APPROXIMATION OF SOME REGULAR DISTRIBUTION IN $S'(\mathcal{R})$ BY FINITE, CONVEX, LINEAR COMBINATIONS OF BLASCHKE DISTRIBUTIONS

VESNA MANOVA ERAKOVIĆ

0. INTRODUCTION

0.1. Some background on Blaschke products and Marshall's theorem for functions on H^{∞} .

Let U be the open, unit disc in the plane, $T = \partial U$. $H^{\infty}(U)$ is the space of all bounded analytic functions f(z) on U, for which the norm is defined by

$$||f||_{H^{\infty}} = \sup_{z \in U} |f(z)|$$

If $f \in H^{\infty}(U)$, then the radial boundary function

$$f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$$

is defined almost everywhere on T with respect to the Lebesque measure on T and $\log |f^*(e^{i\theta})| \in L^1(T)$.

Let $\{z_n\}$ be a sequence of points in U such that

(0.1.1)
$$\sum_{n=1}^{\infty} (1 - |z_n|) < \infty.$$

Let m be the number of z_n equal to 0. Then the infinite product

(0.1.2)
$$B(z) = z^m \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}$$

converges on U. The function B(z) of the form (0.1.2) is called Blaschke product. B(z) is in $H^{\infty}(U)$, and the zeros of B(z) are precisely the points z_n , each zero

²⁰⁰⁰ Mathematics Subject Classification: 46Fxx, 46F20, 62E17.

 $Key\ words\ and\ phrases:$ Blaschke product, upper Blaschke distribution, tempered distribution, approximation.

Received September 24, 2001.

having multiplicity equal the number of times it occurs in the sequence $\{z_n\}$. Moreover $|B(z)| \leq 1$ and $|B^*(e^{i\theta})| = 1$ a.e.

For the needs of our subsequent work we will define the Blaschke product in the upper half plane Π^+ . In the upper half plane Π^+ , condition (0.1.1) is replaced by

(0.1.3)
$$\sum_{n=1}^{\infty} \frac{y_n}{1+|z_n|^2} < \infty, \quad z_n = x_n + iy_n \in \Pi^+$$

and the Blaschke product with zeros z_n is

(0.1.4)
$$B(z) = \left(\frac{z-i}{z+i}\right)^m \prod_{n=1}^{\infty} \frac{|z_n^2+1|}{z_n^2+1} \frac{z-z_n}{z-\overline{z}_n}.$$

Note. If the number of zeros z_n in (0.1.2) or (0.1.4) is finite, then we call B(z) finite Blaschke product.

For the needs of our subsequent work we will state the Marshall's theorem for approximation of functions of $H^{\infty}(U)$ by finite, convex, linear combinations of Blaschke products. The theorem is given in [6].

Marshall's theorem. Let $f \in H^{\infty}(U)$ and $||f||_{H^{\infty}} \leq 1$. Then for every $\varepsilon > 0$, there are Blaschke products $B_1(z), B_2(z), \ldots, B_n(z)$ and positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_n, \sum_{k=1}^n \lambda_k = 1$ such that

$$||f(z) - \sum_{k=1}^n \lambda_k B_k(z)||_{H^\infty} < \varepsilon.$$

0.2. Some notions of distributions and Blaschke distribution.

For a function $f, f: \Omega \to C^n, \Omega \subseteq \mathcal{R}^n, \alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \alpha_j \in \mathcal{N} \cup \{0\}, x \in \Omega, D_x^{\alpha} f$ denotes the differential operator

$$D_x^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}, \quad |\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$$

 $C^{\infty}(\mathcal{R}^n)$ denotes the space of all complex valued infinitely differentiable functions on \mathcal{R}^n and $C_0^{\infty}(\mathcal{R}^n)$ denotes the subspace of $C^{\infty}(\mathcal{R}^n)$ that consists of those functions of $C^{\infty}(\mathcal{R}^n)$ which have compact support. Support of a function f, denoted by $\operatorname{supp}(f)$, is the closure of $\{x \mid f(x) \neq 0\}$ in \mathcal{R}^n .

 $D = D(\mathcal{R}^n)$ denotes the space of $C_0^{\infty}(\mathcal{R}^n)$ functions in which convergence is defined in the following way: a sequence $\{\varphi_{\lambda}\}$ of functions $\varphi_{\lambda} \in D$ converges to $\varphi \in D$ in D as $\lambda \to \lambda_0$ if and only if there is a compact set $K \subset \mathcal{R}^n$ such that $\operatorname{supp}(\varphi_{\lambda}) \subseteq K$ for each λ , $\operatorname{supp}(\varphi) \subseteq K$ and for every *n*-tuple α of nonnegative integers the sequence $\{D_t^{\alpha}\varphi_{\lambda}(t)\}$ converges to $D_t^{\alpha}\varphi(t)$ uniformly on K as $\lambda \to \lambda_0$.

289

 $D' = D'(\mathcal{R}^n)$ is the space of all continuous linear functionals on D, where continuity means that $\varphi_{\alpha} \to \varphi$ in D as $\lambda \to \lambda_0$ implies $\langle T, \varphi_{\lambda} \rangle \to \langle T, \varphi \rangle$ as $\lambda \to \lambda_0, T \in D'$.

Note. $\langle T, \varphi \rangle$ denotes the value of the functional *T*, when it acts on the function φ .

D' is called the space of distributions.

 $S = S(\mathcal{R}^n)$ denotes the space of all infinitely differentiable complex valued function φ on \mathcal{R}^n satisfying

$$\sup_{t\in\mathcal{R}^n}|t^\beta D^\alpha\varphi(t)|<\infty$$

for all *n*-tuple α and β of nonnegative integers. Convergence in *S* is defined in the following way: a sequence $\{\varphi_{\lambda}\}$ of functions $\varphi_{\lambda} \in S$ converges to $\varphi \in S$ in *S* as $\lambda \to \lambda_0$ if and only if

$$\lim_{\lambda \to \lambda_0} \sup_{t \in \mathcal{R}^n} |t^{\beta} D_t^{\alpha}[\varphi_{\lambda}(t) - \varphi(t)]| = 0$$

for all *n*-tuple α and β of nonnegative integers.

Again, S' is the space of all continuous, linear functionals on S, called the space of tempered distributions.

Let φ be an element of one of the above function spaces D or S, and f be a function for which

$$\langle T_f, \varphi \rangle = \int_{\mathcal{R}^n} f(t)\varphi(t) \, dt \,, \quad \varphi \in D \ (\varphi \in S)$$

exists and is finite. Then T_f is regular distribution on D (or S) generated by f.

Now, let B(z) be the Blaschke product, $z = x + iy \in \Pi^+$, with zeros z_n that belong to the upper half plane. In [7] it is proven that $\langle B^+, \varphi \rangle$, where

(0.2.1)
$$\langle B^+, \varphi \rangle = \lim_{y \to 0^+} \int_{-\infty}^{\infty} B(z)\varphi(x) \, dx \, , \quad z = x + iy \in \Pi^+, \quad \varphi \in D(\mathcal{R}) \, ,$$

is distribution on D, named upper Blaschke distribution on D.

Note. This is a new notion in the theory of distributions and has useful application in the problems of approximation. The introduced Blaschke distributions in [7] were used for representing some distributions in D' as a limit of sequence of Blaschke distributions.

The following theorem gives another application of the Blaschke distribution.

1. Main result

Theorem 1.1. Let $f(z) \in H^{\infty}(\Pi^+)$ and $||f||_{H^{\infty}} \leq 1$. Let T_{f^*} be the distribution in $S'(\mathcal{R})$ generated with the boundary value f^* of the function f(z). Then

for every $\varepsilon > 0$, and for every $\varphi \in S(\mathcal{R})$ there are upper Blaschke distributions $B_1^+, B_2^+, \ldots, B_n^+$ and positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, $\sum_{k=1}^n \lambda_k = 1$ such that

(1.1)
$$\left| \langle T_{f^*}, \varphi \rangle - \sum_{k=1}^n \lambda_k \langle B_k^+, \varphi \rangle \right| < \varepsilon \,.$$

Proof. Let $f(z) \in H^{\infty}(\Pi^+)$, $||f||_{H^{\infty}} \leq 1$. Let $\varepsilon > 0$ and $\varphi \in S(\mathcal{R})$ be arbitrary

chosen. Because $S(\mathcal{R}) \subset L^1(\mathcal{R})$, it follows that $\varphi \in L^1(\mathcal{R})$. Let $\varepsilon_1 = \frac{\varepsilon}{\|\varphi\|_{L^1}} > 0$. Then because of the Marshal theorem, there are Blaschke products $B_1(z), B_2(z), \ldots, B_n(z)$ with zeros in the upper half plane Π^+ , and positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, $\sum_{k=1}^n \lambda_k = 1$ such that

(1.2)
$$\left\| f(z) - \sum_{k=1}^{n} \lambda_k B_k(z) \right\|_{H^{\infty}} < \varepsilon_1 \,.$$

From (1.2), we have that for $B_k(z)$, λ_k , $k \in \{1, 2, \ldots, n\}$ hold

(1.3)
$$\left| f(z) - \sum_{k=1}^{n} \lambda_k B_k(z) \right| < \varepsilon_1, \quad \forall z \in \Pi^+.$$

Because the Blaschke products $B_1(z), B_2(z), \ldots, B_n(z)$ have zeros in Π^+ , they define upper Blaschke distributions $B_1^+, B_2^+, \ldots, B_n^+$ respectively, as in [7]. Now, let

(1.4)
$$\langle B_k^+, \varphi \rangle = \lim_{y \to 0^+} \int_{-\infty}^{\infty} B_k(z)\varphi(x) \, dx, \quad z = x + iy \in \Pi,^+ \quad \varphi \in S(\mathcal{R}).$$

We will prove that $B_k^+ \in S'(\mathcal{R})$, for $k \in \{1, 2, ..., n\}$. Because of the theorem of characterization of tempered distributions given in [8], it is enough to prove that $B_k^+ * \alpha$ are continuous and bounded functions on \mathcal{R} , for every $\alpha \in D(\mathcal{R})$. So, let $\alpha \in D(\mathcal{R})$, supp $(\alpha) = K$, $t \in \mathcal{R}$ and $K_1 = t - K$. Then

$$(B_k^+ * \alpha)(t) = \langle B_{kx}^+, \ \alpha(t-x) \rangle$$

= $\lim_{y \to 0^+} \int_{-\infty}^{\infty} B_k(x+iy)\alpha(t-x) \, dx$
= $\lim_{y \to 0^+} \int_{K_1}^{\infty} B_k(x+iy)\alpha(t-x) \, dx$.

First, we will show that $B_k^+ * \alpha$ is bounded function on \mathcal{R} :

$$|(B_k^+ * \alpha)(t)| = \left| \lim_{y \to 0^+} \int_{K_1} B_k(x+iy)\alpha(t-x) \, dx \right| \stackrel{|B_k(x+iy)| \le 1}{\le} \int_{K_1} |\alpha(t-x)| \, dx$$
$$\le M \cdot m(K) < \infty \,,$$

where m(K) is the Lebesque measure of K.

Now, we will prove the continuity of $B_k^+ * \alpha$ on \mathcal{R} . Let $\varepsilon > 0$, $t_0 \in \mathcal{R}$ and let $K_0 = t_0 - K$. Since α is continuous, there exists $\delta > 0$, so that $|t - t_0| < \delta$ implies $|\alpha(t) - \alpha(t_0)| < \varepsilon$ i.e. if $x \in \mathcal{R}$ is any real number, the last is equivalent with: there exists $\delta > 0$, so that $|(t - x) - (t_0 - x)| < \delta$ implies $|\alpha(t - x) - \alpha(t_0 - x)| < \varepsilon$. Now

$$\begin{split} |(B_k^+ * \alpha)(t) - (B_k^+ * \alpha)(t_0)| \\ &= \Big| \lim_{y \to 0^+} \int_{-\infty}^{\infty} B_k(x + iy) \alpha(t - x) \, dx - \lim_{y \to 0^+} \int_{-\infty}^{\infty} B_k(x + iy) \alpha(t_0 - x) \, dx \Big| \\ &\leq \Big| \lim_{y \to 0^+} \int_{K_2} B_k(x + iy) [\alpha(t - x) - \alpha(t_0 - x)] \, dx \Big| \stackrel{|B_k(x + iy)| \le 1}{\le} \\ &\leq \int_{K_2} |\alpha(t - x) - \alpha(t_0 - x)| \, dx \\ &\leq \varepsilon (2m(K) + \delta) = \varepsilon_1 \quad \text{when} \quad |t - t_0| < \delta \end{split}$$

 $(K_2 \text{ is a compact set that contains } K_0 \text{ i } K_1.)$

On the other hand, using the properties of the space H^{∞} , it is clear that the boundary function f^* of the function f(z) exists, $f^* \in L^{\infty}$ and $f(x+iy) \to f^*(x)$, in L^{∞} , as $y \to 0^+$, $x + iy \in \Pi^+$.

Even more, theorem 5.3 in [3] claims that $f(x + iy) \to f^*(x)$ in $S'(\mathcal{R})$, as $y \to 0^+, x + iy \in \Pi^+$ i.e.

(1.5)
$$\lim_{y\to 0^+} \int_{-\infty}^{\infty} f(x+iy)\varphi(x) \, dx = \langle T_{f^*}, \varphi \rangle, x+iy \in \Pi^+, \quad \varphi \in S(\mathcal{R}).$$

Now, we get that

$$\left| \langle T_{f^*}, \varphi \rangle - \sum_{k=1}^n \lambda_k \langle B_k^+, \varphi \rangle \right|$$

$$\stackrel{(1.4)}{=}_{(1.5)} \left| \lim_{y \to 0^+} \int_{-\infty}^\infty f(x+iy)\varphi(x) \, dx - \sum_{k=1}^n \lambda_k \lim_{y \to 0^+} \int_{-\infty}^\infty B_k(x+iy)\varphi(x) \, dx \right|$$

$$= \left| \lim_{y \to 0^+} \int_{-\infty}^{\infty} f(x+iy)\varphi(x) \, dx - \lim_{y \to 0^+} \sum_{k=1}^n \lambda_k \int_{-\infty}^{\infty} B_k(x+iy)\varphi(x) \, dx \right|$$

$$= \left| \lim_{y \to 0^+} \int_{-\infty}^{\infty} f(x+iy)\varphi(x) \, dx - \lim_{y \to 0^+} \int_{-\infty}^{\infty} \left[\sum_{k=1}^n \lambda_k B_k(x+iy) \right] \varphi(x) \, dx \right|$$

$$= \left| \lim_{y \to 0^+} \int_{-\infty}^{\infty} \left[f(x+iy) - \sum_{k=1}^n \lambda_k B_k(x+iy) \right] \varphi(x) \, dx \right|$$

$$\leq \lim_{y \to 0^+} \int_{-\infty}^{\infty} \left| f(x+iy) - \sum_{k=1}^n \lambda_k B_k(x+iy) \right| |\varphi(x)| \, dx$$

$$\stackrel{(1.3)}{\leq} \lim_{y \to 0^+} \int_{-\infty}^{\infty} \varepsilon_1 |\varphi(x)| \, dx = \varepsilon_1 \int_{-\infty}^{\infty} |\varphi(x)| \, dx$$

$$= \varepsilon_1 \|\varphi\|_{L^1} = \frac{\varepsilon}{\|\varphi\|_{L^1}} \|\varphi\|_{L^1} = \varepsilon.$$

References

- [1] Bremerman, G., Distributions, complex variables, and Fourier transforms, Mir, Moskva (1968).
- [2] Carmichael, R. D. and Mitrović, D., Distributions and analytic functions, John Wiley and Sons, Inc., New York (1988).
- [3] Carmichael, R. D. and Richters, S. P., Holomorphic functions in tubes which have distributional boundary value and which are H^p functions, Siam J. Math. Anal. 14, No. 3 (1983), 596-621.
- [4] Duren, P. L., Theory of H^p Spaces, Acad. Press, New York (1970).
- [5] Garnett, J., Bounded analytic function, Acad. Press, New York (1981), 467pp.
- [6] Koosis, P., Introduction to H^p spaces, Mir, Moskva (1984).
- [7] Manova Eraković, V., Introduction of Blaschke distributions and approximation of distributions in D' by a sequence of finite Blaschke distributions, Mat. Bilten, 24 (L), Skopje (2000).
- [8] Schwartz, L., Theorie des distributions, Tome I, Tome II, Herman and C^{ie}, Paris (1950, 1951).
- [9] Stanković, B., Pilipović, S., Teorija distribucija, PMF, Novi Sad (1988).

Faculty of Natural Sciences and Mathematics, Institut of Mathematics P.O. Box 162, 1000 Skopje, Macedonia E-mail: vesname@iunona.pfm.ukim.edu.mk