THE RING OF ARITHMETICAL FUNCTIONS WITH UNITARY CONVOLUTION: DIVISORIAL AND TOPOLOGICAL PROPERTIES

JAN SNELLMAN

ABSTRACT. We study $(\mathcal{A}, +, \oplus)$, the ring of arithmetical functions with unitary convolution, giving an isomorphism between $(\mathcal{A}, +, \oplus)$ and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell-Everett [4] between the ring $(\mathcal{A}, +, \cdot)$ of arithmetical functions with *Dirichlet convolution* and the power series ring $\mathbb{C} \llbracket x_1, x_2, x_3, \ldots \rrbracket$ on countably many variables. We topologize it with respect to a natural norm, and show that all ideals are quasi-finite. Some elementary results on factorization into atoms are obtained. We prove the existence of an abundance of non-associate regular non-units.

1. INTRODUCTION

The ring of arithmetical functions with Dirichlet convolution, which we'll denote by $(\mathcal{A}, +, \cdot)$, is the set of all functions $\mathbb{N}^+ \to \mathbb{C}$, where \mathbb{N}^+ denotes the positive integers. It is given the structure of a commutative \mathbb{C} -algebra by component-wise addition and multiplication by scalars, and by the Dirichlet convolution

(1)
$$f \cdot g(k) = \sum_{r|k} f(r)g(k/r).$$

Then, the multiplicative unit is the function e_1 with $e_1(1) = 1$ and $e_1(k) = 0$ for k > 1, and the additive unit is the zero function **0**.

Cashwell-Everett [4] showed that $(\mathcal{A}, +, \cdot)$ is a UFD using the isomorphism

(2)
$$(\mathcal{A}, +, \cdot) \simeq \mathbb{C} \left\| x_1, x_2, x_3, \dots \right\|,$$

where each x_i corresponds to the function which is 1 on the *i*'th prime number, and 0 otherwise.

²⁰⁰⁰ Mathematics Subject Classification: 11A25, 13J05, 13F25.

 $Key\ words\ and\ phrases:$ unitary convolution, Schauder Basis, factorization into atoms, zero divisors.

Received January 28, 2002.

Schwab and Silberberg [9] topologised $(\mathcal{A}, +, \cdot)$ by means of the norm

(3)
$$|f| = \frac{1}{\min\{k \mid f(k) \neq 0\}}$$

They noted that this norm is an ultra-metric, and that $((\mathcal{A}, +, \cdot), |\cdot|)$ is a valued ring, i.e. that

- 1. $|\mathbf{0}| = 0$ and |f| > 0 for $f \neq \mathbf{0}$,
- 2. $|f g| \le \max\{|f|, |g|\},\$
- 3. |fg| = |f||g|.

They showed that $(\mathcal{A}, |\cdot|)$ is complete, and that each ideal is *quasi-finite*, which means that there exists a sequence $(e_k)_{k=1}^{\infty}$, with $|e_k| \to 0$, such that every element in the ideal can be written as a convergent sum $\sum_{k=1}^{\infty} c_k e_k$, with $c_k \in \mathcal{A}$.

In this article, we treat instead $(\mathcal{A}, +, \oplus)$, the ring of all arithmetical functions with unitary convolution. This ring has been studied by several authors, such as Vaidyanathaswamy [11], Cohen [5], and Yocom [13].

We topologise \mathcal{A} in the same way as Schwab and Silberberg [9], so that $(\mathcal{A}, +, \oplus)$ becomes a normed ring (but, in contrast to $(\mathcal{A}, +, \cdot)$, not a valued ring). We show that all ideals in $(\mathcal{A}, +, \oplus)$ are quasi-finite.

We show that $(\mathcal{A}, +, \oplus)$ is isomorphic to a monomial quotient of a power series ring on countably many variables. It is présimplifiable and atomic, and there is a bound on the lengths of factorizations of a given element. We give a sufficient condition for nilpotency, and prove the existence of plenty of regular non-units.

Finally, we show that the set of arithmetical functions supported on square-free integers is a retract of $(\mathcal{A}, +, \oplus)$.

2. The ring of arithmetical functions with unitary convolution

We denote the integers by \mathbb{Z} , the non-negative integers by \mathbb{N} , and the positive integers by \mathbb{N}^+ . Let p_i be the *i*'th prime number. Denote by \mathcal{P} the set of prime numbers, and by \mathcal{PP} the set of prime powers. The integer 1 is not a prime, nor a prime power. Let $\omega(r)$ be the number of distinct prime factors of r, with $\omega(1) = 0$.

Definition 2.1. If k, m are positive integers, we define their *unitary product* as

(4)
$$k \oplus m = \begin{cases} km & \gcd(k,m) = 1\\ 0 & \text{otherwise} \end{cases}$$

If $k \oplus m = p$, then we write $k \parallel p$ and say that k is a *unitary divisor* of p.

The so-called *unitary convolution* was introduced by Vaidyanathaswamy [11], and was further studied Eckford Cohen [5].

Definition 2.2. $\mathcal{A} = \{f : \mathbb{N}^+ \to \mathbb{C}\}$, the set of complex-valued functions on the positive integers. We define the *unitary convolution* of $f, g \in \mathcal{A}$ as

(5)
$$(f \oplus g)(n) = \sum_{\substack{m \oplus p = n \\ m, n \ge 1}} f(m)g(n) = \sum_{d \parallel n} f(d)g(n/d)$$

and the addition as

$$(f+g)(n) = f(n) + g(n).$$

The ring $(\mathcal{A}, +, \oplus)$ is called *the ring of arithmetic functions* with unitary convolution.

Definition 2.3. For each positive integer k, we define $e_k \in \mathcal{A}$ by

(6)
$$e_k(n) = \begin{cases} 1 & k = n \\ 0 & k \neq n \end{cases}$$

We also define¹ $\mathbf{0}$ as the zero function, and $\mathbf{1}$ as the function which is constantly 1.

Lemma 2.4. 0 is the additive unit of \mathcal{A} , and e_1 is the multiplicative unit. We have that

hence

(8)
$$e_{k_1} \oplus e_{k_2} \oplus \dots \oplus e_{k_r} = \begin{cases} e_{k_1 k_2 \dots k_r} & \text{if } \gcd(k_i, k_j) = 1 & \text{for } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Proof. The first assertions are trivial. We have [10] that for $f_1, \ldots, f_r \in \mathcal{A}$,

(9)
$$(f_1 \oplus \cdots \oplus f_r)(n) = \sum_{a_1 \oplus \cdots \oplus a_r = n} f_1(a_1) \cdots f_r(a_r)$$

Since

$$e_{k_1}(a_1)e_{k_2}(a_2)\cdots e_{k_r}(a_r) = 1$$
 iff $\forall i: k_i = a_i$,

(7) follows.

Lemma 2.5. For $n \in \mathbb{N}^+$, e_n can be uniquely expressed as a square-free monomial in $\{e_k \mid k \in \mathcal{PP}\}$ (we use the convention that the empty product corresponds to the multiplicative unit e_1).

Proof. By unique factorization, there is a unique way of writing $n = p_{i_1}^{a_1} \cdots p_{i_r}^{a_r}$, and (8) gives that

$$e_n = e_{p_{i_1}^{a_1} \cdots p_{i_r}^{a_r}} = e_{p_{i_1}^{a_1}} \oplus \cdots \oplus e_{p_{i_r}^{a_r}}.$$

Theorem 2.6. $(\mathcal{A}, +, \oplus)$ is a quasi-local, non-noetherian commutative ring having divisors of zero. The units $U(\mathcal{A})$ consists of those f such that $f(1) \neq 0$.

¹In [10], **1** is denoted e, and e_1 denoted e_0 .

Proof. It is shown in [10] that $(\mathcal{A}, +, \oplus)$ is a commutative ring, having zerodivisors, and that the units consists of those f such that $f(1) \neq 0$. If f(1) = 0 then

$$(f \oplus g)(1) = f(1)g(1) = 0.$$

Hence the non-units form an ideal \mathfrak{m} , which is then the unique maximal ideal.

We will show (Lemma 3.10) that \mathfrak{m} contains an ideal (the ideal generated by all e_k , for k > 1) which is not finitely generated, so \mathcal{A} is non-noetherian.

3. A topology on \mathcal{A}

The results of this section are inspired by [9], were the authors studied the ring of arithmetical functions under Dirichlet convolution. We'll use the notations of [3]. We regard \mathbb{C} as trivially normed.

Definition 3.1. Let $f \in \mathcal{A} \setminus \{\mathbf{0}\}$. We define the *support* of f as

(10)
$$\operatorname{supp}(f) = \left\{ n \in \mathbb{N}^+ \mid f(n) \neq 0 \right\}.$$

We define the $order^2$ of a non-zero element by

(11)
$$N(f) = \min \operatorname{supp}(f)$$

We also define the *norm* of f as

(12)
$$|f| = N(f)^{-1}$$

and the *degree* as

(13)
$$D(f) = \min \{ \omega(k) \mid k \in \operatorname{supp}(f) \}.$$

By definition, the zero element has order infinity, norm 0, and degree ∞ .

Lemma 3.2. The value semigroup of $(\mathcal{A}, |\cdot|)$ is

$$|\mathcal{A} \setminus \{\mathbf{0}\}| = \left\{ 1/k \mid k \in \mathbb{N}^+ \right\} \,,$$

a discrete subset of \mathbb{R}^+ .

Lemma 3.3. Let $f, g \in A \setminus \{0\}$. Let N(f) = i, N(g) = j, so that $f(i) \neq 0$ but f(k) = 0 for all k < i, and similarly for g. Then, the following hold:

- (i) $N(f-g) \ge \min \{N(f), N(g)\}.$
- (ii) N(cf) = N(f) for $c \in \mathbb{C} \setminus \{0\}$.
- (iii) N(f) = 1 iff f is a unit.
- (iv) $N(f \cdot g) = N(f)N(g) \le N(f \oplus g)$, with equality iff gcd(i, j) = 1.
- (v) $N(f \oplus g) \ge \max{\{N(f), N(g)\}}$, with strict inequality iff both f and g are non-units.
- (vi) $D(f+g) \ge \min \{D(f), D(g)\}.$
- (vii) D(f) = 0 if and only if f is a unit.
- (viii) $D(f \oplus g) \ge D(f) + D(g) \ge \max \{D(f), D(g)\},$ with $D(f) + D(g) > \max \{D(f), D(g)\}$ if f, g are non-units.

²In [10] the term *norm* is used.

Proof. (i), (ii), and (iii) are trivial, and (iv) is proved in [10].

If $\omega(s) < \min \{ \mathcal{D}(f), \mathcal{D}(g) \}$ then

$$s \not\in \operatorname{supp}(f) \cup \operatorname{supp}(g)$$

 \mathbf{SO}

$$(f+g)(s) = f(s) + g(s) = 0$$
.

This proves (vi). Since f is a unit iff $f(1) \neq 0$, (vii) follows.

For any a in the support of f and any b in the support of g, such that $a \oplus b \neq 0$, we have that

$$\omega(a \oplus b) = \omega(a) + \omega(b) \ge D(f) + D(g)$$

This proves the first inequality of (viii). Using (vii) the other assertion follows. (v) is proved similarly. □

Corollary 3.4. $|f \oplus g| \leq |f||g| = |f \cdot g|$.

Proposition 3.5. $|\cdot|$ is an ultrametric function on \mathcal{A} , making $(\mathcal{A}, +, \oplus)$ a normed ring, as well as a faithfully normed, b-separable complete vector space over \mathbb{C} .

Proof. $((\mathcal{A}, +, \cdot), |\cdot|)$ is a valuated ring, and a faithfully normed complete vector space over \mathbb{C} [9]. It is also separable with respect to bounded maps [3, Corollary 2.2.3]. So $(\mathcal{A}, +)$ is a normed group, hence Corollary 3.4 shows that $(\mathcal{A}, +, \oplus)$ is a normed ring.

Note that, unlike $((\mathcal{A}, +, \cdot), |\cdot|)$, the normed ring $((\mathcal{A}, +, \oplus), |\cdot|)$ is not a valued ring, since

$$|e_2 \oplus e_2| = |\mathbf{0}| = 0 < |e_2|^2 = 1/4.$$

In fact, defining f^n to be the n'th unitary power of n, we have that

Lemma 3.6. If f is a unit, then $1 = |f^n| = |f|^n$ for all positive integers n. If n is a non-unit, then $|f^n| < |f|^n$ for all n > 1.

Proof. The first assertion is trivial, so suppose that f is a non-unit. From Corollary 3.4 we have that $|f^n| \leq |f|^n$. If |f| = 1/k, k > 1, i.e. $f(k) \neq 0$ but f(j) = 0 for j < k, then $f^2(k^2) = 0$ since gcd(k, k) = k > 1. It follows that $|f^2| > |f|^2$, from which the result follows.

Recall that in a normed ring, a non-zero element f is called

- topologically nilpotent if $f^n \to 0$,
- power-multiplicative if $|f^n| = |f|^n$ for all n,
- multiplicative if |fg| = |f||g| for all g in the ring.

Theorem 3.7. Let $f \in ((\mathcal{A}, +, \oplus), |\cdot|), f \neq \mathbf{0}$. Then the following are equivalent:

(1) f is topologically nilpotent,

- (2) f is not power-multiplicative,
- (3) f is not multiplicative³ in the normed ring $(\mathcal{A}, +, \oplus), |\cdot|)$,

³This is not the same concept as multiplicativity for arithmetical functions, i.e. that f(nm) = f(n)f(m) whenever gcd(n,m) = 1. However, since the latter kind of elements satisfy f(1) = 1, they are units, and hence multiplicative in the normed-ring sense.

(4) f is a non-unit,

(5) |f| < 1.

Proof. Using [3, 1.2.2, Prop. 2], this follows from the previous Lemma, and the fact that for a unit f,

$$1 = |f^{-1}| = |f|^{-1}.$$

3.1. A Schauder basis for $(\mathcal{A}, |\cdot|)$.

Definition 3.8. Let \mathcal{A}' denote the subset of \mathcal{A} consisting of functions with finite support. We define a pairing

(14)
$$\begin{aligned} \mathcal{A} \times \mathcal{A}' &\to \mathbb{C} \\ \langle f, g \rangle &= \sum_{k=1}^{\infty} f(k) g(k) \end{aligned}$$

Theorem 3.9. The set $\{e_k \mid k \in \mathbb{N}^+\}$ is an ordered orthogonal Schauder base in the normed vector space $(\mathcal{A}, |\cdot|)$. In other words, if $f \in \mathcal{A}$ then

(15)
$$f = \sum_{k=1}^{\infty} c_k e_k , \qquad c_k \in \mathbb{C}$$

where

(i) $|e_k| \to 0$,

(ii) the infinite sum (15) converges w.r.t. the ultrametric topology,

(iii) the coefficients c_k are uniquely determined by the fact that

(16)
$$\langle f, e_k \rangle = f(k) = c_k$$

(iv)

(17)
$$\max_{k \in \mathbb{N}^+} \{ |c_k| |e_k| \} = \left| \sum_{k=1}^{\infty} c_k e_k \right|.$$

The set $\{e_1\} \cup \{e_p \mid p \in \mathcal{PP}\}$ generates a dense subalgebra of $((\mathcal{A}, +, \oplus), |\cdot|)$.

Proof. It is proved in [9] that this set is a Schauder base in the topological vector space $(\mathcal{A}, |\cdot|)$. It also follows from [9] that the coefficients c_k in (3.9) are given by $c_k = f(k)$.

It remains to prove orthogonality. With the above notation,

$$|f| = \left|\sum_{k=1}^{\infty} c_k e_k\right| = 1/j\,,$$

where j is the smallest k such that $c_k \neq 0$. Recalling that \mathbb{C} is trivially normed, we have that

$$|c_k||e_k| = \begin{cases} |e_k| = 1/k & \text{if } c_k \neq 0\\ 0 & \text{if } c_k = 0 \end{cases}$$

so $\max_{k \in \mathbb{N}^+} \{ |c_k| | e_k | \} = 1/j$, with j as above, so (17) holds.

By Lemma 2.5 any e_k can be written as a square-free monomial in the elements of $\{e_p \mid p \in \mathcal{PP}\}$. The set $\{e_k \mid k \in \mathbb{N}^+\}$ is dense in \mathcal{A} , so $\{e_p \mid p \in \mathcal{PP}\}$ generates a dense subalgebra.

Let $J \subset \mathfrak{m}$ denote the ideal generated by all $e_k, k > 1$.

Lemma 3.10. J is not finitely generated.

Proof. The following proof was provided by the anonymous referee. Consider the following ideal I in \mathcal{A} :

$$I = \{ f \in \mathcal{A} \mid f(1) = 0, \ \forall p \in \mathcal{P} : \ f(p) = 0 \}.$$

Then the units of \mathcal{A}/I are precisely the elements of the form g + I, where $g \in \mathcal{A}$, $g(1) \neq 0$. Moreover, for any $f, g \in \mathcal{A}$ such that $f(1) = a \in \mathbb{C}$, g(1) = 0, we have $(f + I) \oplus (g + I) = (ag) + I = a(g + I)$. Assume that J is finitely generated ideal, say $J = (b_1, \ldots, b_r)$. Then $b_1(1) = \cdots = b_r(1) = 0$ and any element of J is of the form $\sum_{i=1}^r f_i \oplus b_i$ for suitable $f_1, \ldots, f_r \in \mathcal{A}$. We have

$$\left(\sum_{i=1}^{r} f_i \oplus b_i\right) + I = \sum_{i=1}^{r} (f_i + I) \oplus (b_i + I) = \sum_{i=1}^{r} a_i (b_i + I),$$

where $a_i = f_i(1) \in \mathbb{C}$, which belongs to the finitely dimensional linear subspace of \mathcal{A}/I generated by $b_1 + I, \ldots, b_r + I$. This is a contradiction with the fact that the linear subspace of \mathcal{A}/I generated by $e_k + I$, k > 1, is of infinite dimension.

Definition 3.11. An ideal $I \subset \mathcal{A}$ is called quasi-finite if there exists a sequence $(g_k)_{k=1}^{\infty}$ in I such that $|g_k| \to 0$ and such that every element $f \in I$ can be written (not necessarily uniquely) as a convergent sum

(18)
$$f = \sum_{k=1}^{\infty} a_k \oplus g_k, \qquad a_k \in \mathcal{A}.$$

Lemma 3.12. m is quasi-finite.

Proof. By Theorem 3.9 the set $\{e_k \mid k > 1\}$ is a quasi-finite generating set for \mathfrak{m} .

Since all ideals are contained in \mathfrak{m} , it follows that any ideal containing $\{e_k \mid k > 1\}$ is quasi-finite. Furthermore, such an ideal has \mathfrak{m} as its closure. In particular, J is quasi-finite, but not closed.

Theorem 3.13. All (non-zero) ideals in \mathcal{A} are quasi-finite. In fact, given any subspace I we can find

(19)
$$G(I) := (g_k)_{k=1}^{\infty}$$

such that for all $f \in I$,

(20)
$$\exists c_1, c_2, c_3, \dots \in \mathbb{C}, \qquad f = \sum_{i=1}^{\infty} c_i g_i$$

So all subspaces possesses a Schauder basis.

J. SNELLMAN

Proof. We construct G(I) in the following way: for each

$$k \in \{ \mathcal{N}(f) \mid f \in I \setminus \{\mathbf{0}\} \} =: \mathcal{N}(I)$$

we choose a $g_k \in I$ with $N(g_k) = k$, and with $g_k(k) = 1$. In other words, we make sure that the "leading coefficient" is 1; this can always be achieved since the coefficients lie in a field. For $k \notin N(I)$ we put $g_k = \mathbf{0}$.

To show that this choice of elements satisfy (20), take any $f \in I$, and put $f_0 = f$. Then define recursively, as long as $f_i \neq 0$,

$$n_i := N(f_i) ,$$
$$\mathbb{C} \ni a_i := f_i(n_i) ,$$
$$\mathcal{A} \ni f_{i+1} := f_i - a_i g_{n_i} .$$

Of course, if $f_i = 0$, then we have expressed f as a linear combination of

 $g_{n_1},\ldots,g_{n_{i-1}},$

and we are done. Otherwise, note that by induction $f_i \in I$, so $n_i \in N(I)$, hence $g_{n_i} \neq 0$. Thus $N(f_{i+1}) > N(f_i)$, so $|f_{i+1}| < |f_i|$, whence

$$|f_0| > |f_1| > |f_2| > \cdots \to 0$$
.

But

$$f_{i+1} = f - \sum_{j=1}^{i} a_j g_{n_j},$$

 \mathbf{SO}

$$F_i := \sum_{j=1}^i a_j g_{n_j} \to f$$

which shows that $\sum_{j=1}^{\infty} a_j g_j = f$.

4. A fundamental isomorphism

4.1. The monoid of separated monomials. Let

(21)
$$Y = \left\{ y_i^{(j)} \mid i, j \in \mathbb{N}^+ \right\}$$

be an infinite set of variables, in bijective correspondence with the integer lattice points in the first quadrant minus the axes. We call the subset

(22)
$$Y_i = \left\{ y_i^{(j)} \mid j \in \mathbb{N}^+ \right\}$$

the *i*'th column of Y.

Let [Y] denote the free abelian monoid on Y, and let \mathcal{M} be the subset of *separated monomials*, i.e. monomials in which no two occurring variables come from the same column:

(23)
$$\mathcal{M} = \left\{ y_{i_1}^{(j_1)} y_{i_2}^{(j_2)} \cdots y_{i_r}^{(j_r)} \mid 1 \le i_i < i_2 < \cdots i_r \right\}.$$

We regard \mathcal{M} as a monoid-with-zero, so that the multiplication is given by

(24)
$$m \oplus m' = \begin{cases} mm' & mm' \in \mathcal{M} \\ 0 & \text{otherwise} \end{cases}$$

Note that the zero is exterior to \mathcal{M} , i.e. $0 \notin \mathcal{M}$. The set $\mathcal{M} \cup \{0\}$ is a (non-cancellative) monoid if we define $m \oplus 0 = 0$ for all $m \in \mathcal{M}$.

Recall that \mathcal{PP} denotes the set of prime powers. It follows from the fundamental theorem of arithmetic that any positive integer n can be uniquely written as a square-free product of prime powers. Hence we have that

(25)
$$\begin{aligned} \Phi: Y \to \mathcal{PP} \\ y_i^{(j)} \mapsto p_i^j \end{aligned}$$

is a bijection which can be extended to a bijection

(26)

$$\begin{aligned}
\Phi : \mathcal{M} \to \mathbb{N}^+, \\
1 \mapsto 1, \\
y_{i_1}^{(j_1)} \cdots y_{i_r}^{(j_r)} \mapsto p_{i_1}^{j_1} \cdots p_{i_r}^{j_r}
\end{aligned}$$

If we regard \mathbb{N}^+ as a monoid-with-zero with the operation \oplus of (4), then (26) is a monoid-with-zero isomorphism.

4.2. The ring \mathcal{A} as a generalized power series ring, and as a quotient of $\mathbb{C} \llbracket Y \rrbracket$. Let R be the large power series ring on [Y], i.e. $R = C \llbracket Y \rrbracket$ consists of all formal power series $\sum c_{\alpha} y^{\alpha}$, where the sum is over all multi-sets α on Y.

Let S be the generalized monoid-with-zero ring on \mathcal{M} . By this, we mean that S is the set of all formal power series

(27)
$$\sum_{m \in \mathcal{M}} f(m)m, \qquad f(m) \in \mathbb{C}$$

with component-wise addition, and with multiplication

(28)
$$\left(\sum_{m\in\mathcal{M}}f(m)m\right)\oplus\left(\sum_{m\in\mathcal{M}}g(m)m\right) = \left(\sum_{m\in\mathcal{M}}h(m)m\right),$$
$$h(m) = (f\oplus g)(m) = \sum_{s\oplus t=m}f(s)g(t).$$

Define

(29)
$$\sup(\sum_{m \in [Y]} c_m m) = \{ m \in [Y] \mid c_m \neq 0 \} ,$$

(30)
$$\operatorname{supp}(\sum_{m \in \mathcal{M}} c_m m) = \{ m \in \mathcal{M} \mid c_m \neq 0 \}.$$

Let furthermore

(31)
$$\mathfrak{D} = \{ f \in R \mid \operatorname{supp}(f) \cap \mathcal{M} = \emptyset \} .$$

Theorem 4.1. S and $\frac{R}{\mathfrak{D}}$ and \mathcal{A} are isomorphic as \mathbb{C} -algebras.

Proof. The bijection (26) induces a bijection between S and A which is an isomorphism because of the way multiplication is defined on S. In detail, the isomorphism is defined by

(32)
$$S \ni \sum_{m \in \mathcal{M}} c_m m \mapsto f \in \mathcal{A},$$
$$f(\Phi(m)) = c_m.$$

For the second part, consider the epimorphism

$$\phi: R \to S,$$

$$\phi\left(\sum_{m \in [Y]} c_m m\right) = \sum_{m \in \mathcal{M}} c_m m.$$

Clearly, $\ker(\phi) = \mathfrak{D}$, hence $S \simeq \frac{R}{\ker(\phi)} = \frac{R}{\mathfrak{D}}$.

Let us exemplify this isomorphism by noting that e_n , where n has the square-free factorization $n = p_1^{a_1} \cdots p_r^{a_r}$, corresponds to the square-free monomial $y_1^{(a_1)} \cdots y_r^{(a_r)}$, and that

(33)
$$\mathbf{1} = \sum_{m \in \mathcal{M}} m = \prod_{i=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} y_i^{(j)} \right) \,.$$

What does its inverse μ^* correspond to?

Definition 4.2. For $m \in \mathcal{M}$, we denote by $\omega(m)$ the number of occurring variables in m (by definition, $\omega(1) = 0$). For

$$S \ni f = \sum_{m \in \mathcal{M}} c_m m$$

we put

(34)
$$D(f) = \min \{ \omega(m) \mid c_m \neq 0 \}$$

if $f \neq 0$ and $D(\mathbf{0}) = \infty$. Then $\omega(\Phi(m)) = \omega(m)$, and if f and g correspond to each other via the isomorphism (32), then D(f) = D(g).

It is known (see [10]) that

(35)
$$\mu^*(r) = (-1)^{\omega(r)}$$

We then have that μ^* corresponds to

(36)
$$\mathbf{1}^{-1} = \frac{1}{\prod_{i=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} y_i^{(j)}\right)} = \prod_{i=1}^{\infty} \frac{1}{1 + \sum_{j=1}^{\infty} y_i^{(j)}} = \sum_{m \in \mathcal{M}} (-1)^{\omega(m)} m.$$

Recall that $f \in \mathcal{A}$ is a *multiplicative* arithmetic function if f(nm) = f(n)f(m)whenever gcd(n,m) = 1. Regarding $f \neq \mathbf{0}$ as an element of S we have that f is

multiplicative if and only if it can be written as

(37)
$$f = \prod_{i=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} c_{i,j} y_i^{(j)} \right) \,.$$

It is now easy to see that the multiplicative functions form a group under multiplication.

4.3. The continuous endomorphisms. In [9], Schwab and Silberberg characterized all continuous endomorphisms of $(\mathcal{A}, +, \cdot)$, the ring of arithmetical functions with Dirichlet convolution. We give the corresponding result for $\mathcal{A} = (\mathcal{A}, +, \oplus)$:

Theorem 4.3. Every continuous endomorphism θ of the \mathbb{C} -algebra $S \simeq \mathcal{A}$ is defined by

(38)
$$\theta(y_i^{(j)}) = \gamma_{i,j}$$

where

(39)
$$\gamma_{i,j}\gamma_{i,k} = 0$$
 for all i, j, k

and

(40)
$$\gamma_{a_1(n),b_1(n)} \dots \gamma_{a_r(n),b_r(n)} \to 0$$
 as $n = p_{a_1(n)}^{b_1(n)} \dots p_{a_r(n)}^{b_r(n)} \to \infty$.

Proof. Recall that $S \simeq \frac{R}{\mathfrak{D}}$, where $R = \mathbb{C} \llbracket Y \rrbracket$ and \mathfrak{D} is the closure of the ideal generated by all non-separated quadratic monomials $y_i^{(j)} y_i^{(k)}$. Since the set of square-free monomials in the $y_i^{(j)}$'s form a Schauder base of S, any continuous C-algebra endomorphism θ of S is determined by its values on the $y_i^{(j)}$'s, and must fulfill (40). Since $y_i^{(j)} y_i^{(k)} = 0$ in S, we must have that

$$\theta(0) = \theta(y_i^{(j)} y_i^{(k)}) = \theta(y_i^{(j)}) \theta(y_i^{(k)}) = \gamma_{i,j} \gamma_{i,k} = 0.$$

5. NILPOTENT ELEMENTS AND ZERO DIVISORS

Definition 5.1. For $m \in \mathbb{N}^+$, define the *prime support* of m as

(41)
$$psupp(m) = \{ p \in \mathcal{P} \mid p \mid m \}$$

and (when m > 1) the leading prime as

(42)
$$lp(m) = \min psupp(m)$$

For $n \in \mathbb{N}^+$, put

(43)
$$A^{(n)} = \{ k \in \mathbb{N}^+ \mid p_n \mid k \text{ but } p_i \nmid k \text{ for } i < n \} = \{ k \in \mathbb{N}^+ \mid \operatorname{lp}(k) = p_n \} .$$

Then $\mathbb{N}^+ \setminus \{1\}$ is a disjoint union

(44)
$$\mathbb{N}^+ \setminus \{1\} = \bigsqcup_{i=1}^{\infty} A^{(i)}$$

Definition 5.2. If $f \in A$ is a non-unit, then the *canonical decomposition* of f is the unique way of expressing f as a convergent sum

(45)
$$f = \sum_{i=1}^{\infty} f_i, \quad f_i = \sum_{k \in A^{(i)}} f(k) e_k.$$

The element f is said to be of *polynomial type* if all but finitely many of the f_i 's are zero. In that case, the largest N such that $f_N \neq \mathbf{0}$ is called the *filtration degree* of f.

Lemma 5.3. If $f \in A$ is a non-unit with canonical decomposition (45), then

(46)
$$f_i = \sum_{j=1}^{\infty} e_{p_i^j} \oplus g_{i,j},$$

where $r \leq i$, $p_r \mid n$ implies that $g_{i,j}(n) = 0$. For any n there is at most one pair (i, j) such that

$$\left(e_{p_i^j}\oplus g_{i,j}\right)(n)\neq 0.$$

More precisely, if

$$n = p_{i_1}^{j_1} \cdots p_{i_r}^{j_r}, \qquad i_1 < \cdots < i_r,$$

then $(e_{p_a^b} \oplus g_{a,b})(n)$ may be non-zero only for $a = i_1, b = j_1$.

Definition 5.4. For $k \in \mathbb{N}$, define

(47)
$$I_k = \{ f \in \mathcal{A} \mid f(n) = 0 \text{ for every } n \text{ such that } \gcd(n, p_1 p_2 \cdots p_k) = 1 \}.$$

Lemma 5.5. I_k is an ideal in $(\mathcal{A}, +, \oplus)$.

Proof. It is shown in [8] that the I_k 's form an ascending chain of ideals in $(\mathcal{A}, +, \cdot)$. They are also easily seen to be ideals in $(\mathcal{A}, +, \oplus)$: if

$$f \in I_k, g \in \mathcal{A}$$
 and $gcd(n, p_1p_2\cdots p_k) = 1$

then

$$(f\oplus g)(n) = \sum_{d\parallel n} f(d)g(n/d) = 0\,,$$

since $gcd(d, p_1p_2\cdots p_k) = 1$ for any unitary divisor of n.

For any $h \in \mathcal{A}$, the *annihilator* $\operatorname{ann}(h) \subset \mathcal{A}$ is the ideal consisting of all elements $g \in \mathcal{A}$ such that $gh = \mathbf{0}$.

Theorem 5.6. Let $N \in \mathbb{N}^+$, then

$$\begin{split} I_N &= \operatorname{ann}(e_{p_1 \cdots p_N}) \\ &= \{\mathbf{0}\} \cup \{f \in \mathcal{A} \mid f \text{ is a non-unit of polynomial type} \\ &\quad \text{and has filtration degree at most } N\} \\ &= \overline{\mathcal{A}\left\{ e_{p_i^a} \mid a, i \in \mathbb{N}^+, i \leq N \right\}}, \end{split}$$

where $\overline{\mathcal{A}W}$ denotes the topological closure of the ideal generated by the set W.

Proof. If $f \in I_N$ then for all k

(48)
$$(f \oplus e_{p_1 \cdots p_N})(k) = \sum_{a \oplus p_1 \cdots p_N = k} f(a)e_{p_1 \cdots p_N}(p_1 \cdots p_N)$$
$$= \sum_{a \oplus p_1 \cdots p_N = k} f(a) = 0,$$

so $f \in \operatorname{ann}(e_{p_1 \cdots p_N})$. Conversely, if $f \in \operatorname{ann}(e_{p_1 \cdots p_N})$ then $(f \oplus e_{p_1 \cdots p_N})(k) = 0$ for all k, hence if $\operatorname{gcd}(n, p_1 \cdots p_N) = 1$ then

(49)
$$0 = (f \oplus e_{p_1 \cdots p_N})(np_1 \cdots p_N) = f(n)e_{p_1 \cdots p_N}(p_1 \cdots p_N) = f(n)$$

hence $f \in I_N$.

If $f \in I_N$ then for j > N we get that $f_j = \mathbf{0}$, since

$$f_j(k) = \begin{cases} 0 & \text{if } k \notin A^{(j)} \\ f(k) = 0 & \text{if } k \in A^{(j)} \end{cases}$$

Hence $f = \sum_{i=1}^{N} f_i$. Conversely, if f can be expressed in this way, then $f(k) = f_{j_1}(k) = 0$ for $k = p_{j_1}^{a_1} \cdots p_{j_r}^{a_r}$ with $N < j_1 < \cdots < j_r$.

The last equality follows from Theorem 3.9.

Theorem 5.7. Let $f \in A$ be a non-unit. The following are equivalent:

- (i) f is of polynomial type.
- (ii) $f \in \bigcup_{k=0}^{\infty} I_k$,
- (iii) There is a finite subset $Q \subset \mathcal{P}$ such that f(k) = 0 for all k relatively prime to all $p \in Q$.
- (iv) $f \in \bigcup_{N=1}^{\infty} \operatorname{ann}(e_{p_1 p_2 \cdots p_N}).$
- (v) There is a positive integer N such that f is contained in the topological closure of the ideal generated by the set

$$\left\{ e_{p_i^a} \mid a, i \in \mathbb{N}^+, i \leq N \right\}$$

If f has finite support, then it is of polynomial type. If f is of polynomial type, then it is nilpotent.

Proof. Clearly, a finitely supported f is of polynomial type. The equivalence (i) \iff (ii) \iff (iii) \iff (iv) \iff (v) follows from the previous theorem.

If f is of polynomial type, say of filtration degree N, then

(50)
$$f = \sum_{i=1}^{N} f_i$$

and we see that if f^{N+1} is the N+1'st unitary power of f, then f^{N+1} is the linear combination of monomials in the f_i 's, and none of these monomials is square-free. Since $f_i \oplus f_i = \mathbf{0}$ for all i, we have that $f^{N+1} = \mathbf{0}$. So f is nilpotent. \Box

Lemma 5.8. The elements of polynomial type forms an ideal.

Proof. By the previous theorem, this set can be expressed as

$$\bigcup_{n=1}^{\infty} I_n$$

which is an ideal since I_n form an ascending chain of ideals.

Question 5.9. Are all [nilpotent elements, zero divisors] of polynomial type? If one could prove that the zero divisors are precisely the elements of polynomial type, then by Lemma 5.8 it would follow that $Z(\mathcal{A})$ is an ideal, and moreover a prime ideal, since the product of two regular elements is regular (in any commutative ring). Then one could conclude [6] that $(\mathcal{A}, +, \oplus)$ has few zero divisors, hence is additively regular, hence is a Marot ring.

Theorem 5.10. $(\mathcal{A}, +, \oplus)$ contains infinitely many non-associate regular nonunits.

Proof. Step 1. We first show that there is at least one such element. Let $f \in \mathcal{A}$ denote the arithmetical function

$$f(k) = \begin{cases} 1 & \text{if } k \in \mathcal{PP} \\ 0 & \text{otherwise} \end{cases}$$

Then f is a non-unit, and using a result by Yocom [13, 8] we have that f is contained in a subring of $(\mathcal{A}, +, \oplus)$ which is a discrete valuation ring isomorphic to $\mathbb{C} \llbracket t \rrbracket$, the power series ring in one indeterminate. This ring is a domain, so f is not nilpotent.

We claim that f is in fact regular. To show this, suppose that $g \in \mathcal{A}$, $f \oplus g = \mathbf{0}$. We will show that $g = \mathbf{0}$.

Any positive integer m can be written $m = q_1^{a_1} \cdots q_r^{a_r}$, where the q_i are distinct prime numbers. If r = 0, then m = 1, and g(1) = 0, since

$$0 = (f \oplus g)(2) = f(2)g(1) = g(1)$$

For the case r = 1, we want to show that $g(q^a) = 0$ for all prime numbers q. Choose three different prime powers $q_1^{a_1}, q_2^{a_2}$, and $q_3^{a_3}$. Then

$$0 = f \oplus g(q_i^{a_i} q_j^{a_j}) = f(q_i^{a_i})g(q_j^{a_j}) + f(q_j^{a_j})g(q_i^{a_i}) = g(q_j^{a_j}) + g(q_i^{a_i}),$$

when $i \neq j, i, j \in \{1, 2, 3\}$. In matrix notation, these three equations can be written as

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} g(q_1^{a_1}) \\ g(q_2^{a_2}) \\ g(q_3^{a_3}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

from which we conclude (since the determinant of the coefficient matrix is non-zero) that $0 = g(q_1^{a_1}) = g(q_2^{a_2}) = g(q_3^{a_3})$.

Now for the general case, r > 1. We need to show that that

(51)
$$g(q_1^{a_1}\cdots q_r^{a_r}) = 0$$

(

whenever $q_1^{a_1}, \ldots, q_r^{a_r}$ are pair-wise relatively prime prime powers.

Choose N pair-wise relatively prime prime powers $q_1^{a_1}, \ldots, q_N^{a_N}$. For each r+1--subset $q_{s_1}, \ldots, q_{s_{r+1}}$ of this set we get a homogeneous linear equation

(52)
$$0 = f \oplus g(q_{s_1} \dots q_{s_{r+1}}) = g(q_{s_2} \dots q_{s_{r+1}}) + g(q_{s_1} q_{s_3} \dots q_{s_{r+1}}) + \dots + g(q_{s_1} \dots g_{s_r}).$$

The matrix of the homogeneous linear equation system formed by all these equations is the incidence matrix of r-subsets (of a set of N elements) into r+1-subsets. It has full rank [12]. Since it consists of $\binom{N}{r+1}$ equations and $\binom{N}{r}$ variables, we get that for sufficiently large N, the null-space is zero-dimensional, thus the homogeneous system has only the trivial solution. It follows, in particular, that (51) holds.

Thus, g(m) = 0 for all m, so f is a regular element.

Step 2. We construct infinitely many different regular non-units. Consider the element \tilde{f} , with

$$\tilde{f}(k) = \begin{cases} c_k & k \in \mathcal{PP} \\ 0 & \text{otherwise} \end{cases}$$

and where the c_k 's are "sufficiently generic" non-zero complex numbers, then we claim that \tilde{f} , too, is a regular non-unit. With g, m, r as before, we have that, for r = 0,

$$0 = f \oplus g(p^a) = f(p^a)g(1) = c_{p^a}g(1)$$
.

We demand that $c_{p^a} \neq 0$, then g(1) = 0.

For a general r, we argue as follows: the incidence matrices that occurred before will be replaced with "generic" matrices whose elements are c_k 's or zeroes, and which specialize, when setting all $c_k = 1$, to full-rank matrices. They must therefore have full rank, and the proof goes through.

Step 3. Let g be a unit in \mathcal{A} , and \tilde{f} as above. We claim that if $g \oplus f$ is of the above form, i.e. supported on \mathcal{PP} , then g must be a constant. Hence there are infinitely many non-associate regular non-units of the above form.

To prove the claim, we argue exactly as before, using the fact that $g \oplus \tilde{f}$ is supported on \mathcal{PP} . For $m = q_1^{a_1} \cdots q_r^{a_r}$ as before, the case r = 0 yields nothing:

$$0 = g \oplus \tilde{f}(1) = \tilde{f}(1)g(1) = 0g(1) = 0,$$

neither does the case r = 1:

$$w = g \oplus \tilde{f}(q^a) = \tilde{f}(q^a)g(1),$$

so g(1) may be non-zero. But for r = 2 we get

$$0 = g \oplus \tilde{f}(q_1^{a_1}q_2^{a_2}) = \tilde{f}(q_1^{a_1})g(q_2^{a_2}) + g(q_1^{a_1})\tilde{f}(q_2^{a_2}),$$

and also

$$\begin{split} 0 &= g \oplus \tilde{f}(q_1^{a_1}q_3^{a_3}) = \tilde{f}(q_1^{a_1})g(q_3^{a_3}) + g(q_1^{a_1})\tilde{f}(q_3^{a_3}), \\ 0 &= g \oplus \tilde{f}(q_2^{a_2}q_3^{a_3}) = \tilde{f}(q_2^{a_2})g(q_3^{a_3}) + g(q_1^{a_1})\tilde{f}(q_3^{a_3}), \end{split}$$

which means that

$$\begin{bmatrix} \tilde{f}(q_2^{a_2}) & \tilde{f}(q_1^{a_1}) & 0\\ \tilde{f}(q_3^{a_3}) & 0 & \tilde{f}(q_1^{a_1})\\ 0 & \tilde{f}(q_3^{a_3}) & \tilde{f}(q_2^{a_2}) \end{bmatrix} \begin{bmatrix} g(q_1^{a_1})\\ g(q_2^{a_2})\\ g(q_3^{a_3}) \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

By our assumptions, the coefficient matrix is non-singular, so only the zero solution exists, hence $g(q_1^{a_1}) = 0$.

An analysis similar to what we did before shows that $g(q_1^{a_1}\cdots q_r^{a_r}) = 0$ for r > 1.

With the same method, one can easily show that the characteristic function on $\mathcal P$ is regular.

6. Some simple results on factorisation

Cashwell-Everett [4] showed that $(\mathcal{A}, +, \cdot)$ is a UFD. We will briefly treat the factorisation properties of $(\mathcal{A}, +, \oplus)$. Definitions and facts regarding factorisation in commutative rings with zero-divisors from the articles by Anderson and Valdes-Leon [1, 2] will be used.

First, we note that since $(\mathcal{A}, +, \oplus)$ is quasi-local, it is présimplifiable, i.e. $a \neq \mathbf{0}$, $a = r \oplus a$ implies that r is a unit. It follows that for $a, b \in \mathcal{A}$, the following three conditions are equivalent:

- (1) a, b are associates, i.e. $\mathcal{A} \oplus a = \mathcal{A} \oplus b$.
- (2) a, b are strong associates, i.e. $a = u \oplus b$ for some unit u.
- (3) a, b are very strong associates, i.e. $\mathcal{A} \oplus a = \mathcal{A} \oplus b$ and either $a = b = \mathbf{0}$, or $a \neq \mathbf{0}$ and $a = r \oplus b \implies r \in U(\mathcal{A})$.

We say that $a \in \mathcal{A}$ is *irreducible*, or an *atom*, if $a = b \oplus c$ implies that a is associate with either b or c.

Theorem 6.1. $(\mathcal{A}, +, \oplus)$ is atomic, *i.e. all non-units can be written as a product of finitely many atoms. In fact,* $(\mathcal{A}, +, \oplus)$ *is a* bounded factorial ring *(BFR), i.e. there is a bound on the length of all factorisations of an element.*

Proof. It follows from Lemma 3.3 that the non-unit f has a factorisation into at most D(f) atoms.

Example 6.2. We have that $e_2 \oplus (e_{2^k} + e_3) = e_6$ for all k, hence e_6 has an infinite number of non-associate irreducible divisors, and infinitely many factorisations into atoms.

Example 6.3. The element $h = e_{30}$ can be factored as $e_2 \oplus e_3 \oplus e_5$, or as $(e_6 + e_{20}) \oplus (e_2 + e_5)$.

These examples show that $(\mathcal{A}, +, \oplus)$ is neither a half-factorial ring, nor a finite factorisation ring, nor a weak finite factorisation ring, nor an atomic idf-ring.

7. The subring of arithmetical functions supported on square-free integers

Let $SQF \subset \mathbb{N}^+$ denote the set of square-free integers, and put

(53)
$$\mathfrak{C} = \{ f \in \mathcal{A} \mid \operatorname{supp}(f) \subset \mathcal{SQF} \} .$$

For any $f \in \mathcal{A}$, denote by $p(f) \in \mathfrak{C}$ the restriction of f to SQF.

Theorem 7.1. $(\mathfrak{C}, +, \oplus)$ is a subring of $(\mathcal{A}, +, \oplus)$, and a closed \mathbb{C} -subalgebra with respect to the norm $|\cdot|$. The map

(54)
$$p: \mathcal{A} \to \mathfrak{C},$$
$$f \mapsto p(f)$$

is a continuous \mathbb{C} -algebra epimorphism, and a retraction of the inclusion map $\mathfrak{C} \subset \mathcal{A}$.

Proof. Let $f, g \in \mathfrak{C}$. If $n \in \mathbb{N}^+ \setminus SQ\mathcal{F}$ then (f+g)(n) = f(n) + g(n) = 0, and cf(n) = 0 for all $c \in \mathbb{C}$. Since $n \in \mathbb{N}^+ \setminus SQ\mathcal{F}$, there is at least on prime p such that $p^2 \mid n$. If m is a unitary divisor of m, then either m or n/m is divisible by p^2 . Thus

$$(f\oplus g)(n) = \sum_{m\parallel n} f(m)g(n/m) = 0\,.$$

If $f_k \to f$ in \mathcal{A} , and all $f_k \in \mathfrak{C}$, let $n \in \text{supp}(f)$. Then there is an N such that $f(n) = f_k(n)$ for all $k \ge N$. But $\text{supp}(f_k) \subset SQF$, so $n \in SQF$. This shows that \mathfrak{C} is a closed subalgebra of \mathcal{A} .

It is clear that p(f+g) = p(f) + p(g) and that p(cf) = cp(f) for any $c \in \mathbb{C}$. If n is not square-free, we have already showed that

$$0=(p(f)\oplus p(g))(n)=p((f\oplus g))(n)$$
 .

Suppose therefore that n is square-free. Then so is all its unitary divisors, hence

$$p(f \oplus g)(n) = (f \oplus g)(n) = \sum_{m \parallel n} f(m)g(n/m)$$
$$= \sum_{m \parallel n} p(f)(m)p(g)(n/m) = (p(f) \oplus p(g))(n)$$

We have that p(f) = f if and only if $f \in \mathfrak{C}$, hence p(p(f)) = p(f), so p is a retraction to the inclusion $i : \mathfrak{C} \to \mathcal{A}$. In other words, $p \circ i = \mathrm{id}_{\mathfrak{C}}$.

Corollary 7.2. The multiplicative inverse of an element in \mathfrak{C} lies in \mathfrak{C} .

Proof. If $f \in \mathfrak{C}$, $f \oplus g = e_1$ then

$$e_1 = p(e_1) = p(f \oplus g) = p(f) \oplus p(g) = f \oplus p(g),$$

hence g = p(g), so $g \in \mathfrak{C}$.

Alternatively, we can reason as follows. If f is a unit in \mathfrak{C} then we can without loss of generality assume that f(1) = 1. By Theorem 3.7, $g = -f + e_1$ is topologically nilpotent, hence by Proposition 1.2.4 of [3] we have that the inverse of

 $e_1 - g = f$ can be expressed as $\sum_{i=0}^{\infty} g^i$. It is clear that g, and every power of it, is supported on SQF, hence so is f^{-1} .

Corollary 7.3. $(\mathfrak{C}, +, \oplus)$ is semi-local.

Proof. The units consists of all $f \in \mathfrak{C}$ with $f(1) \neq 0$, and the non-units form the unique maximal ideal.

Remark 7.4. More generally, given any subset $Q \subset \mathbb{N}^+$, we get a retract of $(\mathcal{A}, +, \oplus)$ when considering those arithmetical functions that are supported on the integers $n = p_1^{a_1} \cdots p_r^{a_r}$ with $a_i \in Q \cup \{0\}$. This property is unique for the unitary convolution, among all regular convolutions in the sense of Narkiewicz [7].

In particular, the set of arithmetical functions supported on the exponentially odd integers (those *n* for which all a_i are odd) forms a retract of $(\mathcal{A}, +, \oplus)$. It follows that the inverse of such a function is of the same form.

Let $T = \mathbb{C} \llbracket x_1, x_2, x_3, \dots \rrbracket$, the large power series ring on countably many variables, and let J denote the ideal of elements supported on non square-free monomials.

Theorem 7.5. $(\mathfrak{C}, +, \oplus) \simeq T/J$. This algebra can also be described as the generalized power series ring on the monoid-with-zero whose elements are all finite subsets of a fixed countable set X, with multiplication

(55)
$$A \times B = \begin{cases} A \cup B & \text{if } A \cap B = \emptyset\\ 0 & \text{otherwise} \end{cases}$$

Proof. Define η by

(56)
$$\eta: T \to \mathcal{A}$$
$$\eta(\sum_{m} c_{m}m) = \sum_{m \text{ square-free}} c_{m}e_{m},$$

where for a square-free monomial $m = x_{i_1} \cdots x_{i_r}$ with $1 \leq i_1 < \cdots < i_r$ we put $e_m = e_{p_{i_1} \cdots p_{i_r}}$. Then $\eta(T) = \mathfrak{C}$, ker $\eta = J$. It follows that $\mathfrak{C} \simeq T/J$.

Acknowledgement. I am grateful to the anonymous referee for suggesting several corrections and improvements, and for the proof of Lemma 3.10.

References

- Anderson, D. D. and Valdes-Leon, S., Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26(2) (1996), 439–480.
- [2] Anderson, D. D. and Valdes-Leon, S., Factorization in commutative rings with zero divisors, II, In Factorization in integral domains (Iowa City, IA, 1996), Marcel Dekker, New York 1997, 197–219.
- [3] Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean analysis, A systematic approach to rigid analytic geometry, Springer-Verlag, Berlin, 1984.
- [4] Cashwell, E. D. and Everett, C. J., The ring of number-theorethic functions, Pacific J. Math. 9 (1959), 975–985.

- [5] Cohen, E., Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66–80.
- [6] Huckaba, J. A., Commutative rings with zero divisors, Marcel Dekker Inc., New York, 1988.
- [7] Narkiewicz, W., On a class of arithmetical convolutions, Colloq. Math. 10 (1963), 81-94.
- [8] Schwab, E. D. and Silberberg, G., A note on some discrete valuation rings of arithmetical functions, Arch. Math. (Brno) 36 (2000), 103–109.
- [9] Schwab, E. D. and Silberberg, G., The valuated ring of the arithmetical functions as a power series ring, Arch. Math. (Brno) 37(1) (2001), 77–80.
- [10] Sivaramakrishnan, R., Classical theory of arithmetic functions, Pure and Applied Mathematics, volume 126, Marcel Dekker, 1989.
- [11] Vaidyanathaswamy, R., The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc. 33(2) (1931), 579–662.
- [12] Wilson, R. M. The necessary conditions for t-designs are sufficient for something, Util. Math. 4 (1973), 207–215.
- [13] Yocom, K. L., Totally multiplicative functions in regular convolution rings, Canad. Math. Bull. 16 (1973), 119–128.

DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY SE-10691 STOCKHOLM, SWEDEN *E-mail:* Jan.Snellman@math.su.se