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EXISTENCE RESULTS FOR BOUNDARY VALUE PROBLEMS

FOR FOURTH-ORDER DIFFERENTIAL INCLUSIONS

WITH NONCONVEX VALUED RIGHT HAND SIDE

A. ARARA, M. BENCHOHRA, S. K. NTOUYAS AND A. OUAHAB
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In this paper a fixed point theorem due to Covitz and Nadler for con-

traction multivalued maps, and the Schaefer’s theorem combined with a selection
theorem due to Bressan and Colombo for lower semicontinuous multivalued oper-
ators with decomposables values, are used to investigate the existence of solutions
for boundary value problems of fourth-order differential inclusions.

1. Introduction

In the past few years, by means of fixed point argument and the monotone
method, combined with the upper and lower solutions method, several papers have
been devoted to the study of boundary value problems for fourth order ordinary
differential equations on real compact intervals (see for instance, [1], [2], [4], [7],
[9], [14], [15] and [16] and the references cited therein). However very few results
are devoted for similar problems with multivalued right hand side. Recently, by
means of the Ky Fan fixed point theorem Švec [18] gave an existence result for the
fourth order differential inclusion:

(1.1) L4y(t) + a(t)y(t) ∈ F (t, y(t)) , for a.e. t ∈ [0, T ]

(1.2) Liy(0) = Liy(T ), i = 0, 1, 2, 3,

where

L0y(t) = a0(t)y(t) , Liy(t) = ai(t)(Li−1y(t))
′ , i = 1, 2, 3,

L4y(t) =
(
a1(t)

(
a2(t)

(
a1(t)(a0(t)y(t))

′
)′)′)′
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a0(t) = 1, a(t) ≥ 0, ai(t) > 0, i = 1, 2, a1(t) = a3(t), continuous on [0, T ],
F : [0, T ]× R → P(R) is a multivalued map with nonempty compact and convex
values and P(R) is the family of all nonempty subsets of R. The aim of this paper is
to generalize Švec’s result in considering a nonconvex valued right hand side. This
paper will be divided into three sections. In Section 2 we will recall briefly some
basic definitions and preliminary facts from multivalued analysis which will be used
throughout. In Section 3 we establish two existence theorems for the problem (1.1)-
(1.2). The first one relies on a fixed point theorem due to Covitz and Nalder [6]
for contraction multivalued maps. In the second we use the Schaefer’s fixed point
theorem combined with a selection theorem due to Bressan and Colombo for lower
semicontinuous multivalued operators with nonempty closed and decomposable
values.

2. Preliminaries

We will briefly recall some basic definitions and facts from multi valued analysis
that we will used throughout this paper.

C([0, T ], R) is the Banach space of all continuous functions from [0, T ] into R

with the norm
‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ T} .

L1([0, T ], R) denotes the Banach space of functions y : [0, T ] −→ R which are
Lebesgue integrable normed by

‖y‖L1 =

∫ T

0

|y(t)| dt .

ACi(J, Rn), i = 0, 1, 2, 3 is the space of i-times differentiable functions y : J → R
n,

those ith derivative, y(i), is absolutely continuous.
Let (X, | · |) be a normed space. Let Pcl(X) = {Y ∈ P(X) : Y closed},

Pb(X) = {Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact}. The
multivalued map F : [0, T ] → Pcl(X) is said to be mesurable, if for every y ∈ X ,
the function

t 7−→ d(y, F (t)) = inf{|y − z| : z ∈ F (t)}

is measurable.
Let F : [0, T ] × R → P(R) be a multivalued map with nonempty compact

values. Assign to F the multivalued operator

F : C([0, T ], R)→ P(L1([0, T ], R))

by letting

F(y) = {w ∈ L1([0, T ], R) : w(t) ∈ F (t, y(t)) for a.e. t ∈ [0, T ]} .

The operator F is called the Niemytzki operator associated to F.
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Let (X, d) be a metric space induced from the normed space (X, | · |). Consider
Hd : P(X)×P(X) −→ R+ ∪ {∞}, given by

Hd(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a, B) = inf
b∈B

d(a, b).

Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized (com-
plete) metric space [13].

Definition 2.1. A multivalued operator G : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(G(x), G(y)) ≤ γd(x, y) , for each x, y ∈ X ;

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Our considerations are based on the following fixed point theorem for con-
traction multivalued operators given by Covitz and Nadler in 1970 [6] (see also
Deimling, [8] Theorem 11.1).

Lemma 2.2. Let (X, d) be a complete metric space. If G : X → Pcl(X) is a
contraction, then FixG 6= ∅.

Let A be a subset of [0, T ]× R. A is L ⊗ B measurable if A belongs to the σ-
algebra generated by all sets of the form J ×D where J is Lebesgue measurable in
[0, T ] and D is Borel measurable in R. A subset A of L1([0, T ], R) is decomposable
if for all u, v ∈ A and J ⊂ [0, T ] measurable, uχJ +vχ[0,T ]−J ∈ A, where χ stands
for the characteristic function.
Let G : X → P(X) a multivalued operator with nonempty closed values. G is

lower semi-continuous (l.s.c.) if the set {x ∈ X : G(x) ∩ B 6= ∅} is open for any
open set B in X .

Definition 2.3. Let Y be a separable metric space and let N : Y → P(L1([0, T ],
R)) be a multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.);
2) N has nonempty closed and decomposable values.

Definition 2.4. Let F : [0, T ] × R → P(R) be a multivalued function with
nonempty compact values. We say F is of lower semi-continuous type (l.s.c. type)
if its associated Niemytzki operator F is lower semi-continous and has nonempty
closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.

Theorem 2.5. Let Y be separable metric space and let N : Y → P(L1([0, T ], R))
be a multivalued operator which has property (BC). Then N has a continuous se-
lection, i.e. there exists a continuous function (single-valued) g̃ : Y → L1([0, T ], R)
such that g̃(y) ∈ N(y) for every y ∈ Y .

For more details on multivalued maps see the books of Deimling [8], Gorniewicz
[11] and Hu and Papageorgiou [12].
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3. Main Result

Before stating and proving our main results we present the following auxiliary
lemma which will be used later.

Lemma 3.1 [18]. The boundary value problem

(3.1) L4y(t) + a(t)y(t) = 0 , for all t ∈ [0, T ] .

(3.2) Liy(0) = Liy(T ) , i = 0, 1, 2, 3 ,

has only trivial solution y(t) = 0, on [0, T ].

Definition 3.2. A function y ∈ AC3((0, T ), R) is said to be a solution of (1.1)–
(1.2) if Liy(0) = Liy(T ) i = 1, 2, 3, and there exists v ∈ L1([0, T ], R) such that
v(t) ∈ F (t, y(t)) a.e. t ∈ [0, T ] and

L4y(t) + a(t)y(t) = v(t) for a.e. t ∈ [0, T ] .

The first result of this section is based on the fixed point theorem for contraction
multivalued operators given by Covitz and Nadler in 1970 [6] (see also Deimling,
[8] Theorem 11.1).

Theorem 3.3. Assume that the following hypotheses

(H1) F : [0, T ]× R −→ Pcp(R); (t, y) 7−→ F (t, y) is mesurable for each y ∈ R;
(H2) There exists a function l ∈ L1([0, T ], R+) such that

Hd(F (t, y), F (t, y)) ≤ l(t)|y − y| , for a.e. t ∈ [0, T ] and all y, y ∈ R

and
Hd(0, F (t, 0)) ≤ l(t) a.e. on [0, T ] ,

are satisfied. Let G∗ = sup{|G(t, s)| : (t, s) ∈ [0, T ]× [0, T ]} and l∗ =

∫ T

0

l(s) ds.

If G∗l∗ < 1, then the problem (1.1)–(1.2) has at least one solution.

Proof. For each y ∈ C([0, T ], R) the set F(y) is nonempty since by (H1) F has a
measurable selection (see [5], Theorem III.6) i.e. there exists a function v ∈ F(y).
Then we seek a solution y(t) of the problem

(3.3) L4y(t) + a(t)y(t) = v(t) , for a.e t ∈ [0, T ] .

(3.4) Liy(0) = Liy(T ) , i = 0, 1, 2, 3 .

From Lemma 3.1, the solution of the problem (3.3)–(3.4) is given by

(3.5) y(t) =

∫ T

0

G(t, s)v(s) ds .
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Consider the multivalued operator N : C([0, T ], R) −→ P(C([0, T ], R)) defined
by:

N(y) =
{
h ∈ C([0, T ], R) : h(t) =

∫ T

0

G(t, s)v(s) ds, v ∈ F(y)
}

.

It is clear that the fixed points of N are solutions to (1.1)–(1.2). We shall show
that N satisfies the assumptions of Lemma 2.2. The proof will be given in two
steps.

Step 1. N(y) ∈ Pcl(C([0, T ], R)) for each y ∈ C([0, T ], R). Indeed, let
(yn)n≥0 ∈ N(y) such that yn −→ ỹ in C([0, T ], R). Then ỹ ∈ C([0, T ], R) and
there exists gn ∈ F(y) such that for each t ∈ J ,

yn(t) =

∫ T

0

G(t, s)gn(s) ds .

Using the fact that F has compact values and from (H2) we may pass to a subse-
quence if necessary to get that gn converges to g in L1(J, R) and hence g ∈ F(y).
Then for each t ∈ [0, T ]

yn(t)→ ỹ(t) ∈

∫ T

0

G(t, s)g(s) ds .

So ỹ ∈ N(y), and in particular, N(y) ∈ Pcl(C([0, T ], R)).

Step 2. There exists γ < 1, such that Hd(N(y), N(y)) ≤ γ‖y − y‖∞ for each
y, y ∈ C([0, T ], R).

Let y, y ∈ C([0, T ], R) and h ∈ N(y). Then there exists v(t) ∈ F (t, y(t)) such
that for each t ∈ [0, T ]

h(t) =

∫ T

0

G(t, s)v(s) ds .

From (H2) it follows that

Hd(F (t, y(t)), F (t, y(t)) ≤ l(t)|y(t)− y(t)| .

Hence there is w ∈ F (t, y(t)) such that

|v(t)− w| ≤ l(t)|y(t)− y(t)| , t ∈ [0, T ] .

Consider U : [0, T ]→ P(R), given by

U(t) = {w ∈ R : |v(t)− w| ≤ l(t)|y(t)− y(t)|} .

Since the multivalued operator V (t) = U(t)∩ F (t, y(t)) is measurable (see Propo-
sition III.4 in [5]), there exists a function v(t), which is a measurable selection for
V . So, v(t) ∈ F (t, y(t)) and

|v(t)− v(t)| ≤ l(t)|y(t)− y(t)| , for each t ∈ [0, T ] .
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Let us define for each t ∈ [0, T ]

h(t) =

∫ T

0

G(t, s)v(s) ds .

Then we have

|h(t)−h(t)| ≤

∫ T

0

G∗|v(s)−v(s)| ds ≤ G∗

∫ T

0

l(s)|y(s)−y(s)| ds ≤ G∗l∗‖y−y‖∞ .

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd(N(y), N(y)) ≤ G∗l∗‖y − y‖∞ .

Hence N is a contraction and thus, by Lemma 2.2, N has a fixed point y, which
is a solution to (1.1)–(1.2). �

We present now a result for the problem (1.1)–(1.2) in the spirit of the Schaefer’s
theorem.

Theorem 3.4. Suppose that the folowing hypotheses

(H3) F : J × R −→ P(R) is a nonempty compact valued multivalued map such
that:
a) (t, y) 7→ F (t, y) is L ⊗ B measurable;
b) y 7→ F (t, y) is lower semi-continuous for a.e. t ∈ J ;

(H4) there exists a function h ∈ L1(J, R+) such that

‖F (t, y)‖ := sup{|v| : v ∈ F (t, y)} ≤ h(t) for a.e. t ∈ J and for y ∈ R

are satisfied. Then the boundary value problem (1.1)–(1.2) has at least one solution.

Proof. (H3) and (H4) imply by Lemma 2.2 of Frigon [10] that F is of lower
semi-continuous type. Then from Theorem 2.5 there exists a continuous function
f : C([0, T ], R) → L1([0, T ], R) such that f(y) ∈ F(y) for all y ∈ C([0, T ), R).
Consider the following problem

L4y(t) + a(t)y(t) = f(y)(t) , t ∈ [0, T ](3.6)

Liy(0) = Liy(T ) , i = 0, 1, 2, 3 .(3.7)

It is clear that if y ∈ AC3([0, T ], R) is a solution of the problem (3.6)–(3.7),
then y is a solution to the problem (1.1)–(1.2).
Transform the problem (3.6)–(3.7) into a fixed point problem. Consider the

operator N : C([0, T ], R) −→ C([0, T ], R) defined by:

N(y)(t) =

∫ T

0

G(t, s)f(y)(s) ds .
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We shall show that N is a completely continuous operator. The proof will be
given in four steps.

Step 1. N is continuous.
Let {yn} be a sequence such that yn → y in C([0, T ], R). Then

|N(yn)(t)− N(y)(t)| ≤

∫ T

0

|G(t, s)||f(yn)(s)− f(y)(s)| ds

≤ max
(t,s)∈[0,T ]×[0,T ]

|G(t, s)|

∫ T

0

|f(yn)(s)− f(y)(s)| ds .

Since the funtion f is continuous, then

‖N(yn)− N(y)‖∞ ≤ G∗‖f(yn)− f(y)‖L1 → 0 as n → ∞ .

Step 2. N maps bounded sets into bounded sets in C([0, T ], R).
Indeed, it is enough to show that for each q > 0, there exists a positive constant

` such that for each y ∈ Bq = {y ∈ C([0, T ], R) : ‖y‖∞ ≤ q} we have ‖N(y)‖∞ ≤ `.
We have:

|N(y)(t)| =
∣∣∣
∫ T

0

G(t, s)f(y)(s) ds
∣∣∣ ≤ G∗

∫ T

0

|f(y)(s)| ds ≤ G∗

∫ T

0

h(s) ds := ` .

Step 3. N maps bounded sets into equicontinuous sets of C([0, T ], R).

Let τ1, τ2 ∈ [0, T ], τ1 < τ2 and Bq be a bounded set of C([0, T ], R). Let y ∈ Bq .
Then

|N(y)(τ2)− N(y)(τ1)| ≤
∣∣∣
∫ τ2

0

G(τ2, s)f(y)(s) ds −

∫ τ1

0

G(τ1, s)f(y)(s) ds
∣∣∣

≤

∫ τ2

τ1

|G(τ1, s)||f(y)(s)| ds

+

∫ τ2

0

|G(τ1, s)− G(τ2, s)||f(y)(s)| ds

≤ G∗

∫ τ2

τ1

h(s) ds+

∫ τ2

0

|G(τ1, s)− G(τ2, s)|h(s) ds.

As τ2 −→ τ1 the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3 together with the Arzelà-Ascoli theorem we
can conclude that N is completely continuous.

Step 4. Now it remains to show that the set

E(N) := {y ∈ C([0, T ], R) : y = λN(y) , for some 0 < λ < 1}
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is bounded.

Let y ∈ E(N). Then y = λN(y) for some 0 < λ < 1. Thus for each t ∈ [0, T ]

y(t) = λ

∫ T

0

G(t, s)f(y)(s) ds .

This implies that for each t ∈ [0, T ] we have

|y(t)| ≤ G∗

∫ T

0

|f(y(s))| ds ≤ G∗

∫ T

0

h(s) ds := K̃ .

Set X := C([0, T ], R). As a consequence of Schaefer’s theorem ([17] p. 29)
we deduce that N has a fixed point y which is a solution to problem (3.6)–(3.7).
Then, y is a solution to the problem (1.1)–(1.2). �
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