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ASYMPTOTIC EQUIVALENCE FOR POSITIVE DECAYING

SOLUTIONS OF THE GENERALIZED EMDEN-FOWLER

EQUATIONS AND ITS APPLICATION TO ELLIPTIC

PROBLEMS

KEN-ICHI KAMO

Abstract. This paper is concerned with the problem of asymptotic equiva-
lence for positive rapidly decaying solutions of a class of second order quasi-
linear ordinary differential equations. Its application to exterior Dirichlet
problems is also given.

1. Introduction

In this paper we consider the two differential equations of the same form

(p(t)|x′|α−1x′)′ = a(t)|x|λ−1x(1)

and

(p(t)|y′|α−1y′)′ = b(t)|y|λ−1y .(2)

Throughout this paper we assume the following:

(C1) 0 < α < λ (super-homogeneity condition);

(C2) p, a, b ∈ C([t0,∞); (0,∞));

(C3)

∫ ∞

t0

p(t)−1/α dt < ∞.

For the sake of convenience, we put

π(t) =

∫ ∞

t

p(s)−1/α ds , t ≥ t0 .

By a solution x of (1) we mean a function x such that x and p|x′|α−1x′ are of
class C1, and x satisfies (1) near +∞. Throughout this paper we shall confine
ourselves to the study of those solutions which do not vanish identically near +∞.
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It was already known in [8] that every positive solution x of (1) has exactly one of
the four asymptotic behavior listed bellow:

(i) (rapidly decaying solution) lim
t→∞

x(t)

π(t)
= 0;

(ii) (slowly decaying solution) lim
t→∞

x(t)

π(t)
∈ (0,∞);

(iii) (asymptotic constant solution) lim
t→∞

x(t) ∈ (0,∞);

(iv) (unbounded solution) lim
t→∞

x(t) = ∞.

In this paper we discuss only rapidly decaying solutions. Necessary conditions
and sufficient conditions for the existence of rapidly decaying solutions were also
obtained in [8]:

Theorem A. If (1) has a positive rapidly decaying solution, then
∫ ∞

a(t) dt = ∞ .

Theorem B. The equation (1) has a positive rapidly decaying solution if
∫ ∞

a(t)π(t)λ dt = ∞ .

Two topics are treated in the present paper. Firstly we show that if a and b have
the same asymptotic behavior, then so do positive rapidly decaying solutions of
equation (1) and of equation (2). This is the main objective of this paper. Secondly,
as an application of this result, we prove the existence of positive solutions of a
class of quasilinear elliptic problems with prescribed asymptotic behavior near ∞.
The proof given there is based on the supersolution-subsolution method due to
Kura [5].

We remark that such problems have been discussed essentially in [1, 3, 4, 7]
if (C3) is violated:

∫∞
p(t)−1/α dt = ∞. On the other hand, if a(t) < 0, then

asymptotic theory for solutions was discussed in detail, for example, [2, 6].

2. Main Result

The following comparison lemma for rapidly decaying solutions is needed to
prove our main theorem:

Lemma 1. Suppose that a(t) ≤ b(t) for t ∈ [t0,∞). Let x(t) and y(t) be positive

rapidly decaying solutions of equations (1) and (2), respectively, and x(t0) ≥ y(t0).
Then x(t) ≥ y(t) for t ∈ [t0,∞).

Proof. Suppose the contrary that there exists t1 > t0 such that x(t1) < y(t1).
Let t2 = max{t < t1 : x(t) = y(t)}. Then x(t2) = y(t2) and x(t) < y(t) for
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t ∈ (t2, t1). We can easily see that there exists t3 ∈ (t2, t1] such that x(t3) < y(t3)
and x′(t3) < y′(t3). By Lemma 1.1 in [8], we obtain x(t) < y(t) for t ≥ t3. Since

(p(t)|y′|α−1y′)′ − (p(t)|x′|α−1x′)′ = b(t)yλ − a(t)xλ > 0 for t ≥ t3 ,

we see

p(t)|y′|α−1y′ − p(t)|x′|α−1x′ = p(t)((−x′)α − (−y′)α)

≥ p(t3)[(−x′(t3))
α − (−y′(t3))

α]

≡ δ1 > 0

for t ≥ t3. This implies that

(−x′(t))α ≥ (−x′(t))α − (−y′(t))α > δ1p(t)−1 ,

that is

−x′(t) > δ2p(t)−1/α ,

where δ2 is a positive constant. Integrating this inequality on [t,∞), we obtain

x(t) > δ2

∫ ∞

t

p(s)−1/α ds for t ≥ t3 ,

which is a contradiction. Hence y(t) ≤ x(t) for t ≥ t0. This completes the
proof.

The following theorem is the main result of this paper:

Theorem 1. Suppose that

lim
t→∞

a(t)

b(t)
= 1 .

Let x and y be positive rapidly decaying solutions of (1) and (2), respectively. Then

x(t) ∼ y(t) as t → ∞.

Proof. Put z(t) = x(t)/y(t), and make the change of variable s =
∫ t

y(r)−2 dr.
Then

z̈(s) +
b(t)y(t)λ+3 + p′(t)(−y′(t))αy(t)3

αp(t)(−y′(t))α−1
z(s)

=
y(t)2[−y′(t)y(t)z(s) − ż(s)][p′(t) + a(t)y(t)λz(s)λ{−y′(t)z(s) − ż(s)/y(t)}−α]

αp(t)
,

where · = d/ds. To establish this theorem it suffices to show that lims→∞ z(s) = 1.
First we show that

0 < lim inf
s→∞

z(s) ≤ lim sup
s→∞

z(s) < ∞ ,(3)

i.e., there exist positive constants c1 and c2 satisfying

c1y(t) ≤ x(t) ≤ c2y(t) near + ∞ .

Let δ be a positive constant. Then for sufficiently large t1 we have

b(t) ≤ (1 + δ)a(t) , t ≥ t1 .(4)
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We note that the function w(t) ≡ (1 + δ)1/(α−λ)x(t) solves the equation

(p(t)|w′|α−1w′)′ = (1 + δ)a(t)|w|λ−1w .(5)

There are two possibilities for y(t1) and w(t1) :
(A) w(t1) ≤ y(t1); and
(B) w(t1) > y(t1).
Let case (A) occur. Since y and w are rapidly decaying solutions of equations

(2) and (5), respectively, we see by (4) and Lemma 1 that w(t) ≤ y(t) for t ≥ t1.
Obviously, this implies that x(t) = O(y(t)).

Next let (B) occur. We can find sufficiently small constant 0 < m < 1 such
that mw(t1) < y(t1). Notice that the function w̄(t) ≡ mw(t) is a rapidly decaying
solution of the equation

(p(t)|w̄′|α−1w̄′)′ =
1 + δ

mλ−α
a(t)|w̄|λ−1w̄ .

By Lemma 1 again, we see that w̄(t) ≡ mw(t) ≤ y(t); and so we have x(t) =
O(y(t)).

In a similar way we find that y(t) = O(x(t)). Hence (3) holds.
Next we show that z → 1 as s → ∞. Define an auxiliary function f by

f(s) =

(

b̃(s)

ã(s)

)1/(λ−α)

,

where ã(s) = a(t(s)) and b̃(s) = b(t(s)). Clearly we see that f(s) → 1 as s → ∞.
Notice that if z attains an extremum at some point s0, then we have

z̈(s0) =
ã(s0)y(t(s0))

λ+3(−y′(t(s0)))
1−α

αp(t(s0))
z(s0)

[

z(s0)
λ−α −

b̃(s0)

ã(s0)

]

.(6)

Hence if ż = 0 and z > f(s), then z̈(s) > 0 there, by (6). This means that only
minimum can occur in the region z > f(s). Similarly only maximum can occur in
the regeon 0 < z < f(s).

We may assume that f(s) oscillates around 1 as s → ∞ since the other case is
even simpler.

For sufficiently small δ > 0, we can find two strictly increasing sequences {sn}
and {s̃n} satisfying























lim
n→∞

sn = lim
n→∞

s̃n = ∞ ,

f(sn) = 1 +
δ

n
, f(s) < 1 +

δ

n
, s > sn ,

f(s̃n) = 1 −
δ

n
, f(s) > 1 −

δ

n
, s > s̃n , n ∈ N .

Obviously, if z(s) attains extremum at points (s, v) satisfying

sn ≤ s ≤ sn+1, z(s) > 1 +
δ

n
,
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then only minimum can occur. Similarly, if z(s) attains extremum at points (s, z)
satisfying

s̃n ≤ s ≤ s̃n+1 , 0 < z(s) < 1 −
δ

n
,

then only maximum can occur. We define the sets Ωn and Ω̃n, n ∈ N , by

Ωn = {(s, z) | sn ≤ s ≤ sn+1, 1 ≤ z ≤ z(sn)} ,

Ω̃n = {(s, z) | s̃n ≤ s ≤ s̃n+1, z(s̃n) ≤ z ≤ 1} ,

and put

Ω =

(

∞
⋃

n=1

Ωn

)

⋃

(

∞
⋃

n=1

Ω̃n

)

.

Suppose that
(

s∗, z(s∗)
)

∈ Ω. (The other case can be treated similarly.) If z
remains in IntΩ (the interior of Ω) for all s ≥ s∗, then clearly lims→∞ z(s) = 1.
Suppose the contrary that z intersects ∂Ω. Let s̄ > s∗, be the least value of s’s
where z intersects ∂Ω. We may suppose that z(s̄) > 1 (and we automatically have
z(s̄) > f(s̄) ) since the other case is proved as in this case. If ż(s̄) > 0, then z
never goes back to IntΩ again, and hence one can easily show that v is eventually
monotone. If ż(s̄) < 0, then either z goes back to IntΩ again, or z never hits the
set IntΩ for s ≥ s̄. In the latter case we find that z is eventually monotone, while
if z goes out of IntΩ and goes into IntΩ infinitely many times in a neighborhood
of +∞, then we find that z → 1 as s → ∞. The case that ż(s̄) = 0 can be treated
similarly.

Continuing the tracing of the solution curve in this manner, we find that z is
eventually monotone or that z(s) → 1 as s → ∞. Hence z has a finite limit l. By
(3) we find that l ∈ (0,∞).

Since rapidly decaying solution y has the property limt→∞ p(t)[−y′(t)]α = 0,
employing l’Hospital’s rule we obtain

l = lim
t→∞

x(t)

y(t)
= lim

t→∞

−x′(t)

−y′(t)
= lim

t→∞

(

p(t)(−x′(t))α

p(t)(−y′(t))α

)1/α

= lim
t→∞

(

−[p(t)(−x′(t))α]′

−[p(t)(−y′(t))α]′

)1/α

= lim
t→∞

(

a(t)x(t)λ

b(t)y(t)λ

)1/α

= lλ/α .

This implies that l = 1, that is, x(t) ∼ y(t) as t → ∞. This completes the
proof.

Let c > 0, 0 < α < β and βλ − ασ − αλ − α < 0. Then, the typical equation

(tβ |v′|α−1v′)′ = ctσ|v|λ−1v

has a positive rapidly decaying solution u0 explicitly given by

u0(t) = ĉt−k ,(7)

where

k =
σ + α + 1 − β

λ − α
> 0 , and ĉλ−α =

kα(α(k + 1) − β)

c
.
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This simple observation and Theorem 2 give the following corollary used in Section
3:

Corollary 1. Consider the equation

(tβ |u′|α−1u′)′ = q(t)|u|λ−1u ,(8)

where α, β and λ are constants such that 0 < α < λ and α < β, and q is a

positive continuous function satisfying q(t) ∼ ctσ for some c > 0, σ ∈ R. If

βλ−ασ −αλ−α < 0, then every positive rapidly decaying solution of (8) has the

asymptotic form

u(t) ∼ u0(t) ,

where u0 is given by (7).

3. Application

In this section we show that Corollary 3 can be applied to show the existence
of some solutions of the exterior Dirichlet problem for the elliptic equation:

div (|∇u|m−2∇u) = q(x)|u|λ−1u , in Ω ,(9)

u = g(x) , on ∂Ω ,(10)

where Ω is an exterior domain in RN , N ≥ 2, with boundary ∂Ω of class C1,
0 < m− 1 < λ, g ∈ C1

(

∂Ω; (0,∞)
)

and q ∈ C
(

Ω̄; (0,∞)
)

. We assume throughout
the section that

q(x) ∼ c1|x|
σ1 as |x| → ∞ for some constants c1 > 0 and σ1 ∈ R .

A function u is said to be a solution (subsolution, supersolution) of equation

(9) in Ω if u ∈ W 1,m
loc (Ω) and

∫

Ω

{|∇u|m−2∇u · ∇φ + q(x)|u|λ−1uφ} dx = 0 (≤ 0, ≥ 0) ,

for all φ ∈ C∞
0 (Ω) with φ ≥ 0 in Ω. See [5] for details.

To find positive solutions of problem (9)–(10) we use the supersolution-subso-
lution method which can be formulated, in our context, as follows:

Proposition 1 (Cf. Theorem 4.4 in [5]). Let v and w be a subsolution and a su-

persolution of (9) in Ω, respectively, such that v ≤ w a.e. in Ω and v ≤ g ≤ w a.e.

on ∂Ω. Then problem (9)–(10) has a solution u such that v ≤ u ≤ w a.e. in Ω.

Theorem 2. If m < N and Nλ − mN − mσ1 + N + σ1 − mλ < 0, then problem

(9)–(10) has a positive solution u satisfying

u(x) ∼ a|x|−ν , as |x| → ∞(11)

where

ν =
m + σ1

λ − m + 1
> 0 and

aλ−m+1 =
(Nm + mλ + mσ1 − Nλ − N − σ1)(m + σ1)

m−1

c1(λ − m + 1)m
.

(12)
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We introduce notations used here. We may assume without loss of generality
that 0 /∈ Ω̄ and q is defined in RN . Let

g∗ = min
∂Ω

g(x) , g∗ = max
∂Ω

g(x) ;

r∗ = dist(0, ∂Ω) , r∗ = max{|x|; x ∈ ∂Ω} ;

q∗(r) = min
|x|=r

q(x) and q∗(r) = max
|x|=r

q(x) .

Proof of Theorem 5. A function ū satisfying

div(|∇ū|m−2∇ū) ≤ q∗(|x|)ū
λ , |x| ≥ r∗(13)

is a supersolution of equation (9). Similarly a function u satisfying

div(|∇u|m−2∇u) ≥ q∗(|x|)uλ, |x| ≥ r∗(14)

is a subsolution of equation (9). Since these inequalities have radial symmetry, it
is natural to construct such ū and u as radially symmetric functions. By putting
ū(x) = v̄(r) and u(x) = v(r), r = |x|, (13) and (14) reduce to

(rN−1|v̄′|m−2v̄′)′ ≤ rN−1q∗(r)v̄
λ , r ≥ r∗(15)

and

(rN−1|v′|m−2v′)′ ≥ rN−1q∗(r)vλ , r ≥ r∗ ,(16)

respectively, where ′ = d/dr.
First we construct a subsolution u. Consider the problem for the ordinary

differential equation
{

(rN−1|w′|m−2w′)′ = rN−1q∗(r)wλ , r ≥ r∗ ,

w(r∗) = g∗ .

From Theorem 4.2 in [8], this problem has at least one positive rapidly decaying
solution w. Since m < N and Nλ−mN −mσ1 + N + σ1 −mλ < 0, we find from
Corollary 3 that

w(r) ∼ ar−ν as r → ∞ ,(17)

where a and ν are given by (12). Hence, the function given by v(r) ≡ w(r)
satisfies (16) (with ≥ replaced by =). This means that the function u(x) ≡ v(|x|)
is a subsolution of (9) satisfying u(x) ≤ g(x) on ∂Ω.

Next we must construct a supersolution ū so that u ≤ ū in Ω and ū ≥ g on ∂Ω.
Let w̄ be a positive rapidly decaying solution of the problem

{

(rN−1|w̄′|m−2w̄′)′ = rN−1q∗(r)w̄
λ , r ≥ r∗ ,

w̄(r∗) = g∗ .

Corollary 3 implies, as before, that

w̄(r) ∼ ar−ν as r → ∞ ,(18)
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where a and ν are given in (12). Put

z̄(r) =



















w̄(r) , r ≥ r∗ ,

g∗ + (m−1)(r∗)(1−N)/(m−1)(−w̄′(r∗))
m−N

[

(r∗)(m−N)/(m−1) − r(m−N)/(m−1)
]

,

r∗ ≤ r ≤ r∗ .

Then, obviously z̄ is of class C1[r∗,∞) and satisfies
{

(rN−1|z̄′|m−2z̄′)′ ≤ rN−1q∗(r)z̄
λ , r ≥ r∗ ,

z̄(r) ≥ g∗ , r∗ ≤ r ≤ r∗ .

Moreover Lemma 1 implies that w ≤ z̄, r ≥ r∗. Therefore the function ū given by
ū(x) = z̄(|x|) becomes a supersolution of (9) satisfying

u ≤ ū for |x| ≥ r∗ , and ū ≥ g on∂Ω .

Proposition 4 guarantees that boundary value problem (9)–(10) has at least one
solution u satisfying

u(x) ≤ u(x) ≤ ū(x) , a.e. x ∈ Ω .

Since the asymptotic behavior (17) and (18) yield

u(x) ∼ ū(x) ∼ a|x|−ν as |x| → ∞ ,

u must satisfy (11). This completes the proof.

When m = 2 < N , the positive solution obtained in Theorem 5 satisfies

u(x) ∼ c|x|−(σ1+2)/(λ−1) as |x| → ∞

for a suitable constant c > 0. Since (σ1+2)/(λ−1) > N−2 under our assumptions,
this means that semilinear elliptic equation ∆u = q(x)|u|λ−1u can possess positive
solutions decaying faster than |x|2−N as |x| → ∞.
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