

)

ϕ′ +

(

p′3 − 2Q−
1

3
p2
3

)

ϕ′′ + p3ϕ
′′′ − p1(ϕ)ϕ′4

= Q′ϕ′ −Q′(ϕ)ϕ′4 − 2Qϕ′′ + 6
ϕ′′ϕ′′′

ϕ′
− 6

ϕ′′2

ϕ′2

= Q′ϕ′ −Q′(ϕ)ϕ′4 + 4Qϕ′′ − 6Q(ϕ)ϕ′2ϕ′′ + 3
ϕ′′3

ϕ′2
.

We see that the relations (38)3, (34) are equivalent and the assertion is proved.

Remark 2. The criterion of global equivalence of the second order linear diffe-
rential equations was published by O. Bor̊uvka [3], of the third and higher order
linear equations by F. Neuman [11]. Transformations z(t) = y(ϕ(t)) were studied
in [12] as a “motion” for n-th order linear differential equations. A general form

y′′(x) = a(y(x))y′(x)2 + p(x)y′(x) ,

where ϕ satisfies a differential equation ϕ′′(x) = p(x)ϕ′(x) − p(ϕ(x))ϕ′(x)2 and
a, p are arbitrary functions, was derived by J. Aczél [1] for the second order
differential equations (eliminating regularity conditions from Moór–Pintér [10])
by means of functional equations and this result is in full accordance with the
higher symmetry case of the equivalence problem for the second order differential
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equations (Section 7 (ιιι)). This general form allows the transformation z(t) =
y(ϕ(t)) and transforms the equation into itself on the whole interval of definition.
In [14], similarly to J. Aczél, a general form of ordinary differential equations of
the order n + 1 (n ≥ 1) which allows transformations z(t) = y(ϕ(t)), is derived
(See Remark 1. of this article).

Remark 3. Let M be a topological space, Γ a family of homeomorphisms ϕ :
D(ϕ) → R(ϕ), where D(ϕ),R(ϕ) are open subspaces of M. We speak of a pseu-

dogroup Γ of (local) transformations on M if the following requirements are satis-
fied (see e.g. [2], p. 150):

(ι) the identity id : D(id) = M → R(id) = M belongs to Γ;
(ιι) if ϕ ∈ Γ and D ⊂ M is an open subspace then the restriction of ϕ to the

subspace D(ϕ) ∩ D belongs to Γ;
(ιιι) if ϕ ∈ Γ then ϕ−1 ∈ Γ;
(ιν) if ϕ, ψ ∈ Γ and R(ϕ) ∩ D(ψ) 6= 0 then the composition

ψ ◦ ϕ : ϕ−1(R(ϕ) ∩ D(ψ)) → ψ(R(ϕ) ∩ D(ψ))

belongs to Γ;
(ν) if χ : D → R is a local homeomorphism between open subspaces of M such

that χ locally coincides with mappings from Γ, then χ ∈ Γ. (In more detail: we
suppose that to every P ∈ D there exists ϕ ∈ Γ such that D(ϕ) is a neighbourhood
of P and χ = ϕ on D(ϕ).)

In particular case when D(ϕ) = R(ϕ) = M for all ϕ ∈ Γ, we have the common
transformation group Γ on M. In general, the pseudogroups were alternatively (and
a little misleadingly) named groups of local diffeomorphisms in classical mathemat-
ics. For a long time, they belong to indispensable tools in nonlinear theories where
the definition domains cause many difficulties. Only rather particular classes of
pseudogroups are appearing in common applications, namely the so called Lie-

Cartan pseudogroups where the transformations either are defined by a system
of differential equations (the Lie’s approach) or, alternatively, by the property of
preserving a certain family of functions and differential forms (the E. Cartan’s
approach). We follow the second point of view here.
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