THE RING OF ARITHMETICAL FUNCTIONS WITH UNITARY CONVOLUTION: DIVISORIAL AND TOPOLOGICAL PROPERTIES

JAN SNELLMAN

Abstract

We study $(\mathcal{A},+, \oplus)$, the ring of arithmetical functions with unitary convolution, giving an isomorphism between $(\mathcal{A},+, \oplus)$ and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell-Everett [4] between the ring $(\mathcal{A},+, \cdot)$ of arithmetical functions with Dirichlet convolution and the power series ring $\mathbb{C} \llbracket x_{1}, x_{2}, x_{3}, \ldots \rrbracket$ on countably many variables. We topologize it with respect to a natural norm, and show that all ideals are quasi-finite. Some elementary results on factorization into atoms are obtained. We prove the existence of an abundance of non-associate regular non-units.

1. Introduction

The ring of arithmetical functions with Dirichlet convolution, which we'll denote by $(\mathcal{A},+, \cdot)$, is the set of all functions $\mathbb{N}^{+} \rightarrow \mathbb{C}$, where \mathbb{N}^{+}denotes the positive integers. It is given the structure of a commutative \mathbb{C}-algebra by component-wise addition and multiplication by scalars, and by the Dirichlet convolution

$$
\begin{equation*}
f \cdot g(k)=\sum_{r \mid k} f(r) g(k / r) \tag{1}
\end{equation*}
$$

Then, the multiplicative unit is the function e_{1} with $e_{1}(1)=1$ and $e_{1}(k)=0$ for $k>1$, and the additive unit is the zero function $\mathbf{0}$.

Cashwell-Everett [4] showed that $(\mathcal{A},+, \cdot)$ is a UFD using the isomorphism

$$
\begin{equation*}
(\mathcal{A},+, \cdot) \simeq \mathbb{C} \llbracket x_{1}, x_{2}, x_{3}, \ldots \rrbracket, \tag{2}
\end{equation*}
$$

where each x_{i} corresponds to the function which is 1 on the i th prime number, and 0 otherwise.

[^0]Schwab and Silberberg [9] topologised $(\mathcal{A},+, \cdot)$ by means of the norm

$$
\begin{equation*}
|f|=\frac{1}{\min \{k \mid f(k) \neq 0\}} \tag{3}
\end{equation*}
$$

They noted that this norm is an ultra-metric, and that $((\mathcal{A},+, \cdot),|\cdot|)$ is a valued ring, i.e. that

1. $|\mathbf{0}|=0$ and $|f|>0$ for $f \neq \mathbf{0}$,
2. $|f-g| \leq \max \{|f|,|g|\}$,
3. $|f g|=|f||g|$.

They showed that $(\mathcal{A},|\cdot|)$ is complete, and that each ideal is quasi-finite, which means that there exists a sequence $\left(e_{k}\right)_{k=1}^{\infty}$, with $\left|e_{k}\right| \rightarrow 0$, such that every element in the ideal can be written as a convergent sum $\sum_{k=1} c_{k} e_{k}$, with $c_{k} \in \mathcal{A}$.

In this article, we treat instead $(\mathcal{A},+, \oplus)$, the ring of all arithmetical functions with unitary convolution. This ring has been studied by several authors, such as Vaidyanathaswamy [11], Cohen [5], and Yocom [13].

We topologise \mathcal{A} in the same way as Schwab and Silberberg [9], so that $(\mathcal{A},+, \oplus)$ becomes a normed ring (but, in contrast to $(\mathcal{A},+, \cdot)$, not a valued ring). We show that all ideals in $(\mathcal{A},+, \oplus)$ are quasi-finite.

We show that $(\mathcal{A},+, \oplus)$ is isomorphic to a monomial quotient of a power series ring on countably many variables. It is présimplifiable and atomic, and there is a bound on the lengths of factorizations of a given element. We give a sufficient condition for nilpotency, and prove the existence of plenty of regular non-units.

Finally, we show that the set of arithmetical functions supported on square-free integers is a retract of $(\mathcal{A},+, \oplus)$.

2. The ring of arithmetical functions with unitary convolution

We denote the integers by \mathbb{Z}, the non-negative integers by \mathbb{N}, and the positive integers by \mathbb{N}^{+}. Let p_{i} be the i 'th prime number. Denote by \mathcal{P} the set of prime numbers, and by $\mathcal{P} \mathcal{P}$ the set of prime powers. The integer 1 is not a prime, nor a prime power. Let $\omega(r)$ be the number of distinct prime factors of r, with $\omega(1)=0$.

Definition 2.1. If k, m are positive integers, we define their unitary product as

$$
k \oplus m= \begin{cases}k m & \operatorname{gcd}(k, m)=1 \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

If $k \oplus m=p$, then we write $k \| p$ and say that k is a unitary divisor of p.
The so-called unitary convolution was introduced by Vaidyanathaswamy [11], and was further studied Eckford Cohen [5].

Definition 2.2. $\mathcal{A}=\left\{f: \mathbb{N}^{+} \rightarrow \mathbb{C}\right\}$, the set of complex-valued functions on the positive integers. We define the unitary convolution of $f, g \in \mathcal{A}$ as

$$
\begin{equation*}
(f \oplus g)(n)=\sum_{\substack{m \oplus p=n \\ m, n \geq 1}} f(m) g(n)=\sum_{d \| n} f(d) g(n / d) \tag{5}
\end{equation*}
$$

and the addition as

$$
(f+g)(n)=f(n)+g(n)
$$

The ring $(\mathcal{A},+, \oplus)$ is called the ring of arithmetic functions with unitary convolution.

Definition 2.3. For each positive integer k, we define $e_{k} \in \mathcal{A}$ by

$$
e_{k}(n)= \begin{cases}1 & k=n \tag{6}\\ 0 & k \neq n\end{cases}
$$

We also define ${ }^{1} \mathbf{0}$ as the zero function, and $\mathbf{1}$ as the function which is constantly 1.
Lemma 2.4. 0 is the additive unit of \mathcal{A}, and e_{1} is the multiplicative unit. We have that

$$
\left(e_{k_{1}} \oplus e_{k_{2}} \oplus \cdots \oplus e_{k_{r}}\right)(n)=\left\{\begin{array}{lll}
1 & n=k_{1} k_{2} \cdots k_{r} & \text { and } \operatorname{gcd}\left(k_{i}, k_{j}\right)=1 \tag{7}\\
0 & \text { otherwise } & \text { for } i \neq j
\end{array}\right.
$$

hence

$$
e_{k_{1}} \oplus e_{k_{2}} \oplus \cdots \oplus e_{k_{r}}= \begin{cases}e_{k_{1} k_{2} \cdots k_{r}} & \text { if } \operatorname{gcd}\left(k_{i}, k_{j}\right)=1 \text { for } i \neq j \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. The first assertions are trivial. We have [10] that for $f_{1}, \ldots, f_{r} \in \mathcal{A}$,

$$
\begin{equation*}
\left(f_{1} \oplus \cdots \oplus f_{r}\right)(n)=\sum_{a_{1} \oplus \cdots \oplus a_{r}=n} f_{1}\left(a_{1}\right) \cdots f_{r}\left(a_{r}\right) \tag{9}
\end{equation*}
$$

Since

$$
e_{k_{1}}\left(a_{1}\right) e_{k_{2}}\left(a_{2}\right) \cdots e_{k_{r}}\left(a_{r}\right)=1 \quad \text { iff } \quad \forall i: k_{i}=a_{i}
$$

(7) follows.

Lemma 2.5. For $n \in \mathbb{N}^{+}$, e_{n} can be uniquely expressed as a square-free monomial in $\left\{e_{k} \mid k \in \mathcal{P} \mathcal{P}\right\}$ (we use the convention that the empty product corresponds to the multiplicative unit e_{1}).

Proof. By unique factorization, there is a unique way of writing $n=p_{i_{1}}^{a_{1}} \cdots p_{i_{r}}^{a_{r}}$, and (8) gives that

$$
e_{n}=e_{p_{i_{1}} \cdots p_{i_{r}}^{a_{1}}}^{a_{r}}=e_{p_{i_{1}}^{a_{1}}} \oplus \cdots \oplus e_{p_{i_{r}}^{a_{r}}}
$$

Theorem 2.6. $(\mathcal{A},+, \oplus)$ is a quasi-local, non-noetherian commutative ring having divisors of zero. The units $U(\mathcal{A})$ consists of those f such that $f(1) \neq 0$.

[^1]Proof. It is shown in [10] that $(\mathcal{A},+, \oplus)$ is a commutative ring, having zerodivisors, and that the units consists of those f such that $f(1) \neq 0$. If $f(1)=0$ then

$$
(f \oplus g)(1)=f(1) g(1)=0 .
$$

Hence the non-units form an ideal \mathfrak{m}, which is then the unique maximal ideal.
We will show (Lemma 3.10) that \mathfrak{m} contains an ideal (the ideal generated by all e_{k}, for $k>1$) which is not finitely generated, so \mathcal{A} is non-noetherian.

3. A topology on \mathcal{A}

The results of this section are inspired by [9], were the authors studied the ring of arithmetical functions under Dirichlet convolution. We'll use the notations of [3]. We regard \mathbb{C} as trivially normed.

Definition 3.1. Let $f \in \mathcal{A} \backslash\{\mathbf{0}\}$. We define the support of f as

$$
\begin{equation*}
\operatorname{supp}(f)=\left\{n \in \mathbb{N}^{+} \mid f(n) \neq 0\right\} \tag{10}
\end{equation*}
$$

We define the order ${ }^{2}$ of a non-zero element by

$$
\begin{equation*}
\mathrm{N}(f)=\min \operatorname{supp}(f) \tag{11}
\end{equation*}
$$

We also define the norm of f as

$$
\begin{equation*}
|f|=\mathrm{N}(f)^{-1} \tag{12}
\end{equation*}
$$

and the degree as

$$
\begin{equation*}
\mathrm{D}(f)=\min \{\omega(k) \mid k \in \operatorname{supp}(f)\} \tag{13}
\end{equation*}
$$

By definition, the zero element has order infinity, norm 0 , and degree ∞.
Lemma 3.2. The value semigroup of $(\mathcal{A},|\cdot|)$ is

$$
|\mathcal{A} \backslash\{\mathbf{0}\}|=\left\{1 / k \mid k \in \mathbb{N}^{+}\right\}
$$

a discrete subset of \mathbb{R}^{+}.
Lemma 3.3. Let $f, g \in \mathcal{A} \backslash\{\mathbf{0}\}$. Let $\mathrm{N}(f)=i, \mathrm{~N}(g)=j$, so that $f(i) \neq 0$ but $f(k)=0$ for all $k<i$, and similarly for g. Then, the following hold:
(i) $\mathrm{N}(f-g) \geq \min \{\mathrm{N}(f), \mathrm{N}(g)\}$.
(ii) $\mathrm{N}(c f)=\mathrm{N}(f)$ for $c \in \mathbb{C} \backslash\{0\}$.
(iii) $\mathrm{N}(f)=1$ iff f is a unit.
(iv) $\mathrm{N}(f \cdot g)=\mathrm{N}(f) \mathrm{N}(g) \leq \mathrm{N}(f \oplus g)$, with equality iff $\operatorname{gcd}(i, j)=1$.
(v) $\mathrm{N}(f \oplus g) \geq \max \{\mathrm{N}(f), \mathrm{N}(g)\}$, with strict inequality iff both f and g are non-units.
(vi) $\mathrm{D}(f+g) \geq \min \{\mathrm{D}(f), \mathrm{D}(g)\}$.
(vii) $\mathrm{D}(f)=0$ if and only if f is a unit.
(viii) $\mathrm{D}(f \oplus g) \geq \mathrm{D}(f)+\mathrm{D}(g) \geq \max \{\mathrm{D}(f), \mathrm{D}(g)\}$, with $\mathrm{D}(f)+\mathrm{D}(g)>\max \{\mathrm{D}(f), \mathrm{D}(g)\}$ if f, g are non-units.

[^2]Proof. (i), (ii), and (iii) are trivial, and (iv) is proved in [10].
If $\omega(s)<\min \{D(f), D(g)\}$ then

$$
s \notin \operatorname{supp}(f) \cup \operatorname{supp}(g),
$$

so

$$
(f+g)(s)=f(s)+g(s)=0
$$

This proves (vi). Since f is a unit iff $f(1) \neq 0$, (vii) follows.
For any a in the support of f and any b in the support of g, such that $a \oplus b \neq 0$, we have that

$$
\omega(a \oplus b)=\omega(a)+\omega(b) \geq \mathrm{D}(f)+\mathrm{D}(g)
$$

This proves the first inequality of (viii). Using (vii) the other assertion follows.
(v) is proved similarly.

Corollary 3.4. $|f \oplus g| \leq|f||g|=|f \cdot g|$.
Proposition 3.5. $|\cdot|$ is an ultrametric function on \mathcal{A}, making $(\mathcal{A},+, \oplus)$ a normed ring, as well as a faithfully normed, b-separable complete vector space over \mathbb{C}.
Proof. $((\mathcal{A},+, \cdot),|\cdot|)$ is a valuated ring, and a faithfully normed complete vector space over $\mathbb{C}[9]$. It is also separable with respect to bounded maps [3, Corollary 2.2.3]. So $(\mathcal{A},+)$ is a normed group, hence Corollary 3.4 shows that $(\mathcal{A},+, \oplus)$ is a normed ring.

Note that, unlike $((\mathcal{A},+, \cdot),|\cdot|)$, the normed $\operatorname{ring}((\mathcal{A},+, \oplus),|\cdot|)$ is not a valued ring, since

$$
\left|e_{2} \oplus e_{2}\right|=|\mathbf{0}|=0<\left|e_{2}\right|^{2}=1 / 4
$$

In fact, defining f^{n} to be the n 'th unitary power of n, we have that
Lemma 3.6. If f is a unit, then $1=\left|f^{n}\right|=|f|^{n}$ for all positive integers n. If n is a non-unit, then $\left|f^{n}\right|<|f|^{n}$ for all $n>1$.
Proof. The first assertion is trivial, so suppose that f is a non-unit. From Corollary 3.4 we have that $\left|f^{n}\right| \leq|f|^{n}$. If $|f|=1 / k, k>1$, i.e. $f(k) \neq 0$ but $f(j)=0$ for $j<k$, then $f^{2}\left(k^{2}\right)=0$ since $\operatorname{gcd}(k, k)=k>1$. It follows that $\left|f^{2}\right|>|f|^{2}$, from which the result follows.

Recall that in a normed ring, a non-zero element f is called

- topologically nilpotent if $f^{n} \rightarrow 0$,
- power-multiplicative if $\left|f^{n}\right|=|f|^{n}$ for all n,
- multiplicative if $|f g|=|f||g|$ for all g in the ring.

Theorem 3.7. Let $f \in((\mathcal{A},+, \oplus),|\cdot|), f \neq \mathbf{0}$. Then the following are equivalent:
(1) f is topologically nilpotent,
(2) f is not power-multiplicative,
(3) f is not multiplicative ${ }^{3}$ in the normed $\left.\operatorname{ring}(\mathcal{A},+, \oplus),|\cdot|\right)$,

[^3](4) f is a non-unit,
(5) $|f|<1$.

Proof. Using [3, 1.2.2, Prop. 2], this follows from the previous Lemma, and the fact that for a unit f,

$$
1=\left|f^{-1}\right|=|f|^{-1}
$$

3.1. A Schauder basis for $(\mathcal{A},|\cdot|)$.

Definition 3.8. Let \mathcal{A}^{\prime} denote the subset of \mathcal{A} consisting of functions with finite support. We define a pairing

$$
\begin{align*}
\mathcal{A} \times \mathcal{A}^{\prime} & \rightarrow \mathbb{C} \\
\langle f, g\rangle & =\sum_{k=1}^{\infty} f(k) g(k) \tag{14}
\end{align*}
$$

Theorem 3.9. The set $\left\{e_{k} \mid k \in \mathbb{N}^{+}\right\}$is an ordered orthogonal Schauder base in the normed vector space $(\mathcal{A},|\cdot|)$. In other words, if $f \in \mathcal{A}$ then

$$
\begin{equation*}
f=\sum_{k=1}^{\infty} c_{k} e_{k}, \quad c_{k} \in \mathbb{C} \tag{15}
\end{equation*}
$$

where
(i) $\left|e_{k}\right| \rightarrow 0$,
(ii) the infinite sum (15) converges w.r.t. the ultrametric topology,
(iii) the coefficients c_{k} are uniquely determined by the fact that

$$
\begin{equation*}
\left\langle f, e_{k}\right\rangle=f(k)=c_{k} \tag{16}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\max _{k \in \mathbb{N}^{+}}\left\{\left|c_{k}\right|\left|e_{k}\right|\right\}=\left|\sum_{k=1}^{\infty} c_{k} e_{k}\right| \tag{17}
\end{equation*}
$$

The set $\left\{e_{1}\right\} \cup\left\{e_{p} \mid p \in \mathcal{P} \mathcal{P}\right\}$ generates a dense subalgebra of $((\mathcal{A},+, \oplus),|\cdot|)$.
Proof. It is proved in [9] that this set is a Schauder base in the topological vector space $(\mathcal{A},|\cdot|)$. It also follows from [9] that the coefficients c_{k} in (3.9) are given by $c_{k}=f(k)$.

It remains to prove orthogonality. With the above notation,

$$
|f|=\left|\sum_{k=1}^{\infty} c_{k} e_{k}\right|=1 / j
$$

where j is the smallest k such that $c_{k} \neq 0$. Recalling that \mathbb{C} is trivially normed, we have that

$$
\left|c_{k}\right|\left|e_{k}\right|= \begin{cases}\left|e_{k}\right|=1 / k & \text { if } c_{k} \neq 0 \\ 0 & \text { if } c_{k}=0\end{cases}
$$

so $\max _{k \in \mathbb{N}^{+}}\left\{\left|c_{k}\right|\left|e_{k}\right|\right\}=1 / j$, with j as above, so (17) holds.
By Lemma 2.5 any e_{k} can be written as a square-free monomial in the elements of $\left\{e_{p} \mid p \in \mathcal{P} \mathcal{P}\right\}$. The set $\left\{e_{k} \mid k \in \mathbb{N}^{+}\right\}$is dense in \mathcal{A}, so $\left\{e_{p} \mid p \in \mathcal{P} \mathcal{P}\right\}$ generates a dense subalgebra.

Let $J \subset \mathfrak{m}$ denote the ideal generated by all $e_{k}, k>1$.
Lemma 3.10. J is not finitely generated.
Proof. The following proof was provided by the anonymous referee. Consider the following ideal I in \mathcal{A} :

$$
I=\{f \in \mathcal{A} \mid f(1)=0, \forall p \in \mathcal{P}: f(p)=0\} .
$$

Then the units of \mathcal{A} / I are precisely the elements of the form $g+I$, where $g \in \mathcal{A}$, $g(1) \neq 0$. Moreover, for any $f, g \in \mathcal{A}$ such that $f(1)=a \in \mathbb{C}, g(1)=0$, we have $(f+I) \oplus(g+I)=(a g)+I=a(g+I)$. Assume that J is finitely generated ideal, say $J=\left(b_{1}, \ldots, b_{r}\right)$. Then $b_{1}(1)=\cdots=b_{r}(1)=0$ and any element of J is of the form $\sum_{i=1}^{r} f_{i} \oplus b_{i}$ for suitable $f_{1}, \ldots f_{r} \in \mathcal{A}$. We have

$$
\left(\sum_{i=1}^{r} f_{i} \oplus b_{i}\right)+I=\sum_{i=1}^{r}\left(f_{i}+I\right) \oplus\left(b_{i}+I\right)=\sum_{i=1}^{r} a_{i}\left(b_{i}+I\right)
$$

where $a_{i}=f_{i}(1) \in \mathbb{C}$, which belongs to the finitely dimensional linear subspace of \mathcal{A} / I generated by $b_{1}+I, \ldots, b_{r}+I$. This is a contradiction with the fact that the linear subspace of \mathcal{A} / I generated by $e_{k}+I, k>1$, is of infinite dimension.

Definition 3.11. An ideal $I \subset \mathcal{A}$ is called quasi-finite if there exists a sequence $\left(g_{k}\right)_{k=1}^{\infty}$ in I such that $\left|g_{k}\right| \rightarrow 0$ and such that every element $f \in I$ can be written (not necessarily uniquely) as a convergent sum

$$
\begin{equation*}
f=\sum_{k=1}^{\infty} a_{k} \oplus g_{k}, \quad a_{k} \in \mathcal{A} \tag{18}
\end{equation*}
$$

Lemma 3.12. \mathfrak{m} is quasi-finite.
Proof. By Theorem 3.9 the set $\left\{e_{k} \mid k>1\right\}$ is a quasi-finite generating set for m.

Since all ideals are contained in \mathfrak{m}, it follows that any ideal containing $\left\{e_{k} \mid k>1\right\}$ is quasi-finite. Furthermore, such an ideal has \mathfrak{m} as its closure. In particular, J is quasi-finite, but not closed.

Theorem 3.13. All (non-zero) ideals in \mathcal{A} are quasi-finite. In fact, given any subspace I we can find

$$
\begin{equation*}
G(I):=\left(g_{k}\right)_{k=1}^{\infty} \tag{19}
\end{equation*}
$$

such that for all $f \in I$,

$$
\begin{equation*}
\exists c_{1}, c_{2}, c_{3}, \cdots \in \mathbb{C}, \quad f=\sum_{i=1}^{\infty} c_{i} g_{i} \tag{20}
\end{equation*}
$$

So all subspaces possesses a Schauder basis.

Proof. We construct $G(I)$ in the following way: for each

$$
k \in\{\mathrm{~N}(f) \mid f \in I \backslash\{\mathbf{0}\}\}=: N(I)
$$

we choose a $g_{k} \in I$ with $\mathrm{N}\left(g_{k}\right)=k$, and with $g_{k}(k)=1$. In other words, we make sure that the "leading coefficient" is 1 ; this can always be achieved since the coefficients lie in a field. For $k \notin N(I)$ we put $g_{k}=\mathbf{0}$.

To show that this choice of elements satisfy (20), take any $f \in I$, and put $f_{0}=f$. Then define recursively, as long as $f_{i} \neq \mathbf{0}$,

$$
\begin{aligned}
n_{i} & :=N\left(f_{i}\right), \\
\mathbb{C} \ni a_{i} & :=f_{i}\left(n_{i}\right), \\
\mathcal{A} \ni f_{i+1} & :=f_{i}-a_{i} g_{n_{i}} .
\end{aligned}
$$

Of course, if $f_{i}=\mathbf{0}$, then we have expressed f as a linear combination of

$$
g_{n_{1}}, \ldots, g_{n_{i-1}}
$$

and we are done. Otherwise, note that by induction $f_{i} \in I$, so $n_{i} \in N(I)$, hence $g_{n_{i}} \neq 0$. Thus $\mathrm{N}\left(f_{i+1}\right)>\mathrm{N}\left(f_{i}\right)$, so $\left|f_{i+1}\right|<\left|f_{i}\right|$, whence

$$
\left|f_{0}\right|>\left|f_{1}\right|>\left|f_{2}\right|>\cdots \rightarrow 0
$$

But

$$
f_{i+1}=f-\sum_{j=1}^{i} a_{j} g_{n_{j}}
$$

so

$$
F_{i}:=\sum_{j=1}^{i} a_{j} g_{n_{j}} \rightarrow f
$$

which shows that $\sum_{j=1}^{\infty} a_{j} g_{j}=f$.

4. A FUNDAMENTAL ISOMORPHISM

4.1. The monoid of separated monomials. Let

$$
\begin{equation*}
Y=\left\{y_{i}^{(j)} \mid i, j \in \mathbb{N}^{+}\right\} \tag{21}
\end{equation*}
$$

be an infinite set of variables, in bijective correspondence with the integer lattice points in the first quadrant minus the axes. We call the subset

$$
\begin{equation*}
Y_{i}=\left\{y_{i}^{(j)} \mid j \in \mathbb{N}^{+}\right\} \tag{22}
\end{equation*}
$$

the i 'th column of Y.
Let $[Y]$ denote the free abelian monoid on Y, and let \mathcal{M} be the subset of separated monomials, i.e. monomials in which no two occurring variables come from the same column:

$$
\begin{equation*}
\mathcal{M}=\left\{y_{i_{1}}^{\left(j_{1}\right)} y_{i_{2}}^{\left(j_{2}\right)} \cdots y_{i_{r}}^{\left(j_{r}\right)} \mid 1 \leq i_{i}<i_{2}<\cdots i_{r}\right\} \tag{23}
\end{equation*}
$$

We regard \mathcal{M} as a monoid-with-zero, so that the multiplication is given by

$$
m \oplus m^{\prime}=\left\{\begin{array}{lr}
m m^{\prime} & m m^{\prime} \in \mathcal{M} \tag{24}\\
0 & \text { otherwise }
\end{array}\right.
$$

Note that the zero is exterior to \mathcal{M}, i.e. $0 \notin \mathcal{M}$. The set $\mathcal{M} \cup\{0\}$ is a (noncancellative) monoid if we define $m \oplus 0=0$ for all $m \in \mathcal{M}$.

Recall that $\mathcal{P} \mathcal{P}$ denotes the set of prime powers. It follows from the fundamental theorem of arithmetic that any positive integer n can be uniquely written as a square-free product of prime powers. Hence we have that

$$
\begin{align*}
\Phi: Y & \rightarrow \mathcal{P} \mathcal{P} \\
y_{i}^{(j)} & \mapsto p_{i}^{j} \tag{25}
\end{align*}
$$

is a bijection which can be extended to a bijection

$$
\begin{align*}
\Phi: \mathcal{M} & \rightarrow \mathbb{N}^{+} \\
1 & \mapsto 1 \tag{26}\\
y_{i_{1}}^{\left(j_{1}\right)} \cdots y_{i_{r}}^{\left(j_{r}\right)} & \mapsto p_{i_{1}}^{j_{1}} \cdots p_{i_{r}}^{j_{r}} .
\end{align*}
$$

If we regard \mathbb{N}^{+}as a monoid-with-zero with the operation \oplus of (4), then (26) is a monoid-with-zero isomorphism.
4.2. The ring \mathcal{A} as a generalized power series ring, and as a quotient of $\mathbb{C} \llbracket Y \rrbracket$. Let R be the large power series ring on $[Y]$, i.e. $R=C \llbracket Y \rrbracket$ consists of all formal power series $\sum c_{\boldsymbol{\alpha}} \boldsymbol{y}^{\boldsymbol{\alpha}}$, where the sum is over all multi-sets $\boldsymbol{\alpha}$ on Y.

Let S be the generalized monoid-with-zero ring on \mathcal{M}. By this, we mean that S is the set of all formal power series

$$
\begin{equation*}
\sum_{m \in \mathcal{M}} f(m) m, \quad f(m) \in \mathbb{C} \tag{27}
\end{equation*}
$$

with component-wise addition, and with multiplication

$$
\begin{align*}
\left(\sum_{m \in \mathcal{M}} f(m) m\right) \oplus\left(\sum_{m \in \mathcal{M}} g(m) m\right) & =\left(\sum_{m \in \mathcal{M}} h(m) m\right) \tag{28}\\
h(m) & =(f \oplus g)(m)=\sum_{s \oplus t=m} f(s) g(t)
\end{align*}
$$

Define

$$
\begin{align*}
\operatorname{supp}\left(\sum_{m \in[Y]} c_{m} m\right) & =\left\{m \in[Y] \mid c_{m} \neq 0\right\} \tag{29}\\
\operatorname{supp}\left(\sum_{m \in \mathcal{M}} c_{m} m\right) & =\left\{m \in \mathcal{M} \mid c_{m} \neq 0\right\} \tag{30}
\end{align*}
$$

Let furthermore

$$
\begin{equation*}
\mathfrak{D}=\{f \in R \mid \operatorname{supp}(f) \cap \mathcal{M}=\emptyset\} \tag{31}
\end{equation*}
$$

Theorem 4.1. S and $\frac{R}{\mathfrak{D}}$ and \mathcal{A} are isomorphic as \mathbb{C}-algebras.

Proof. The bijection (26) induces a bijection between S and \mathcal{A} which is an isomorphism because of the way multiplication is defined on S. In detail, the isomorphism is defined by

$$
\begin{gather*}
S \ni \sum_{m \in \mathcal{M}} c_{m} m \mapsto f \in \mathcal{A} \tag{32}\\
f(\Phi(m))=c_{m}
\end{gather*}
$$

For the second part, consider the epimorphism

$$
\begin{aligned}
\phi: R & \rightarrow S \\
\phi\left(\sum_{m \in[Y]} c_{m} m\right) & =\sum_{m \in \mathcal{M}} c_{m} m
\end{aligned}
$$

Clearly, $\operatorname{ker}(\phi)=\mathfrak{D}$, hence $S \simeq \frac{R}{\operatorname{ker}(\phi)}=\frac{R}{\mathfrak{D}}$.
Let us exemplify this isomorphism by noting that e_{n}, where n has the square-free factorization $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, corresponds to the square-free monomial $y_{1}^{\left(a_{1}\right)} \cdots y_{r}^{\left(a_{r}\right)}$, and that

$$
\begin{equation*}
\mathbf{1}=\sum_{m \in \mathcal{M}} m=\prod_{i=1}^{\infty}\left(1+\sum_{j=1}^{\infty} y_{i}^{(j)}\right) \tag{33}
\end{equation*}
$$

What does its inverse μ^{*} correspond to?
Definition 4.2. For $m \in \mathcal{M}$, we denote by $\omega(m)$ the number of occurring variables in m (by definition, $\omega(1)=0$). For

$$
S \ni f=\sum_{m \in \mathcal{M}} c_{m} m
$$

we put

$$
\begin{equation*}
\mathrm{D}(f)=\min \left\{\omega(m) \mid c_{m} \neq 0\right\} \tag{34}
\end{equation*}
$$

if $f \neq 0$ and $D(\mathbf{0})=\infty$. Then $\omega(\Phi(m))=\omega(m)$, and if f and g correspond to each other via the isomorphism (32), then $\mathrm{D}(f)=\mathrm{D}(g)$.

It is known (see [10]) that

$$
\begin{equation*}
\mu^{*}(r)=(-1)^{\omega(r)} \tag{35}
\end{equation*}
$$

We then have that μ^{*} corresponds to

$$
\begin{equation*}
\mathbf{1}^{-1}=\frac{1}{\prod_{i=1}^{\infty}\left(1+\sum_{j=1}^{\infty} y_{i}^{(j)}\right)}=\prod_{i=1}^{\infty} \frac{1}{1+\sum_{j=1}^{\infty} y_{i}^{(j)}}=\sum_{m \in \mathcal{M}}(-1)^{\omega(m)} m \tag{36}
\end{equation*}
$$

Recall that $f \in \mathcal{A}$ is a multiplicative arithmetic function if $f(n m)=f(n) f(m)$ whenever $\operatorname{gcd}(n, m)=1$. Regarding $f \neq \mathbf{0}$ as an element of S we have that f is
multiplicative if and only if it can be written as

$$
\begin{equation*}
f=\prod_{i=1}^{\infty}\left(1+\sum_{j=1}^{\infty} c_{i, j} y_{i}^{(j)}\right) \tag{37}
\end{equation*}
$$

It is now easy to see that the multiplicative functions form a group under multiplication.
4.3. The continuous endomorphisms. In [9], Schwab and Silberberg characterized all continuous endomorphisms of $(\mathcal{A},+, \cdot)$, the ring of arithmetical functions with Dirichlet convolution. We give the corresponding result for $\mathcal{A}=(\mathcal{A},+, \oplus)$:
Theorem 4.3. Every continuous endomorphism θ of the \mathbb{C}-algebra $S \simeq \mathcal{A}$ is defined by

$$
\begin{equation*}
\theta\left(y_{i}^{(j)}\right)=\gamma_{i, j} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{i, j} \gamma_{i, k}=0 \quad \text { for all } \quad i, j, k \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{a_{1}(n), b_{1}(n)} \ldots \gamma_{a_{r}(n), b_{r}(n)} \rightarrow 0 \quad \text { as } \quad n=p_{a_{1}(n)}^{b_{1}(n)} \ldots p_{a_{r}(n)}^{b_{r}(n)} \rightarrow \infty \tag{40}
\end{equation*}
$$

Proof. Recall that $S \simeq \frac{R}{\mathfrak{D}}$, where $R=\mathbb{C} \llbracket Y \rrbracket$ and \mathfrak{D} is the closure of the ideal generated by all non-separated quadratic monomials $y_{i}^{(j)} y_{i}^{(k)}$. Since the set of square-free monomials in the $y_{i}^{(j)}$'s form a Schauder base of S, any continuous C --algebra endomorphism θ of S is determined by its values on the $y_{i}^{(j)}$,s, and must fulfill (40). Since $y_{i}^{(j)} y_{i}^{(k)}=0$ in S, we must have that

$$
\theta(0)=\theta\left(y_{i}^{(j)} y_{i}^{(k)}\right)=\theta\left(y_{i}^{(j)}\right) \theta\left(y_{i}^{(k)}\right)=\gamma_{i, j} \gamma_{i, k}=0
$$

5. Nilpotent elements and zero divisors

Definition 5.1. For $m \in \mathbb{N}^{+}$, define the prime support of m as

$$
\begin{equation*}
\operatorname{psupp}(m)=\{p \in \mathcal{P}|p| m\} \tag{41}
\end{equation*}
$$

and (when $m>1$) the leading prime as

$$
\begin{equation*}
\operatorname{lp}(m)=\min \operatorname{psupp}(m) \tag{42}
\end{equation*}
$$

For $n \in \mathbb{N}^{+}$, put
(43) $A^{(n)}=\left\{k \in \mathbb{N}^{+}\left|p_{n}\right| k\right.$ but $p_{i} \nmid k$ for $\left.i<n\right\}=\left\{k \in \mathbb{N}^{+} \mid \operatorname{lp}(k)=p_{n}\right\}$.

Then $\mathbb{N}^{+} \backslash\{1\}$ is a disjoint union

$$
\begin{equation*}
\mathbb{N}^{+} \backslash\{1\}=\bigsqcup_{i=1}^{\infty} A^{(i)} \tag{44}
\end{equation*}
$$

Definition 5.2. If $f \in \mathcal{A}$ is a non-unit, then the canonical decomposition of f is the unique way of expressing f as a convergent sum

$$
\begin{equation*}
f=\sum_{i=1}^{\infty} f_{i}, \quad f_{i}=\sum_{k \in A^{(i)}} f(k) e_{k} \tag{45}
\end{equation*}
$$

The element f is said to be of polynomial type if all but finitely many of the f_{i} 's are zero. In that case, the largest N such that $f_{N} \neq \mathbf{0}$ is called the filtration degree of f.

Lemma 5.3. If $f \in \mathcal{A}$ is a non-unit with canonical decomposition (45), then

$$
\begin{equation*}
f_{i}=\sum_{j=1}^{\infty} e_{p_{i}^{j}} \oplus g_{i, j} \tag{46}
\end{equation*}
$$

where $r \leq i, p_{r} \mid n$ implies that $g_{i, j}(n)=0$. For any n there is at most one pair (i, j) such that

$$
\left(e_{p_{i}^{j}} \oplus g_{i, j}\right)(n) \neq 0
$$

More precisely, if

$$
n=p_{i_{1}}^{j_{1}} \cdots p_{i_{r}}^{j_{r}}, \quad i_{1}<\cdots<i_{r}
$$

then $\left(e_{p_{a}^{b}} \oplus g_{a, b}\right)$ (n) may be non-zero only for $a=i_{1}, b=j_{1}$.
Definition 5.4. For $k \in \mathbb{N}$, define
(47) $I_{k}=\left\{f \in \mathcal{A} \mid f(n)=0\right.$ for every n such that $\left.\operatorname{gcd}\left(n, p_{1} p_{2} \cdots p_{k}\right)=1\right\}$.

Lemma 5.5. I_{k} is an ideal in $(\mathcal{A},+, \oplus)$.
Proof. It is shown in [8] that the I_{k} 's form an ascending chain of ideals in $(\mathcal{A},+, \cdot)$. They are also easily seen to be ideals in $(\mathcal{A},+, \oplus)$: if

$$
f \in I_{k}, g \in \mathcal{A} \quad \text { and } \quad \operatorname{gcd}\left(n, p_{1} p_{2} \cdots p_{k}\right)=1
$$

then

$$
(f \oplus g)(n)=\sum_{d \| n} f(d) g(n / d)=0
$$

since $\operatorname{gcd}\left(d, p_{1} p_{2} \cdots p_{k}\right)=1$ for any unitary divisor of n.
For any $h \in \mathcal{A}$, the annihilator $\operatorname{ann}(h) \subset \mathcal{A}$ is the ideal consisting of all elements $g \in \mathcal{A}$ such that $g h=\mathbf{0}$.
Theorem 5.6. Let $N \in \mathbb{N}^{+}$, then

$$
\begin{aligned}
I_{N} & =\operatorname{ann}\left(e_{p_{1} \cdots p_{N}}\right) \\
& =\{\mathbf{0}\} \cup\{f \in \mathcal{A} \mid f \text { is a non-unit of polynomial type } \\
& =\overline{\mathcal{A}\left\{e_{p_{i}^{a}} \mid a, i \in \mathbb{N}^{+}, i \leq N\right\}},
\end{aligned}
$$

where $\overline{\mathcal{A} W}$ denotes the topological closure of the ideal generated by the set W.

Proof. If $f \in I_{N}$ then for all k

$$
\begin{align*}
\left(f \oplus e_{p_{1} \cdots p_{N}}\right)(k) & =\sum_{a \oplus p_{1} \cdots p_{N}=k} f(a) e_{p_{1} \cdots p_{N}}\left(p_{1} \cdots p_{N}\right) \\
& =\sum_{a \oplus p_{1} \cdots p_{N}=k} f(a)=0 \tag{48}
\end{align*}
$$

so $f \in \operatorname{ann}\left(e_{p_{1} \cdots p_{N}}\right)$. Conversely, if $f \in \operatorname{ann}\left(e_{p_{1} \cdots p_{N}}\right)$ then $\left(f \oplus e_{p_{1} \cdots p_{N}}\right)(k)=0$ for all k, hence if $\operatorname{gcd}\left(n, p_{1} \cdots p_{N}\right)=1$ then

$$
\begin{equation*}
0=\left(f \oplus e_{p_{1} \cdots p_{N}}\right)\left(n p_{1} \cdots p_{N}\right)=f(n) e_{p_{1} \cdots p_{N}}\left(p_{1} \cdots p_{N}\right)=f(n) \tag{49}
\end{equation*}
$$

hence $f \in I_{N}$.
If $f \in I_{N}$ then for $j>N$ we get that $f_{j}=\mathbf{0}$, since

$$
f_{j}(k)= \begin{cases}0 & \text { if } k \notin A^{(j)} \\ f(k)=0 & \text { if } k \in A^{(j)}\end{cases}
$$

Hence $f=\sum_{i=1}^{N} f_{i}$. Conversely, if f can be expressed in this way, then $f(k)=$ $f_{j_{1}}(k)=0$ for $k=p_{j_{1}}^{a_{1}} \cdots p_{j_{r}}^{a_{r}}$ with $N<j_{1}<\cdots<j_{r}$.

The last equality follows from Theorem 3.9.
Theorem 5.7. Let $f \in \mathcal{A}$ be a non-unit. The following are equivalent:
(i) f is of polynomial type.
(ii) $f \in \bigcup_{k=0}^{\infty} I_{k}$,
(iii) There is a finite subset $Q \subset \mathcal{P}$ such that $f(k)=0$ for all k relatively prime to all $p \in Q$.
(iv) $f \in \bigcup_{N=1}^{\infty} \operatorname{ann}\left(e_{p_{1} p_{2} \cdots p_{N}}\right)$.
(v) There is a positive integer N such that f is contained in the topological closure of the ideal generated by the set

$$
\left\{e_{p_{i}^{a}} \mid a, i \in \mathbb{N}^{+}, i \leq N\right\}
$$

If f has finite support, then it is of polynomial type. If f is of polynomial type, then it is nilpotent.

Proof. Clearly, a finitely supported f is of polynomial type. The equivalence (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv) \Longleftrightarrow (v) follows from the previous theorem. If f is of polynomial type, say of filtration degree N, then

$$
\begin{equation*}
f=\sum_{i=1}^{N} f_{i} \tag{50}
\end{equation*}
$$

and we see that if f^{N+1} is the $N+1$ 'st unitary power of f, then f^{N+1} is the linear combination of monomials in the f_{i} 's, and none of these monomials is square-free. Since $f_{i} \oplus f_{i}=\mathbf{0}$ for all i, we have that $f^{N+1}=\mathbf{0}$. So f is nilpotent.
Lemma 5.8. The elements of polynomial type forms an ideal.

Proof. By the previous theorem, this set can be expressed as

$$
\bigcup_{n=1}^{\infty} I_{n}
$$

which is an ideal since I_{n} form an ascending chain of ideals.
Question 5.9. Are all [nilpotent elements, zero divisors] of polynomial type? If one could prove that the zero divisors are precisely the elements of polynomial type, then by Lemma 5.8 it would follow that $Z(\mathcal{A})$ is an ideal, and moreover a prime ideal, since the product of two regular elements is regular (in any commutative ring). Then one could conclude $[6]$ that $(\mathcal{A},+, \oplus)$ has few zero divisors, hence is additively regular, hence is a Marot ring.

Theorem 5.10. $(\mathcal{A},+, \oplus)$ contains infinitely many non-associate regular nonunits.

Proof. Step 1. We first show that there is at least one such element. Let $f \in \mathcal{A}$ denote the arithmetical function

$$
f(k)= \begin{cases}1 & \text { if } k \in \mathcal{P} \mathcal{P} \\ 0 & \text { otherwise }\end{cases}
$$

Then f is a non-unit, and using a result by Yocom [13, 8] we have that f is contained in a subring of $(\mathcal{A},+, \oplus)$ which is a discrete valuation ring isomorphic to $\mathbb{C} \llbracket t \rrbracket$, the power series ring in one indeterminate. This ring is a domain, so f is not nilpotent.

We claim that f is in fact regular. To show this, suppose that $g \in \mathcal{A}, f \oplus g=\mathbf{0}$. We will show that $g=\mathbf{0}$.

Any positive integer m can be written $m=q_{1}^{a_{1}} \cdots q_{r}^{a_{r}}$, where the q_{i} are distinct prime numbers. If $r=0$, then $m=1$, and $g(1)=0$, since

$$
0=(f \oplus g)(2)=f(2) g(1)=g(1)
$$

For the case $r=1$, we want to show that $g\left(q^{a}\right)=0$ for all prime numbers q. Choose three different prime powers $q_{1}^{a_{1}}, q_{2}^{a_{2}}$, and $q_{3}^{a_{3}}$. Then

$$
0=f \oplus g\left(q_{i}^{a_{i}} q_{j}^{a_{j}}\right)=f\left(q_{i}^{a_{i}}\right) g\left(q_{j}^{a_{j}}\right)+f\left(q_{j}^{a_{j}}\right) g\left(q_{i}^{a_{i}}\right)=g\left(q_{j}^{a_{j}}\right)+g\left(q_{i}^{a_{i}}\right)
$$

when $i \neq j, i, j \in\{1,2,3\}$. In matrix notation, these three equations can be written as

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
g\left(q_{1}^{a_{1}}\right) \\
g\left(q_{2}^{a_{2}}\right) \\
g\left(q_{3}^{a_{3}}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

from which we conclude (since the determinant of the coefficient matrix is nonzero) that $0=g\left(q_{1}^{a_{1}}\right)=g\left(q_{2}^{a_{2}}\right)=g\left(q_{3}^{a_{3}}\right)$.

Now for the general case, $r>1$. We need to show that that

$$
\begin{equation*}
g\left(q_{1}^{a_{1}} \cdots q_{r}^{a_{r}}\right)=0 \tag{51}
\end{equation*}
$$

whenever $q_{1}^{a_{1}}, \ldots, q_{r}^{a_{r}}$ are pair-wise relatively prime prime powers.

Choose N pair-wise relatively prime prime powers $q_{1}^{a_{1}}, \ldots, q_{N}^{a_{N}}$. For each $r+1$ --subset $q_{s_{1}}, \ldots, q_{s_{r+1}}$ of this set we get a homogeneous linear equation

$$
\begin{align*}
0 & =f \oplus g\left(q_{s_{1}} \ldots q_{s_{r+1}}\right) \\
& =g\left(q_{s_{2}} \cdots q_{s_{r+1}}\right)+g\left(q_{s_{1}} q_{s_{3}} \cdots q_{s_{r+1}}\right)+\cdots+g\left(q_{s_{1}} \cdots g_{s_{r}}\right) \tag{52}
\end{align*}
$$

The matrix of the homogeneous linear equation system formed by all these equations is the incidence matrix of r-subsets (of a set of N elements) into $r+1$-subsets. It has full rank [12]. Since it consists of $\binom{N}{r+1}$ equations and $\binom{N}{r}$ variables, we get that for sufficiently large N, the null-space is zero-dimensional, thus the homogeneous system has only the trivial solution. It follows, in particular, that (51) holds.

Thus, $g(m)=0$ for all m, so f is a regular element.
Step 2. We construct infinitely many different regular non-units. Consider the element \tilde{f}, with

$$
\tilde{f}(k)= \begin{cases}c_{k} & k \in \mathcal{P} \mathcal{P} \\ 0 & \text { otherwise }\end{cases}
$$

and where the c_{k} 's are "sufficiently generic" non-zero complex numbers, then we claim that \tilde{f}, too, is a regular non-unit. With g, m, r as before, we have that, for $r=0$,

$$
0=f \oplus g\left(p^{a}\right)=f\left(p^{a}\right) g(1)=c_{p^{a}} g(1)
$$

We demand that $c_{p^{a}} \neq 0$, then $g(1)=0$.
For a general r, we argue as follows: the incidence matrices that occurred before will be replaced with "generic" matrices whose elements are c_{k} 's or zeroes, and which specialize, when setting all $c_{k}=1$, to full-rank matrices. They must therefore have full rank, and the proof goes through.

Step 3. Let g be a unit in \mathcal{A}, and \tilde{f} as above. We claim that if $g \oplus f$ is of the above form, i.e. supported on $\mathcal{P} \mathcal{P}$, then g must be a constant. Hence there are infinitely many non-associate regular non-units of the above form.

To prove the claim, we argue exactly as before, using the fact that $g \oplus \tilde{f}$ is supported on $\mathcal{P} \mathcal{P}$. For $m=q_{1}^{a_{1}} \cdots q_{r}^{a_{r}}$ as before, the case $r=0$ yields nothing:

$$
0=g \oplus \tilde{f}(1)=\tilde{f}(1) g(1)=0 g(1)=0
$$

neither does the case $r=1$:

$$
w=g \oplus \tilde{f}\left(q^{a}\right)=\tilde{f}\left(q^{a}\right) g(1)
$$

so $g(1)$ may be non-zero. But for $r=2$ we get

$$
0=g \oplus \tilde{f}\left(q_{1}^{a_{1}} q_{2}^{a_{2}}\right)=\tilde{f}\left(q_{1}^{a_{1}}\right) g\left(q_{2}^{a_{2}}\right)+g\left(q_{1}^{a_{1}}\right) \tilde{f}\left(q_{2}^{a_{2}}\right)
$$

and also

$$
\begin{aligned}
& 0=g \oplus \tilde{f}\left(q_{1}^{a_{1}} q_{3}^{a_{3}}\right)=\tilde{f}\left(q_{1}^{a_{1}}\right) g\left(q_{3}^{a_{3}}\right)+g\left(q_{1}^{a_{1}}\right) \tilde{f}\left(q_{3}^{a_{3}}\right) \\
& 0=g \oplus \tilde{f}\left(q_{2}^{a_{2}} q_{3}^{a_{3}}\right)=\tilde{f}\left(q_{2}^{a_{2}}\right) g\left(q_{3}^{a_{3}}\right)+g\left(q_{1}^{a_{1}}\right) \tilde{f}\left(q_{3}^{a_{3}}\right)
\end{aligned}
$$

which means that

$$
\left[\begin{array}{ccc}
\tilde{f}\left(q_{2}^{a_{2}}\right) & \tilde{f}\left(q_{1}^{a_{1}}\right) & 0 \\
\tilde{f}\left(q_{3}^{a_{3}}\right) & 0 & \tilde{f}\left(q_{1}^{a_{1}}\right) \\
0 & \tilde{f}\left(q_{3}^{a_{3}}\right) & \tilde{f}\left(q_{2}^{a_{2}}\right)
\end{array}\right]\left[\begin{array}{l}
g\left(q_{1}^{a_{1}}\right) \\
g\left(q_{2}^{a_{2}}\right) \\
g\left(q_{3}^{a_{3}}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By our assumptions, the coefficient matrix is non-singular, so only the zero solution exists, hence $g\left(q_{1}^{a_{1}}\right)=0$.

An analysis similar to what we did before shows that $g\left(q_{1}^{a_{1}} \cdots q_{r}^{a_{r}}\right)=0$ for $r>1$.

With the same method, one can easily show that the characteristic function on \mathcal{P} is regular.

6. Some simple results on factorisation

Cashwell-Everett [4] showed that $(\mathcal{A},+, \cdot)$ is a UFD. We will briefly treat the factorisation properties of $(\mathcal{A},+, \oplus)$. Definitions and facts regarding factorisation in commutative rings with zero-divisors from the articles by Anderson and ValdesLeon [1, 2] will be used.

First, we note that since $(\mathcal{A},+, \oplus)$ is quasi-local, it is présimplifiable, i.e. $a \neq \mathbf{0}$, $a=r \oplus a$ implies that r is a unit. It follows that for $a, b \in \mathcal{A}$, the following three conditions are equivalent:
(1) a, b are associates, i.e. $\mathcal{A} \oplus a=\mathcal{A} \oplus b$.
(2) a, b are strong associates, i.e. $a=u \oplus b$ for some unit u.
(3) a, b are very strong associates, i.e. $\mathcal{A} \oplus a=\mathcal{A} \oplus b$ and either $a=b=\mathbf{0}$, or $a \neq \mathbf{0}$ and $a=r \oplus b \Longrightarrow r \in U(\mathcal{A})$.

We say that $a \in \mathcal{A}$ is irreducible, or an atom, if $a=b \oplus c$ implies that a is associate with either b or c.

Theorem 6.1. $(\mathcal{A},+, \oplus)$ is atomic, i.e. all non-units can be written as a product of finitely many atoms. In fact, $(\mathcal{A},+, \oplus)$ is a bounded factorial ring (BFR), i.e. there is a bound on the length of all factorisations of an element.

Proof. It follows from Lemma 3.3 that the non-unit f has a factorisation into at most $\mathrm{D}(f)$ atoms.

Example 6.2. We have that $e_{2} \oplus\left(e_{2^{k}}+e_{3}\right)=e_{6}$ for all k, hence e_{6} has an infinite number of non-associate irreducible divisors, and infinitely many factorisations into atoms.

Example 6.3. The element $h=e_{30}$ can be factored as $e_{2} \oplus e_{3} \oplus e_{5}$, or as $\left(e_{6}+\right.$ $\left.e_{20}\right) \oplus\left(e_{2}+e_{5}\right)$.

These examples show that $(\mathcal{A},+, \oplus)$ is neither a half-factorial ring, nor a finite factorisation ring, nor a weak finite factorisation ring, nor an atomic idf-ring.
7. The subring of arithmetical functions supported on square-free INTEGERS

Let $\mathcal{S Q \mathcal { F }} \subset \mathbb{N}^{+}$denote the set of square-free integers, and put

$$
\begin{equation*}
\mathfrak{C}=\{f \in \mathcal{A} \mid \operatorname{supp}(f) \subset \mathcal{S} \mathcal{Q} \mathcal{F}\} \tag{53}
\end{equation*}
$$

For any $f \in \mathcal{A}$, denote by $p(f) \in \mathfrak{C}$ the restriction of f to $\mathcal{S Q \mathcal { F }}$.
Theorem 7.1. $(\mathfrak{C},+, \oplus)$ is a subring of $(\mathcal{A},+, \oplus)$, and a closed \mathbb{C}-subalgebra with respect to the norm $|\cdot|$. The map

$$
\begin{align*}
p: \mathcal{A} & \rightarrow \mathfrak{C}, \\
f & \mapsto p(f) \tag{54}
\end{align*}
$$

is a continuous \mathbb{C}-algebra epimorphism, and a retraction of the inclusion map $\mathfrak{C} \subset \mathcal{A}$.

Proof. Let $f, g \in \mathfrak{C}$. If $n \in \mathbb{N}^{+} \backslash \mathcal{S Q \mathcal { F }}$ then $(f+g)(n)=f(n)+g(n)=0$, and $c f(n)=0$ for all $c \in \mathbb{C}$. Since $n \in \mathbb{N}^{+} \backslash \mathcal{S Q \mathcal { F }}$, there is at least on prime p such that $p^{2} \mid n$. If m is a unitary divisor of m, then either m or n / m is divisible by p^{2}. Thus

$$
(f \oplus g)(n)=\sum_{m \| n} f(m) g(n / m)=0
$$

If $f_{k} \rightarrow f$ in \mathcal{A}, and all $f_{k} \in \mathfrak{C}$, let $n \in \operatorname{supp}(f)$. Then there is an N such that $f(n)=f_{k}(n)$ for all $k \geq N$. But $\operatorname{supp}\left(f_{k}\right) \subset \mathcal{S Q \mathcal { F }}$, so $n \in \mathcal{S Q \mathcal { F }}$. This shows that \mathfrak{C} is a closed subalgebra of \mathcal{A}.

It is clear that $p(f+g)=p(f)+p(g)$ and that $p(c f)=c p(f)$ for any $c \in \mathbb{C}$. If n is not square-free, we have already showed that

$$
0=(p(f) \oplus p(g))(n)=p((f \oplus g))(n)
$$

Suppose therefore that n is square-free. Then so is all its unitary divisors, hence

$$
\begin{aligned}
p(f \oplus g)(n)=(f \oplus g)(n) & =\sum_{m \| n} f(m) g(n / m) \\
& =\sum_{m \| n} p(f)(m) p(g)(n / m)=(p(f) \oplus p(g))(n)
\end{aligned}
$$

We have that $p(f)=f$ if and only if $f \in \mathfrak{C}$, hence $p(p(f))=p(f)$, so p is a retraction to the inclusion $i: \mathfrak{C} \rightarrow \mathcal{A}$. In other words, $p \circ i=\mathrm{id}_{\mathfrak{C}}$.
Corollary 7.2. The multiplicative inverse of an element in \mathfrak{C} lies in \mathfrak{C}.
Proof. If $f \in \mathfrak{C}, f \oplus g=e_{1}$ then

$$
e_{1}=p\left(e_{1}\right)=p(f \oplus g)=p(f) \oplus p(g)=f \oplus p(g)
$$

hence $g=p(g)$, so $g \in \mathfrak{C}$.
Alternatively, we can reason as follows. If f is a unit in \mathfrak{C} then we can without loss of generality assume that $f(1)=1$. By Theorem 3.7, $g=-f+e_{1}$ is topologically nilpotent, hence by Proposition 1.2 .4 of [3] we have that the inverse of
$e_{1}-g=f$ can be expressed as $\sum_{i=0}^{\infty} g^{i}$. It is clear that g, and every power of it, is supported on $\mathcal{S Q \mathcal { F }}$, hence so is f^{-1}.

Corollary 7.3. $(\mathfrak{C},+, \oplus)$ is semi-local.
Proof. The units consists of all $f \in \mathfrak{C}$ with $f(1) \neq 0$, and the non-units form the unique maximal ideal.
Remark 7.4. More generally, given any subset $Q \subset \mathbb{N}^{+}$, we get a retract of $(\mathcal{A},+, \oplus)$ when considering those arithmetical functions that are supported on the integers $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ with $a_{i} \in Q \cup\{0\}$. This property is unique for the unitary convolution, among all regular convolutions in the sense of Narkiewicz [7].

In particular, the set of arithmetical functions supported on the exponentially odd integers (those n for which all a_{i} are odd) forms a retract of $(\mathcal{A},+, \oplus)$. It follows that the inverse of such a function is of the same form.

Let $T=\mathbb{C} \llbracket x_{1}, x_{2}, x_{3}, \ldots \rrbracket$, the large power series ring on countably many variables, and let J denote the ideal of elements supported on non square-free monomials.

Theorem 7.5. $(\mathfrak{C},+, \oplus) \simeq T / J$. This algebra can also be described as the generalized power series ring on the monoid-with-zero whose elements are all finite subsets of a fixed countable set X, with multiplication

$$
A \times B= \begin{cases}A \cup B & \text { if } A \cap B=\emptyset \tag{55}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. Define η by

$$
\begin{align*}
\eta: T & \rightarrow \mathcal{A} \\
\eta\left(\sum_{m} c_{m} m\right) & =\sum_{m \text { square-free }} c_{m} e_{m}, \tag{56}
\end{align*}
$$

where for a square-free monomial $m=x_{i_{1}} \cdots x_{i_{r}}$ with $1 \leq i_{1}<\cdots<i_{r}$ we put $e_{m}=e_{p_{i_{1}} \cdots p_{i_{r}}}$. Then $\eta(T)=\mathfrak{C}$, ker $\eta=J$. It follows that $\mathfrak{C} \simeq T / J$.

Acknowledgement. I am grateful to the anonymous referee for suggesting several corrections and improvements, and for the proof of Lemma 3.10.

References

[1] Anderson, D. D. and Valdes-Leon, S., Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26(2) (1996), 439-480.
[2] Anderson, D. D. and Valdes-Leon, S., Factorization in commutative rings with zero divisors, II, In Factorization in integral domains (Iowa City, IA, 1996), Marcel Dekker, New York 1997, 197-219.
[3] Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean analysis, A systematic approach to rigid analytic geometry, Springer-Verlag, Berlin, 1984.
[4] Cashwell, E. D. and Everett, C. J., The ring of number-theorethic functions, Pacific J. Math. 9 (1959), 975-985.
[5] Cohen, E., Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66-80.
[6] Huckaba, J. A., Commutative rings with zero divisors, Marcel Dekker Inc., New York, 1988.
[7] Narkiewicz, W., On a class of arithmetical convolutions, Colloq. Math. 10 (1963), 81-94.
[8] Schwab, E. D. and Silberberg, G., A note on some discrete valuation rings of arithmetical functions, Arch. Math. (Brno) 36 (2000), 103-109.
[9] Schwab, E. D. and Silberberg, G., The valuated ring of the arithmetical functions as a power series ring, Arch. Math. (Brno) 37(1) (2001), 77-80.
[10] Sivaramakrishnan, R., Classical theory of arithmetic functions, Pure and Applied Mathematics, volume 126, Marcel Dekker, 1989.
[11] Vaidyanathaswamy, R., The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc. 33(2) (1931), 579-662.
[12] Wilson, R. M. The necessary conditions for t-designs are sufficient for something, Util. Math. 4 (1973), 207-215.
[13] Yocom, K. L., Totally multiplicative functions in regular convolution rings, Canad. Math. Bull. 16 (1973), 119-128.

Department of Mathematics, Stockholm University
SE-10691 Stockholm, Sweden
E-mail: Jan.Snellman@math.su.se

[^0]: 2000 Mathematics Subject Classification: 11A25, 13J05, 13F25.
 Key words and phrases: unitary convolution, Schauder Basis, factorization into atoms, zero divisors.

 Received January 28, 2002.

[^1]: ${ }^{1}$ In [10], $\mathbf{1}$ is denoted e, and e_{1} denoted e_{0}.

[^2]: ${ }^{2}$ In [10] the term norm is used.

[^3]: ${ }^{3}$ This is not the same concept as multiplicativity for arithmetical functions, i.e. that $f(n m)=$ $f(n) f(m)$ whenever $\operatorname{gcd}(n, m)=1$. However, since the latter kind of elements satisfy $f(1)=1$, they are units, and hence multiplicative in the normed-ring sense.

