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THE RING OF ARITHMETICAL FUNCTIONS

WITH UNITARY CONVOLUTION:

DIVISORIAL AND TOPOLOGICAL PROPERTIES

JAN SNELLMAN

Abstract. We study (A, +,⊕), the ring of arithmetical functions with uni-
tary convolution, giving an isomorphism between (A, +,⊕) and a generalized
power series ring on infinitely many variables, similar to the isomorphism of
Cashwell-Everett [4] between the ring (A, +, ·) of arithmetical functions with
Dirichlet convolution and the power series ring C [[x1, x2, x3, . . . ]] on count-
ably many variables. We topologize it with respect to a natural norm, and
show that all ideals are quasi-finite. Some elementary results on factoriza-
tion into atoms are obtained. We prove the existence of an abundance of
non-associate regular non-units.

1. Introduction

The ring of arithmetical functions with Dirichlet convolution, which we’ll denote
by (A, +, ·), is the set of all functions N+ → C, where N+ denotes the positive
integers. It is given the structure of a commutative C-algebra by component-wise
addition and multiplication by scalars, and by the Dirichlet convolution

f · g(k) =
∑

r|k

f(r)g(k/r) .(1)

Then, the multiplicative unit is the function e1 with e1(1) = 1 and e1(k) = 0 for
k > 1, and the additive unit is the zero function 0.

Cashwell-Everett [4] showed that (A, +, ·) is a UFD using the isomorphism

(A, +, ·) ' C [[x1, x2, x3, . . . ]] ,(2)

where each xi corresponds to the function which is 1 on the i’th prime number,
and 0 otherwise.
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Schwab and Silberberg [9] topologised (A, +, ·) by means of the norm

|f | =
1

min { k | f(k) 6= 0 }
.(3)

They noted that this norm is an ultra-metric, and that
(

(A, +, ·), |·|
)

is a valued
ring, i.e. that

1. |0| = 0 and |f | > 0 for f 6= 0,

2. |f − g| ≤ max {|f |, |g|},

3. |fg| = |f ||g|.

They showed that (A, |·|) is complete, and that each ideal is quasi-finite, which
means that there exists a sequence (ek)∞k=1, with |ek| → 0, such that every element
in the ideal can be written as a convergent sum

∑

k=1 ckek, with ck ∈ A.
In this article, we treat instead (A, +,⊕), the ring of all arithmetical functions

with unitary convolution. This ring has been studied by several authors, such as
Vaidyanathaswamy [11], Cohen [5], and Yocom [13].

We topologise A in the same way as Schwab and Silberberg [9], so that (A, +,⊕)
becomes a normed ring (but, in contrast to (A, +, ·), not a valued ring). We show
that all ideals in (A, +,⊕) are quasi-finite.

We show that (A, +,⊕) is isomorphic to a monomial quotient of a power series
ring on countably many variables. It is présimplifiable and atomic, and there is
a bound on the lengths of factorizations of a given element. We give a sufficient
condition for nilpotency, and prove the existence of plenty of regular non-units.

Finally, we show that the set of arithmetical functions supported on square-free
integers is a retract of (A, +,⊕).

2. The ring of arithmetical functions with unitary convolution

We denote the integers by Z, the non-negative integers by N, and the positive
integers by N+. Let pi be the i’th prime number. Denote by P the set of prime
numbers, and by PP the set of prime powers. The integer 1 is not a prime, nor a
prime power. Let ω(r) be the number of distinct prime factors of r, with ω(1) = 0.

Definition 2.1. If k, m are positive integers, we define their unitary product as

k ⊕ m =

{

km gcd(k, m) = 1

0 otherwise
(4)

If k ⊕ m = p, then we write k‖p and say that k is a unitary divisor of p.

The so-called unitary convolution was introduced by Vaidyanathaswamy [11],
and was further studied Eckford Cohen [5].

Definition 2.2. A = {f : N+ → C}, the set of complex-valued functions on the
positive integers. We define the unitary convolution of f, g ∈ A as

(f ⊕ g)(n) =
∑

m⊕p=n
m,n≥1

f(m)g(n) =
∑

d‖n

f(d)g(n/d)(5)
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and the addition as

(f + g)(n) = f(n) + g(n) .

The ring (A, +,⊕) is called the ring of arithmetic functions with unitary convo-
lution.

Definition 2.3. For each positive integer k, we define ek ∈ A by

ek(n) =

{

1 k = n

0 k 6= n
(6)

We also define1 0 as the zero function, and 1 as the function which is constantly 1.

Lemma 2.4. 0 is the additive unit of A, and e1 is the multiplicative unit. We
have that

(ek1 ⊕ ek2 ⊕ · · · ⊕ ekr
)(n) =











1 n = k1k2 · · · kr and gcd(ki, kj) = 1

for i 6= j

0 otherwise

(7)

hence

ek1 ⊕ ek2 ⊕ · · · ⊕ ekr
=

{

ek1k2···kr
if gcd(ki, kj) = 1 for i 6= j

0 otherwise
(8)

Proof. The first assertions are trivial. We have [10] that for f1, . . . , fr ∈ A,

(f1 ⊕ · · · ⊕ fr)(n) =
∑

a1⊕···⊕ar=n

f1(a1) · · · fr(ar)(9)

Since

ek1(a1)ek2(a2) · · · ekr
(ar) = 1 iff ∀i : ki = ai ,

(7) follows.

Lemma 2.5. For n ∈ N+, en can be uniquely expressed as a square-free monomial
in { ek | k ∈ PP } (we use the convention that the empty product corresponds to
the multiplicative unit e1).

Proof. By unique factorization, there is a unique way of writing n = pa1

i1
· · · par

ir
,

and (8) gives that

en = ep
a1
i1

···par
ir

= ep
a1
i1

⊕ · · · ⊕ ep
ar
ir

.

Theorem 2.6. (A, +,⊕) is a quasi-local, non-noetherian commutative ring hav-
ing divisors of zero. The units U(A) consists of those f such that f(1) 6= 0.

1In [10], 1 is denoted e, and e1 denoted e0.
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Proof. It is shown in [10] that (A, +,⊕) is a commutative ring, having zero-
divisors, and that the units consists of those f such that f(1) 6= 0. If f(1) = 0
then

(f ⊕ g)(1) = f(1)g(1) = 0 .

Hence the non-units form an ideal m, which is then the unique maximal ideal.
We will show (Lemma 3.10) that m contains an ideal (the ideal generated by

all ek, for k > 1) which is not finitely generated, so A is non-noetherian.

3. A topology on A

The results of this section are inspired by [9], were the authors studied the ring
of arithmetical functions under Dirichlet convolution. We’ll use the notations of
[3]. We regard C as trivially normed.

Definition 3.1. Let f ∈ A \ {0}. We define the support of f as

supp(f) =
{

n ∈ N+ | f(n) 6= 0
}

.(10)

We define the order2 of a non-zero element by

N(f) = min supp(f) .(11)

We also define the norm of f as

|f | = N(f)−1(12)

and the degree as

D(f) = min {ω(k) | k ∈ supp(f) } .(13)

By definition, the zero element has order infinity, norm 0, and degree ∞.

Lemma 3.2. The value semigroup of (A, |·|) is

|A \ {0}| =
{

1/k | k ∈ N+
}

,

a discrete subset of R+.

Lemma 3.3. Let f, g ∈ A \ {0}. Let N(f) = i, N(g) = j, so that f(i) 6= 0 but
f(k) = 0 for all k < i, and similarly for g. Then, the following hold:

(i) N(f − g) ≥ min {N(f), N(g)}.

(ii) N(cf) = N(f) for c ∈ C \ {0}.

(iii) N(f) = 1 iff f is a unit.

(iv) N(f · g) = N(f)N(g) ≤ N(f ⊕ g), with equality iff gcd(i, j) = 1.

(v) N(f ⊕ g) ≥ max {N(f), N(g)}, with strict inequality iff both f and g are
non-units.

(vi) D(f + g) ≥ min {D(f), D(g)}.

(vii) D(f) = 0 if and only if f is a unit.

(viii) D(f ⊕ g) ≥ D(f) + D(g) ≥ max {D(f) , D(g)} ,
with D(f) + D(g) > max {D(f), D(g)} if f, g are non-units.

2In [10] the term norm is used.
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Proof. (i), (ii), and (iii) are trivial, and (iv) is proved in [10].
If ω(s) < min {D(f), D(g)} then

s 6∈ supp(f) ∪ supp(g) ,

so

(f + g)(s) = f(s) + g(s) = 0 .

This proves (vi). Since f is a unit iff f(1) 6= 0, (vii) follows.
For any a in the support of f and any b in the support of g, such that a⊕ b 6= 0,

we have that

ω(a ⊕ b) = ω(a) + ω(b) ≥ D(f) + D(g) .

This proves the first inequality of (viii). Using (vii) the other assertion follows.
(v) is proved similarly.

Corollary 3.4. |f ⊕ g| ≤ |f ||g| = |f · g|.

Proposition 3.5. |·| is an ultrametric function on A, making (A, +,⊕) a normed
ring, as well as a faithfully normed, b-separable complete vector space over C.

Proof. ((A, +, ·), |·|) is a valuated ring, and a faithfully normed complete vector
space over C [9]. It is also separable with respect to bounded maps [3, Corollary
2.2.3]. So (A, +) is a normed group, hence Corollary 3.4 shows that (A, +,⊕) is a
normed ring.

Note that, unlike ((A, +, ·), |·|), the normed ring ((A, +,⊕), |·|) is not a valued
ring, since

|e2 ⊕ e2| = |0| = 0 < |e2|
2 = 1/4 .

In fact, defining fn to be the n’th unitary power of n, we have that

Lemma 3.6. If f is a unit, then 1 = |fn| = |f |n for all positive integers n. If n
is a non-unit, then |fn| < |f |n for all n > 1.

Proof. The first assertion is trivial, so suppose that f is a non-unit. From Corol-
lary 3.4 we have that |fn| ≤ |f |n. If |f | = 1/k, k > 1, i.e. f(k) 6= 0 but f(j) = 0

for j < k, then f2(k2) = 0 since gcd(k, k) = k > 1. It follows that
∣

∣f2
∣

∣ > |f |2,
from which the result follows.

Recall that in a normed ring, a non-zero element f is called

• topologically nilpotent if fn → 0,
• power-multiplicative if |fn| = |f |n for all n,
• multiplicative if |fg| = |f ||g| for all g in the ring.

Theorem 3.7. Let f ∈ ((A, +,⊕), |·|), f 6= 0. Then the following are equivalent:

(1) f is topologically nilpotent,

(2) f is not power-multiplicative,

(3) f is not multiplicative3 in the normed ring (A, +,⊕), |·|),

3This is not the same concept as multiplicativity for arithmetical functions, i.e. that f(nm) =
f(n)f(m) whenever gcd(n,m) = 1. However, since the latter kind of elements satisfy f(1) = 1,
they are units, and hence multiplicative in the normed-ring sense.
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(4) f is a non-unit,

(5) |f | < 1.

Proof. Using [3, 1.2.2, Prop. 2], this follows from the previous Lemma, and the
fact that for a unit f ,

1 =
∣

∣f−1
∣

∣ = |f |−1 .

3.1. A Schauder basis for (A, |·|).

Definition 3.8. Let A′ denote the subset of A consisting of functions with finite
support. We define a pairing

A×A′ → C

〈f, g〉 =

∞
∑

k=1

f(k)g(k)
(14)

Theorem 3.9. The set { ek | k ∈ N+ } is an ordered orthogonal Schauder base in
the normed vector space (A, |·|). In other words, if f ∈ A then

f =
∞
∑

k=1

ckek , ck ∈ C(15)

where

(i) |ek| → 0,

(ii) the infinite sum (15) converges w.r.t. the ultrametric topology,

(iii) the coefficients ck are uniquely determined by the fact that

〈f, ek〉 = f(k) = ck(16)

(iv)

max
k∈N+

{|ck||ek|} =

∣

∣

∣

∣

∣

∞
∑

k=1

ckek

∣

∣

∣

∣

∣

.(17)

The set {e1} ∪ { ep | p ∈ PP } generates a dense subalgebra of ((A, +,⊕), |·|).

Proof. It is proved in [9] that this set is a Schauder base in the topological vector
space (A, |·|). It also follows from [9] that the coefficients ck in (3.9) are given by
ck = f(k).

It remains to prove orthogonality. With the above notation,

|f | =

∣

∣

∣

∣

∣

∞
∑

k=1

ckek

∣

∣

∣

∣

∣

= 1/j ,

where j is the smallest k such that ck 6= 0. Recalling that C is trivially normed,
we have that

|ck||ek| =

{

|ek| = 1/k if ck 6= 0

0 if ck = 0
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so maxk∈N+ {|ck||ek|} = 1/j, with j as above, so (17) holds.
By Lemma 2.5 any ek can be written as a square-free monomial in the elements

of { ep | p ∈ PP }. The set { ek | k ∈ N+ } is dense in A, so { ep | p ∈ PP } gen-
erates a dense subalgebra.

Let J ⊂ m denote the ideal generated by all ek, k > 1.

Lemma 3.10. J is not finitely generated.

Proof. The following proof was provided by the anonymous referee. Consider the
following ideal I in A:

I = {f ∈ A | f(1) = 0 , ∀ p ∈ P : f(p) = 0} .

Then the units of A/I are precisely the elements of the form g + I , where g ∈ A,
g(1) 6= 0. Moreover, for any f, g ∈ A such that f(1) = a ∈ C, g(1) = 0, we have
(f + I)⊕ (g + I) = (ag) + I = a(g + I). Assume that J is finitely generated ideal,
say J = (b1, . . . , br). Then b1(1) = · · · = br(1) = 0 and any element of J is of the
form

∑r
i=1 fi ⊕ bi for suitable f1, . . . fr ∈ A. We have
( r
∑

i=1

fi ⊕ bi

)

+ I =

r
∑

i=1

(fi + I) ⊕ (bi + I) =

r
∑

i=1

ai(bi + I) ,

where ai = fi(1) ∈ C, which belongs to the finitely dimensional linear subspace of
A/I generated by b1 + I , . . . , br + I . This is a contradiction with the fact that the
linear subspace of A/I generated by ek + I , k > 1, is of infinite dimension.

Definition 3.11. An ideal I ⊂ A is called quasi-finite if there exists a sequence
(gk)∞k=1 in I such that |gk| → 0 and such that every element f ∈ I can be written
(not necessarily uniquely) as a convergent sum

f =

∞
∑

k=1

ak ⊕ gk , ak ∈ A .(18)

Lemma 3.12. m is quasi-finite.

Proof. By Theorem 3.9 the set { ek | k > 1 } is a quasi-finite generating set for
m.

Since all ideals are contained in m, it follows that any ideal containing
{ ek | k > 1 } is quasi-finite. Furthermore, such an ideal has m as its closure.
In particular, J is quasi-finite, but not closed.

Theorem 3.13. All (non-zero) ideals in A are quasi-finite. In fact, given any
subspace I we can find

G(I) := (gk)∞k=1(19)

such that for all f ∈ I,

∃c1, c2, c3, · · · ∈ C , f =
∞
∑

i=1

cigi .(20)

So all subspaces possesses a Schauder basis.
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Proof. We construct G(I) in the following way: for each

k ∈ {N(f) | f ∈ I \ {0}} =: N(I)

we choose a gk ∈ I with N(gk) = k, and with gk(k) = 1. In other words, we
make sure that the “leading coefficient” is 1; this can always be achieved since the
coefficients lie in a field. For k 6∈ N(I) we put gk = 0.

To show that this choice of elements satisfy (20), take any f ∈ I , and put
f0 = f . Then define recursively, as long as fi 6= 0,

ni := N(fi) ,

C 3 ai := fi(ni) ,

A 3 fi+1 := fi − aigni
.

Of course, if fi = 0, then we have expressed f as a linear combination of

gn1 , . . . , gni−1 ,

and we are done. Otherwise, note that by induction fi ∈ I , so ni ∈ N(I), hence
gni

6= 0. Thus N(fi+1) > N(fi), so |fi+1| < |fi|, whence

|f0| > |f1| > |f2| > · · · → 0 .

But

fi+1 = f −
i
∑

j=1

ajgnj
,

so

Fi :=

i
∑

j=1

ajgnj
→ f ,

which shows that
∑∞

j=1 ajgj = f .

4. A fundamental isomorphism

4.1. The monoid of separated monomials. Let

Y =
{

y
(j)
i | i, j ∈ N+

}

(21)

be an infinite set of variables, in bijective correspondence with the integer lattice
points in the first quadrant minus the axes. We call the subset

Yi =
{

y
(j)
i | j ∈ N+

}

(22)

the i’th column of Y .
Let [Y ] denote the free abelian monoid on Y , and let M be the subset of

separated monomials, i.e. monomials in which no two occurring variables come
from the same column:

M =
{

y
(j1)
i1

y
(j2)
i2

· · · y
(jr)
ir

| 1 ≤ ii < i2 < · · · ir
}

.(23)
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We regard M as a monoid-with-zero, so that the multiplication is given by

m ⊕ m′ =

{

mm′ mm′ ∈ M

0 otherwise
(24)

Note that the zero is exterior to M, i.e. 0 6∈ M. The set M ∪ {0} is a (non-
cancellative) monoid if we define m ⊕ 0 = 0 for all m ∈ M.

Recall that PP denotes the set of prime powers. It follows from the fundamental
theorem of arithmetic that any positive integer n can be uniquely written as a
square-free product of prime powers. Hence we have that

Φ : Y → PP ,

y
(j)
i 7→ pj

i

(25)

is a bijection which can be extended to a bijection

Φ : M → N+ ,

1 7→ 1 ,

y
(j1)
i1

· · · y
(jr)
ir

7→ pj1
i1
· · · pjr

ir
.

(26)

If we regard N+ as a monoid-with-zero with the operation ⊕ of (4), then (26) is a
monoid-with-zero isomorphism.

4.2. The ring A as a generalized power series ring, and as a quotient of

C [[Y ]]. Let R be the large power series ring on [Y ], i.e. R = C[[Y ]] consists of all
formal power series

∑

cαy
α, where the sum is over all multi-sets α on Y .

Let S be the generalized monoid-with-zero ring on M. By this, we mean that
S is the set of all formal power series

∑

m∈M

f(m)m , f(m) ∈ C(27)

with component-wise addition, and with multiplication
(

∑

m∈M

f(m)m

)

⊕

(

∑

m∈M

g(m)m

)

=

(

∑

m∈M

h(m)m

)

,

h(m) = (f ⊕ g)(m) =
∑

s⊕t=m

f(s)g(t) .

(28)

Define

supp(
∑

m∈[Y ]

cmm) = {m ∈ [Y ] | cm 6= 0 } ,(29)

supp(
∑

m∈M

cmm) = {m ∈ M | cm 6= 0 } .(30)

Let furthermore

D = { f ∈ R | supp(f) ∩M = ∅ } .(31)

Theorem 4.1. S and R
D

and A are isomorphic as C-algebras.
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Proof. The bijection (26) induces a bijection between S and A which is an isomor-
phism because of the way multiplication is defined on S. In detail, the isomorphism
is defined by

S 3
∑

m∈M

cmm 7→ f ∈ A ,

f(Φ(m)) = cm .

(32)

For the second part, consider the epimorphism

φ : R → S ,

φ





∑

m∈[Y ]

cmm



 =
∑

m∈M

cmm .

Clearly, ker(φ) = D, hence S ' R
ker(φ) = R

D
.

Let us exemplify this isomorphism by noting that en, where n has the square-free

factorization n = pa1
1 · · · par

r , corresponds to the square-free monomial y
(a1)
1 · · · y

(ar)
r ,

and that

1 =
∑

m∈M

m =

∞
∏

i=1



1 +

∞
∑

j=1

y
(j)
i



 .(33)

What does its inverse µ∗ correspond to?

Definition 4.2. For m ∈ M, we denote by ω(m) the number of occurring vari-
ables in m (by definition, ω(1) = 0). For

S 3 f =
∑

m∈M

cmm

we put

D(f) = min {ω(m) | cm 6= 0 }(34)

if f 6= 0 and D(0) = ∞. Then ω(Φ(m)) = ω(m), and if f and g correspond to
each other via the isomorphism (32), then D(f) = D(g).

It is known (see [10]) that

µ∗(r) = (−1)ω(r) .(35)

We then have that µ∗ corresponds to

1−1 =
1

∏∞
i=1

(

1 +
∑∞

j=1 y
(j)
i

) =
∞
∏

i=1

1

1 +
∑∞

j=1 y
(j)
i

=
∑

m∈M

(−1)ω(m)m .(36)

Recall that f ∈ A is a multiplicative arithmetic function if f(nm) = f(n)f(m)
whenever gcd(n, m) = 1. Regarding f 6= 0 as an element of S we have that f is
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multiplicative if and only if it can be written as

f =

∞
∏

i=1



1 +

∞
∑

j=1

ci,jy
(j)
i



 .(37)

It is now easy to see that the multiplicative functions form a group under multi-
plication.

4.3. The continuous endomorphisms. In [9], Schwab and Silberberg charac-
terized all continuous endomorphisms of (A, +, ·), the ring of arithmetical functions
with Dirichlet convolution. We give the corresponding result for A = (A, +,⊕):

Theorem 4.3. Every continuous endomorphism θ of the C-algebra S ' A is
defined by

θ(y
(j)
i ) = γi,j ,(38)

where

γi,jγi,k = 0 for all i, j, k(39)

and

γa1(n),b1(n) . . . γar(n),br(n) → 0 as n = p
b1(n)
a1(n) . . . p

br(n)
ar(n) → ∞ .(40)

Proof. Recall that S ' R
D

, where R = C [[Y ]] and D is the closure of the ideal

generated by all non-separated quadratic monomials y
(j)
i y

(k)
i . Since the set of

square-free monomials in the y
(j)
i ’s form a Schauder base of S, any continuous C-

-algebra endomorphism θ of S is determined by its values on the y
(j)
i ’s, and must

fulfill (40). Since y
(j)
i y

(k)
i = 0 in S, we must have that

θ(0) = θ(y
(j)
i y

(k)
i ) = θ(y

(j)
i )θ(y

(k)
i ) = γi,jγi,k = 0 .

5. Nilpotent elements and zero divisors

Definition 5.1. For m ∈ N+, define the prime support of m as

psupp(m) = { p ∈ P | p | m }(41)

and (when m > 1) the leading prime as

lp(m) = min psupp(m) .(42)

For n ∈ N+, put

A(n) =
{

k ∈ N+ | pn | k but pi - k for i < n
}

=
{

k ∈ N+ | lp(k) = pn

}

.(43)

Then N+ \ {1} is a disjoint union

N+ \ {1} =

∞
⊔

i=1

A(i) .(44)
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Definition 5.2. If f ∈ A is a non-unit, then the canonical decomposition of f is
the unique way of expressing f as a convergent sum

f =

∞
∑

i=1

fi, fi =
∑

k∈A(i)

f(k)ek .(45)

The element f is said to be of polynomial type if all but finitely many of the fi’s
are zero. In that case, the largest N such that fN 6= 0 is called the filtration degree
of f .

Lemma 5.3. If f ∈ A is a non-unit with canonical decomposition (45), then

fi =

∞
∑

j=1

e
p

j

i
⊕ gi,j ,(46)

where r ≤ i, pr | n implies that gi,j(n) = 0. For any n there is at most one pair
(i, j) such that

(

e
p

j

i
⊕ gi,j

)

(n) 6= 0 .

More precisely, if

n = pj1
i1
· · · pjr

ir
, i1 < · · · < ir ,

then
(

epb
a
⊕ ga,b

)

(n) may be non-zero only for a = i1, b = j1.

Definition 5.4. For k ∈ N, define

Ik = { f ∈ A | f(n) = 0 for every n such that gcd(n, p1p2 · · · pk) = 1 } .(47)

Lemma 5.5. Ik is an ideal in (A, +,⊕).

Proof. It is shown in [8] that the Ik’s form an ascending chain of ideals in (A, +, ·).
They are also easily seen to be ideals in (A, +,⊕): if

f ∈ Ik , g ∈ A and gcd(n, p1p2 · · · pk) = 1

then

(f ⊕ g)(n) =
∑

d‖n

f(d)g(n/d) = 0 ,

since gcd(d, p1p2 · · · pk) = 1 for any unitary divisor of n.

For any h ∈ A, the annihilator ann(h) ⊂ A is the ideal consisting of all elements
g ∈ A such that gh = 0.

Theorem 5.6. Let N ∈ N+, then

IN = ann(ep1···pN
)

= {0} ∪ {f ∈ A | f is a non-unit of polynomial type

and has filtration degree at most N}

= A
{

epa
i
| a, i ∈ N+, i ≤ N

}

,

where AW denotes the topological closure of the ideal generated by the set W .
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Proof. If f ∈ IN then for all k

(f ⊕ ep1···pN
)(k) =

∑

a⊕p1···pN=k

f(a)ep1···pN
(p1 · · · pN )

=
∑

a⊕p1···pN=k

f(a) = 0 ,(48)

so f ∈ ann(ep1···pN
). Conversely, if f ∈ ann(ep1···pN

) then (f ⊕ ep1···pN
)(k) = 0 for

all k, hence if gcd(n, p1 · · · pN ) = 1 then

0 = (f ⊕ ep1···pN
)(np1 · · · pN ) = f(n)ep1···pN

(p1 · · · pN ) = f(n)(49)

hence f ∈ IN .
If f ∈ IN then for j > N we get that fj = 0, since

fj(k) =

{

0 if k 6∈ A(j)

f(k) = 0 if k ∈ A(j)

Hence f =
∑N

i=1 fi. Conversely, if f can be expressed in this way, then f(k) =
fj1(k) = 0 for k = pa1

j1
· · · par

jr
with N < j1 < · · · < jr.

The last equality follows from Theorem 3.9.

Theorem 5.7. Let f ∈ A be a non-unit. The following are equivalent:

(i) f is of polynomial type.

(ii) f ∈
⋃∞

k=0 Ik,

(iii) There is a finite subset Q ⊂ P such that f(k) = 0 for all k relatively prime
to all p ∈ Q.

(iv) f ∈
⋃∞

N=1 ann(ep1p2···pN
).

(v) There is a positive integer N such that f is contained in the topological closure
of the ideal generated by the set

{

epa
i
| a, i ∈ N+, i ≤ N

}

.

If f has finite support, then it is of polynomial type. If f is of polynomial type,
then it is nilpotent.

Proof. Clearly, a finitely supported f is of polynomial type. The equivalence
(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) follows from the previous theorem.

If f is of polynomial type, say of filtration degree N , then

f =

N
∑

i=1

fi(50)

and we see that if fN+1 is the N +1’st unitary power of f , then fN+1 is the linear
combination of monomials in the fi’s, and none of these monomials is square-free.
Since fi ⊕ fi = 0 for all i, we have that fN+1 = 0. So f is nilpotent.

Lemma 5.8. The elements of polynomial type forms an ideal.
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Proof. By the previous theorem, this set can be expressed as
∞
⋃

n=1

In ,

which is an ideal since In form an ascending chain of ideals.

Question 5.9. Are all [nilpotent elements, zero divisors] of polynomial type? If
one could prove that the zero divisors are precisely the elements of polynomial type,
then by Lemma 5.8 it would follow that Z(A) is an ideal, and moreover a prime
ideal, since the product of two regular elements is regular (in any commutative
ring). Then one could conclude [6] that (A, +,⊕) has few zero divisors, hence is
additively regular, hence is a Marot ring.

Theorem 5.10. (A, +,⊕) contains infinitely many non-associate regular non-
units.

Proof. Step 1. We first show that there is at least one such element. Let f ∈ A
denote the arithmetical function

f(k) =

{

1 if k ∈ PP

0 otherwise

Then f is a non-unit, and using a result by Yocom [13, 8] we have that f is
contained in a subring of (A, +,⊕) which is a discrete valuation ring isomorphic
to C [[t]], the power series ring in one indeterminate. This ring is a domain, so f is
not nilpotent.

We claim that f is in fact regular. To show this, suppose that g ∈ A, f ⊕g = 0.
We will show that g = 0.

Any positive integer m can be written m = qa1
1 · · · qar

r , where the qi are distinct
prime numbers. If r = 0, then m = 1, and g(1) = 0, since

0 = (f ⊕ g)(2) = f(2)g(1) = g(1) .

For the case r = 1, we want to show that g(qa) = 0 for all prime numbers q.
Choose three different prime powers qa1

1 , qa2
2 , and qa3

3 . Then

0 = f ⊕ g(qai

i q
aj

j ) = f(qai

i )g(q
aj

j ) + f(q
aj

j )g(qai

i ) = g(q
aj

j ) + g(qai

i ) ,

when i 6= j, i, j ∈ {1, 2, 3}. In matrix notation, these three equations can be
written as





1 1 0
1 0 1
0 1 1









g(qa1
1 )

g(qa2
2 )

g(qa3
3 )



 =





0
0
0





from which we conclude (since the determinant of the coefficient matrix is non-
zero) that 0 = g(qa1

1 ) = g(qa2
2 ) = g(qa3

3 ).
Now for the general case, r > 1. We need to show that that

g(qa1
1 · · · qar

r ) = 0(51)

whenever qa1

1 , . . . , qar
r are pair-wise relatively prime prime powers.
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Choose N pair-wise relatively prime prime powers qa1
1 , . . . , qaN

N . For each r +1-
-subset qs1 , . . . , qsr+1 of this set we get a homogeneous linear equation

0 = f ⊕ g(qs1 . . . qsr+1)

= g(qs2 · · · qsr+1) + g(qs1qs3 · · · qsr+1) + · · · + g(qs1 · · · gsr
) .(52)

The matrix of the homogeneous linear equation system formed by all these equa-
tions is the incidence matrix of r-subsets (of a set of N elements) into r+1-subsets.

It has full rank [12]. Since it consists of
(

N
r+1

)

equations and
(

N
r

)

variables, we
get that for sufficiently large N , the null-space is zero-dimensional, thus the ho-
mogeneous system has only the trivial solution. It follows, in particular, that (51)
holds.

Thus, g(m) = 0 for all m, so f is a regular element.

Step 2. We construct infinitely many different regular non-units. Consider the
element f̃ , with

f̃(k) =

{

ck k ∈ PP

0 otherwise

and where the ck’s are “sufficiently generic” non-zero complex numbers, then we
claim that f̃ , too, is a regular non-unit. With g, m, r as before, we have that, for
r = 0,

0 = f ⊕ g(pa) = f(pa)g(1) = cpag(1) .

We demand that cpa 6= 0, then g(1) = 0.
For a general r, we argue as follows: the incidence matrices that occurred

before will be replaced with “generic” matrices whose elements are ck’s or zeroes,
and which specialize, when setting all ck = 1, to full-rank matrices. They must
therefore have full rank, and the proof goes through.

Step 3. Let g be a unit in A, and f̃ as above. We claim that if g ⊕ f is of the
above form, i.e. supported on PP, then g must be a constant. Hence there are
infinitely many non-associate regular non-units of the above form.

To prove the claim, we argue exactly as before, using the fact that g ⊕ f̃ is
supported on PP. For m = qa1

1 · · · qar
r as before, the case r = 0 yields nothing:

0 = g ⊕ f̃(1) = f̃(1)g(1) = 0g(1) = 0 ,

neither does the case r = 1:

w = g ⊕ f̃(qa) = f̃(qa)g(1) ,

so g(1) may be non-zero. But for r = 2 we get

0 = g ⊕ f̃(qa1
1 qa2

2 ) = f̃(qa1
1 )g(qa2

2 ) + g(qa1
1 )f̃(qa2

2 ) ,

and also

0 = g ⊕ f̃(qa1
1 qa3

3 ) = f̃(qa1
1 )g(qa3

3 ) + g(qa1
1 )f̃(qa3

3 ) ,

0 = g ⊕ f̃(qa2
2 qa3

3 ) = f̃(qa2
2 )g(qa3

3 ) + g(qa1
1 )f̃(qa3

3 ) ,
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which means that




f̃(qa2
2 ) f̃(qa1

1 ) 0

f̃(qa3
3 ) 0 f̃(qa1

1 )

0 f̃(qa3
3 ) f̃(qa2

2 )









g(qa1
1 )

g(qa2
2 )

g(qa3
3 )



 =





0
0
0





By our assumptions, the coefficient matrix is non-singular, so only the zero solution
exists, hence g(qa1

1 ) = 0.
An analysis similar to what we did before shows that g(qa1

1 · · · qar
r ) = 0 for

r > 1.

With the same method, one can easily show that the characteristic function on
P is regular.

6. Some simple results on factorisation

Cashwell-Everett [4] showed that (A, +, ·) is a UFD. We will briefly treat the
factorisation properties of (A, +,⊕). Definitions and facts regarding factorisation
in commutative rings with zero-divisors from the articles by Anderson and Valdes-
Leon [1, 2] will be used.

First, we note that since (A, +,⊕) is quasi-local, it is présimplifiable, i.e. a 6= 0,
a = r ⊕ a implies that r is a unit. It follows that for a, b ∈ A, the following three
conditions are equivalent:

(1) a, b are associates, i.e. A⊕ a = A⊕ b.

(2) a, b are strong associates, i.e. a = u ⊕ b for some unit u.

(3) a, b are very strong associates, i.e. A ⊕ a = A ⊕ b and either a = b = 0, or
a 6= 0 and a = r ⊕ b =⇒ r ∈ U(A).

We say that a ∈ A is irreducible, or an atom, if a = b⊕c implies that a is associate
with either b or c.

Theorem 6.1. (A, +,⊕) is atomic, i.e. all non-units can be written as a product
of finitely many atoms. In fact, (A, +,⊕) is a bounded factorial ring (BFR), i.e.
there is a bound on the length of all factorisations of an element.

Proof. It follows from Lemma 3.3 that the non-unit f has a factorisation into at
most D(f) atoms.

Example 6.2. We have that e2⊕ (e2k +e3) = e6 for all k, hence e6 has an infinite
number of non-associate irreducible divisors, and infinitely many factorisations
into atoms.

Example 6.3. The element h = e30 can be factored as e2 ⊕ e3 ⊕ e5, or as (e6 +
e20) ⊕ (e2 + e5).

These examples show that (A, +,⊕) is neither a half-factorial ring, nor a finite
factorisation ring, nor a weak finite factorisation ring, nor an atomic idf-ring.
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7. The subring of arithmetical functions supported on square-free

integers

Let SQF ⊂ N+ denote the set of square-free integers, and put

C = { f ∈ A | supp(f) ⊂ SQF } .(53)

For any f ∈ A, denote by p(f) ∈ C the restriction of f to SQF .

Theorem 7.1. (C, +,⊕) is a subring of (A, +,⊕), and a closed C-subalgebra with
respect to the norm |·|. The map

p : A → C ,

f 7→ p(f)
(54)

is a continuous C-algebra epimorphism, and a retraction of the inclusion map
C ⊂ A.

Proof. Let f, g ∈ C. If n ∈ N+ \ SQF then (f + g)(n) = f(n) + g(n) = 0, and
cf(n) = 0 for all c ∈ C. Since n ∈ N+ \ SQF , there is at least on prime p such
that p2 | n. If m is a unitary divisor of m, then either m or n/m is divisible by p2.
Thus

(f ⊕ g)(n) =
∑

m‖n

f(m)g(n/m) = 0 .

If fk → f in A, and all fk ∈ C, let n ∈ supp(f). Then there is an N such that
f(n) = fk(n) for all k ≥ N . But supp(fk) ⊂ SQF , so n ∈ SQF . This shows that
C is a closed subalgebra of A.

It is clear that p(f + g) = p(f) + p(g) and that p(cf) = cp(f) for any c ∈ C. If
n is not square-free, we have already showed that

0 = (p(f) ⊕ p(g))(n) = p((f ⊕ g))(n) .

Suppose therefore that n is square-free. Then so is all its unitary divisors, hence

p(f ⊕ g)(n) = (f ⊕ g)(n) =
∑

m‖n

f(m)g(n/m)

=
∑

m‖n

p(f)(m)p(g)(n/m) = (p(f) ⊕ p(g))(n) .

We have that p(f) = f if and only if f ∈ C, hence p(p(f)) = p(f), so p is a
retraction to the inclusion i : C → A. In other words, p ◦ i = idC.

Corollary 7.2. The multiplicative inverse of an element in C lies in C.

Proof. If f ∈ C, f ⊕ g = e1 then

e1 = p(e1) = p(f ⊕ g) = p(f) ⊕ p(g) = f ⊕ p(g) ,

hence g = p(g), so g ∈ C.
Alternatively, we can reason as follows. If f is a unit in C then we can without

loss of generality assume that f(1) = 1. By Theorem 3.7, g = −f + e1 is topo-
logically nilpotent, hence by Proposition 1.2.4 of [3] we have that the inverse of
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e1 − g = f can be expressed as
∑∞

i=0 gi. It is clear that g, and every power of it,
is supported on SQF , hence so is f−1.

Corollary 7.3. (C, +,⊕) is semi-local.

Proof. The units consists of all f ∈ C with f(1) 6= 0, and the non-units form the
unique maximal ideal.

Remark 7.4. More generally, given any subset Q ⊂ N+, we get a retract of
(A, +,⊕) when considering those arithmetical functions that are supported on the
integers n = pa1

1 · · · par
r with ai ∈ Q∪ {0}. This property is unique for the unitary

convolution, among all regular convolutions in the sense of Narkiewicz [7].
In particular, the set of arithmetical functions supported on the exponentially

odd integers (those n for which all ai are odd) forms a retract of (A, +,⊕). It
follows that the inverse of such a function is of the same form.

Let T = C [[x1, x2, x3, . . . ]], the large power series ring on countably many vari-
ables, and let J denote the ideal of elements supported on non square-free mono-
mials.

Theorem 7.5. (C, +,⊕) ' T/J . This algebra can also be described as the gen-
eralized power series ring on the monoid-with-zero whose elements are all finite
subsets of a fixed countable set X, with multiplication

A × B =

{

A ∪ B if A ∩ B = ∅

0 otherwise
(55)

Proof. Define η by

η : T → A

η(
∑

m

cmm) =
∑

m square-free

cmem ,(56)

where for a square-free monomial m = xi1 · · ·xir
with 1 ≤ i1 < · · · < ir we put

em = epi1 ···pir
. Then η(T ) = C, ker η = J . It follows that C ' T/J .

Acknowledgement. I am grateful to the anonymous referee for suggesting sev-
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