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THE CONTACT SYSTEM FOR A-JET MANIFOLDS

R. J. ALONSO-BLANCO AND J. MUÑOZ-DÍAZ

Abstract. Jets of a manifold M can be described as ideals of C∞(M). This
way, all the usual processes on jets can be directly referred to that ring. By
using this fact, we give a very simple construction of the contact system on
jet spaces. The same way, we also define the contact system for the recently
considered A-jet spaces, where A is a Weil algebra. We will need to introduce
the concept of derived algebra.

Although without formalization, jets are present in the work of S. Lie (see,
for instance, [6]; § 130, pp. 541) who does not assume a fibered structure on the
concerned manifold; on the contrary, this assumption is usually done nowadays in
the more narrow approach given by the jets of sections.

It is an old idea to consider the points of a manifold other than the ordinary
ones. This can be traced back to Plücker, Grassmann, Lie or Weil. Jets are ‘points’
of a manifoldM and can be described as ideals of its ring of differentiable functions
[9, 13]. Indeed, the k-jets of m-dimensional submanifolds of M are those ideals p ⊂

C∞(M) such that C∞(M)/p is isomorphic to Rkm
def
= R[ε1, . . . , εm]/(ε1, . . . , εm)k+1

(where the ε’ are undetermined variables).
This point of view was introduced in the Ph. D. thesis of J. Rodŕıguez, advised

by the second author [13]. Subsequently, several applications were done showing
the improvement given by this approach with respect to the usual one: formal
integrability theory [10], Lie equations and Lie pseudogroups [7, 8], differential
invariants [12] and transformations of partial differential equations [3]. Even the
present paper may be placed into that series.

The main advantage of considering jets as ideals is the following. All the op-
erations on the space of (m, k)-jets JkmM are directly referred to C∞(M), making
the usual processes much more transparent and natural. In particular, the tan-
gent space TpJ

k
mM is given by classes of derivations from C∞(M) to C∞(M)/p

(where two of these derivations are considered as equivalent if they agree on
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p ⊂ C∞(M)). As a result, the very functions f ∈ p define canonically C∞(M)/p-
linear maps dpf : TpJ

k
mM → C∞(M)/p whose real components span the cotangent

space T ∗
p J

k
mM (Corollary 1.5).

We will construct the contact system starting from the following remark. Let
p be the unique point of M such that p ⊂ mp (where mp denotes the ideal of
the functions vanishing on p). When f runs over p and Dp runs over the tangent
spaces to jet prolongations of m-dimensional submanifolds X ⊂M , the set of the
values of dpf(Dp) equals mk

p/p.
As a consequence, it is natural to define the contact system by composing each

dpf with the projection C∞(M)/p → C∞(M)/p+ mk
p (Definition 1.6). The result-

ing maps annihilate all the tangent vectors to jet prolongations of m-dimensional
submanifolds. This way, the basic properties of the contact system are easily
established.

On the other hand, for each Weil algebraA (finite local rational commutative R-
algebra), we can define an A-jet on M as an ideal p ⊂ C∞(M) such that C∞(M)/p
is isomorphic to A. The set of A-jets JAM can be also endowed with an smooth
structure [1]. The way we have defined the contact system for (m, k)-jets can be
translated into A-jets. All we have to do is looking for a suitable substitute for
C∞(M)/p + mk

p. Such a substitute turns to be the derived algebra associated with
C∞(M)/p (Proposition 3.9). Once this is done, we can proceed as in the case of
A = Rkm.

Notation. Let φ : A → B be an R-algebra morphism; by DerR(A,B)φ we will
denote the set of R-derivations from A to B where B is considered as an A-module
via φ. When φ is implicitly assumed, we will omit it. The characters α, β will
be reserved to denoting multi-indices α = (α1, . . . , αk), β = (β1, . . . , βk) ∈ Nk

(typically, k will be n or m). Besides, we will denote by 1j the multi-indice
(1j)i = δij .

1. The contact system on Jet spaces

In the whole of this paper, M will be a smooth manifold of dimension n. Be-
sides, ‘submanifold’ will mean ‘locally closed submanifold’. When X is a closed
submanifold of M , IX will be the ideal of C∞(M) consisting of the functions van-
ishing on X . When X is only locally closed, one would replace M by the open
set U into which X is a closed submanifold but, for the sake of simplicity in the
exposition, that will be implicitly understood.

Let us consider an m-dimensional submanifold X ⊂ M , its associated ideal
IX ⊂ C∞(M), and a point p ∈ X . The class of the submanifolds having at p a

contact of order k with X is naturally identified with the ideal p
def
= IX + mk+1

p ⊂

C∞(M). Moreover, an isomorphism C∞(M)/p ' Rkm is deduced by taking local
coordinates {xi, yj} centered at p and such that IX = (yj).

Definition 1.1. A jet of dimension m and order k (or, simply, an (m, k)-jet) of
M is, by definition, an ideal p ⊂ C∞(M) such that C∞(M)/p ' Rkm. The set of
(m, k)-jets of M will be denoted by JkmM .



THE CONTACT SYSTEM FOR A-JET SPACES 235

Given p ∈ JkmM , there is a unique point p ∈M such that p ⊂ mp. This way, it
is deduced a map JkmM →M , p 7→ p.

The smooth structure on JkmM is obtained in the following way (see [13, 9]).
Let (U ;x1, . . . , xn) be a local chart of M . Now, let us choose m coordinates,

for instance x1, . . . , xm, and let us consider the subset JkmU given by those jets
p ∈ JkmU such that R[x1, . . . , xm]/p ∩ R[x1, . . . , xm] ' C∞(U)/p. So, with each
function f ∈ C∞(U) we can associate a unique polynomial Pf (x) of degree ≤ k
such that f − Pf ∈ p.

Let us denote by yj the coordinate xm+j . Then we have

Pyj
(x) =

∑

|α|≤k

yjα(p)
(x− x(p))α

α!
,(1.1)

for suitable numbers yjα(p). Besides, p is spanned by the functions yj − Pyj

together with mk+1
p . So the set of functions {xi, yj , yjα} provides one with a

coordinate system on JkmU .
By taking in the above process all the possible choices of m elements of

{x1, . . . , xn} in all the local charts of M we get an atlas on JkmM .
The following basic statement was proved in [13] (see also [1, 9]).

Theorem 1.2. For each p ∈ JkmM the following isomorphism holds,

TpJ
k
mM ' Dp/D

′
p

where Dp = DerR(C∞(M), C∞(M)/p) and D′
p = {D ∈ Dp |Df = 0, ∀f ∈ p}.

The correspondence in the above theorem is locally given by
(

∂

∂xi

)

p

=

[
∂

∂xi

]

p

,

(
∂

∂yjα

)

p

=

[
(x− x(p))α

α!

∂

∂yj

]

p

(1.2)

where [D]p denotes the class of a derivation D ∈ Dp modulo D′
p (see [9], pp.

744-45, for this calculation).

Remark 1.3. Since Theorem 1.2 it is deduced that the tangent space at a jet
p ∈ JkmM is naturally provided with the structure of C∞(M)/p-module.

Corollary 1.4. Each function f ∈ p defines an C∞(M)/p-linear map

dpf : TpJ
k
mM −→ C∞(M)/p ; Dp = [D]p 7→ [Df ]p

where [Df ]p denotes the class of the function Df modulo p.

The local expression of dpf is given by

dpf =
∑

i

[
∂f

∂xi

]

p

dpxi +
∑

j,α

[
(x− x(p))α

α!

∂f

∂yj

]

p

dpyjα .(1.3)

Corollary 1.5. For each jet p, the cotangent space T ∗
p J

k
mM is spanned by the real

components of the dpf , f ∈ p:

T ∗
p J

k
mM = Real components of {dpf | f ∈ p} .
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Proof. Given Dp ∈ TpJ
k
mM , there exist at least a function f ∈ p such that

dpf(Dp) 6= 0 (elsewhere, Dp = 0); so, also a real component of dpf is not vanishing
on Dp.

Let us denote by d′pf the following composition

TpJ
k
mM

dpf
−→ C∞(M)/p

π′

−→ C∞(M)/p′ ,

where p′
def
= p + mk

p .

Definition 1.6. The distribution of tangent vectors C given by

Cp
def
=
⋂

f∈p

ker(d′pf) ⊂ TpJ
k
mM

will be called the contact distribution on JkmM . The Pfaffian system associated
with C will be called the contact system on JkmM and we will denote it by Ω.

In order to get the local expression of Ω let us consider the functions fj =
yj − Pyj

∈ p (thus, p = (fj) + mk+1
p ). From relations (1.1)-(1.3) we get

d′pfj =
∑

|α|≤k−1

[
(x− x(p))α

α!

]

p′

dpyjα −
∑

i,|α|≤k

yjα(p)

[
(x− x(p))α−1i

(α− 1i)!

]

p′

dpxi

=
∑

|α|≤k−1

[
(x− x(p))α

α!

]

p′

(dpyjα −
∑

i

yjα+1i
(p)dpxi) .

Because d′pmk+1
p = 0, we deduce that the contact system Ω is generated by the

1-forms

ωjα
def
= dyjα −

∑

i

yjα+1i
dxi(1.4)

which are the real components of the d′pfj .
Since (1.4) it is obvious that Ω is the usual contact system. Nevertheless, in

the rest of this section we will explain why Ω is well behaved.
Let X be an m-dimensional submanifold of M ; each (m, k)-jet q ∈ JkmX is

necessarily of the form q = m
k+1
p , where mp ⊂ C∞(X) denotes the maximal ideal

of a point p ∈ X . Accordingly, an identification JkmX ≈ X arises. Moreover, if
IX ⊂ C∞(M) denotes the ideal associated with X , we can consider the inclusion
X ≈ JkmX ↪→ JkmM by p 7→ IX + mk+1

p . That defines an immersion which

will be called the k-jet prolongation of X . The ideal of JkmX into JkmM is the
prolongation of IX to C∞(JkmM) (see [9]). As a result, and taking into account
the characterization of the tangent spaces given in Theorem 1.2, we obtain item
(2) of the following statement (item (1) is easy).

Theorem 1.7. Let X be an m-dimensional submanifold of M and consider its jet
prolongation JkmX immersed into JkmM .

(1) A jet p ∈ JkmM belongs to JkmX if and only if p ⊃ IX .
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(2) A vector Dp ∈ TpJ
k
mM is tangent to JkmX if and only if

dpf(Dp) = 0, ∀f ∈ IX .

Let us suppose p = (yj) + mk+1
p where {xi, yj} are local coordinates around

p ∈ M . All the submanifolds X such that IX ⊂ p are locally given by equations
yj = Pj(x); j = 1, . . . , n−m, where Pj(x) ∈ mk+1

p . As a consequence,

Lemma 1.8. Given a jet p ∈ JkmM , the set of the values dpf(Dp) when f runs
over p and Dp runs over the tangent spaces to jet prolongations of m-dimensional
submanifolds X ⊂M , equals mk

p/p.

According to the above lemma, if f ∈ p then d′pf annihilates each vector which

is tangent to a jet prolongation JkmX . This is why Definition 1.6 gives the usual
contact system.

From this point the basic properties of Ω could be deduced. However, we have
preferred to do it in the more general context of A-jets where a similar construction
of the contact system will be carried on (see below).

2. A-jets

It is well known that a manifold M can be recovered as the set of R-algebra
morphisms C∞(M) → R; also the tangent bundle TM is obtained by taking the
morphisms with values in R[ε]/ε2. In general we can consider the morphisms taking
values in an algebra A. This concept comes back to Weil [14], who called them
‘points A-proches’ of M .

Definition 2.1. A commutative R-algebra A is called a Weil algebra if it is finite
dimensional, local and rational. Let us denote by mA the maximal ideal of A. The
integer k such that m

k+1
A = 0, mk

A 6= 0, will be called the order of A and denoted
by o(A). The dimension of mA/m

2
A will be called the width of A and denoted by

w(A).

The main examples of Weil algebras are the rings of truncated polynomials Rk
m

(here, o(Rkm) = k and w(Rkm) = m). On the other hand, if mp denotes the maximal
ideal associated to a point p in a manifold M , the quotient C∞(M)/mk+1

p is also

a Weil algebra isomorphic to Rkn where n is the dimension of M (an isomorphism
is induced by taking local coordinates).

Definition 2.2. Let M be a manifold and A a Weil algebra. An R-algebra mor-
phism

pA : C∞(M) −→ A

is called an A-point (or A-velocity) of M . The set of A-points of M will be called
the Weil bundle of A-points of M and denoted by MA. We will say that an A-
point pA is regular if it is surjective. The set of regular A-points of M will be
denoted by M̌A.

To simplify notation, when A = Rkm we will write Mk
m instead of MR

k
m . For

instance, M0
m = M (for any m) and M1

1 = TM .
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If we compose an A-point pA with the canonical projection A → A/mA = R we
obtain an R-point of M , that is, an ordinary point p ∈M ; this defines a projection
MA −→M .

On the other hand, each function f ∈ C∞(M) defines a map

fA : MA −→ A,

by the tautological rule fA(pA)
def
= pA(f).

For the proof of the following statement see [5] or [9].

Theorem 2.3. There exists a differentiable structure on MA determined by the
condition that the maps fA are smooth (M̌A is a dense open set of MA). Further-
more, MA → M is a fiber bundle with typical fiber Hom(Rk

n, A), where n = dimM
and k = o(A).

Remark 2.4. If {yj} is a local chart on M and {aα} is a basis of A, then the
collection of functions yjα determined by the rule yAj (pA) =

∑
α yjα(pA)aα, define

a local chart on MA.

The next proposition is straightforward (see, for instance, [2]).

Proposition 2.5. (1) Let ψ : A −→ B be a morphism of Weil algebras. For
each smooth manifold M , ψ induces a differentiable map

ψM : MA −→MB ; pA 7→ ψM (pA)
def
= ψ ◦ pA

(2) Let φ : M −→ N be an smooth map between the smooth manifolds M and
N . For each Weil algebra A, φ induces a differentiable map

φA : MA −→ NA ; pA 7→ φA(pA)
def
= pA ◦ φ∗

where φ∗ stands for the map induced between the rings of functions of M
and N .

The following theorem was given in [9].

Theorem 2.6. There is a natural identification

TpAMA ' DerR(C∞(M), A)pA

where each X ∈ TpAMA is related to the derivation X ′ ∈ DerR(C∞(M), A)pA

determined by X ′(f) = X(fA) ∈ A, f ∈ C∞(M) (where X derives componentwise
the vector-valued function fA).

Remark 2.7. According with this theorem, the tangent maps corresponding with
Proposition 2.5 are given respectively by

(ψM )∗DpA = ψ ◦D′
pA ∈ TψM (pA)M

B ,

(φA)∗DpA = D′
pA ◦ φ∗ ∈ TφA(pA)N

A .

Next, we will generalize the notion of jet for any Weil algebra A.

Definition 2.8. An A-jet on M is, by definition, an ideal p ⊂ C∞(M) such that
C∞(M)/p ' A. The space of A-jets of M will be denoted by JAM .
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We have a surjective map Ker: M̌A → JAM which associates with each A-point
its kernel. The group Aut(A) acts on M̌A by composition and there is an obvious
equivalence between the set of orbits of this action and JAM .

The proof of the following two theorems was given in [1].

Theorem 2.9. On JAM there exists an smooth structure such that

Ker: M̌A −→ JAM

is a principal fiber bundle with structure group Aut(A).

Remark 2.10. In particular, JkmM is the quotient manifold of M̌k
m under the

action of Aut(Rkm).

Theorem 2.11. For each p ∈ JAM , the following isomorphism holds,

TpJ
AM ' Dp/D

′
p

where Dp = DerR(C∞(M), C∞(M)/p) and D′
p = {D ∈ Dp |Df = 0, ∀f ∈ p}.

As a result and similarly to the case of (m, k)-jets, each function f ∈ p defines
a C∞(M)/p-linear map

dpf : TpJ
AM −→ C∞(M)/p

and Corollaries 1.4 – 1.5 also hold for A-jets with the same proof.

On the other hand, each smooth map φ : M → N induces a new map between
the corresponding A-Weil bundles, φA : MA → NA (Definition 2.5). However,
the condition of regularity of an A-point is not, in general, preserved, that is,
φA(M̌A) * ŇA. This is why we give the following definition (see [2]).

Definition 2.12. Let φ : M −→ N be a differentiable map. An A-point pA ∈ MA

will be called φ-regular if φA(pA) = pA ◦ φ∗ ∈ ŇA. The set of φ-regular A-points
of MA will be denoted by M̌A

φ .

The proof of the following propositions is not difficult (see [2]).

Proposition 2.13. The set of φ-regular A-points, M̌A
φ , is an open subset of MA

(eventually the empty set).

The set of jets of φ-regular A-points will be denoted by JAφM . In particular,

we have a principal fiber bundle Ker: M̌A
φ → JAφM .

Proposition 2.14. The map φ : M → N induces maps

M̌A
φ

φA

−→ ŇA , pA 7→ φA(pA)
def
= pA ◦ φ∗

JAφM
jAφ
−→ JAN , p 7→ jAφ(p)

def
= (φ∗)−1p

in such a way that Ker ◦φA = jAφ ◦ Ker.
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Example 2.15. 1) If γ : X → M is an immersion, then γ∗ : C∞(M) → C∞(X) is
surjective on germs; so X̌A

γ = X̌A and JAγ X = JAX . In particular, JA defines a
functor in the category of differentiable manifolds with immersions (see [4]). When
γ is the inclusion of an m-dimensional submanifold X ⊂ M and A = Rk

m, jAγ
gives the jet prolongation of X .

2) If π : M −→ X is a fiber bundle and s is a section of π, then we have induced
maps πA, sA, jAπ and jAs such that πA ◦ sA = idX̌A and jAπ ◦ jAs = idJAX .
When A = Rkm and m = dimX , JAπM equals the well known bundle of k-jets of
sections of π.

Proposition 2.16. Let φ : M → N , A be as above. The tangent map correspond-
ing to jAφ at a point p ∈ JAφM sends each Dp = [D]

p
∈ TpJ

A
φM to

(jAφ)∗Dp =
[
[φ∗]−1 ◦D ◦ φ∗

]
jAφ(p)

∈ TjAφ(p)J
AN ,

where [φ∗] denotes the isomorphism C∞(M)/p ' C∞(N)/jAφ(p) induced by φ∗.

Proof. It follows from Remark 2.7 and Theorem 2.11 (see [2] for details).

Definition 2.17. Let i : X ↪→M be an m-dimensional submanifold of M , where
m = w(A); then jAi : JAX ↪→ JAM will be called the A-jet prolongation of X .

Theorem 1.7 remain valid for A-jet prolongations. It can be shown by means
of an attentive inspection of the definitions. There is just a difference: as a rule,
JAX can not be identified with X .

Definition 2.18. Let p ∈ JAM , and p ∈ M be its projection (that is, p ⊂ mp ⊂
C∞(M)) and let us denote by m the maximal ideal of C∞(M)/p (i.e., m = mp/p).

A local chart {x1, . . . , xm, y1, . . . , yn−m} (where m = w(A)) in a neighborhood
of p will be called adapted to the jet p if it holds

1. The classes of {xi} modulo m2 generate m/m2.
2. The functions yj belong to p and they are linearly independent modulo m2

p.

It is easily deduced the existence of local charts adapted to a given jet.

Lemma 2.19. Let {xi, yj} be a local chart adapted to a jet p ∈ JAM ; then, there
exists polynomials Qs(x), deg(Qs) ≤ o(A) = k such that

p = (yj) + (Qs(x)) + mk+1
p .

Proof. By hypothesis we have an epimorphism

R[x1, . . . , xm]/(x1, . . . , xm)k+1 ↪→ C∞(M)/mk+1
p −→ C∞(M)/p ,

whose kernel is generated by a finite number polynomials Qs(x). This way we get
an isomorphism

R[x1, . . . , xm]/(Qs) + (x1, . . . , xm)k+1 ' C∞(M)/p

from which we deduce the statement.

Remark 2.20. We have Qs ∈ m2
p, elsewhere w(A) could not be m, but lower.

The proof of Corollaries 2.21 and 2.22 below is straightforward.
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Corollary 2.21. Let X be an m-dimensional submanifold of M , and p ∈ JAM
be an A-jet containing IX . There exists local coordinates {xi, yj} such that the
local equations of X into M are

yj = Pj(x) ,

for suitable functions Pj(x) ∈ p.

Corollary 2.22. Let X
i
↪→ M be as above, and p = jAi(q) where q ∈ JAX and

jAi : JAX −→ JAM is the jet prolongation of i. Besides, let {xi, yj} be a local
chart adapted to p. Then the tangent map is given by

TqJ
AX

(jAi)∗
−→ TpJ

AM ;

[
∂

∂xi

]

q

7→


 ∂

∂xi
+
∑

j

∂Pj(x)

∂xi

∂

∂yj




p

.

3. Derived algebra of a Weil algebra

Each Weil algebra A has several canonically defined ideals; examples of which
are the powers of its maximal ideal. We show here two more of them which are a
key point in order to obtain a contact system for A-jet spaces.

Definition 3.1. Let W be the category whose objects are the Weil algebras and
whose morphims are the Weil algebra isomorphisms.

A functor W
F
−→ W will be called an equivariant projection of Weil algebras if

for each A ∈ W there is an epimorphism A
πF−→ F (A) such that for any isomorphim

A
ψ

−→ B of Weil algebras we have

πF ◦ ψ = F (ψ) ◦ πF .

Example 3.2. For each positive integer j we define the functor Fj : W → W

which maps a Weil algebra A to Fj(A)
def
= Aj = A/mj+1

A , where mA is the maximal

ideal of A; because any isomorphism A
ψ
' B holds ψ(mA) = mB, we deduce that

Fj is an equivariant projection (Aj is the j-th underlying algebra of A, see [4]).

The proof of the following lemma is straightforward.

Lemma 3.3. Each equivariant projection F defines a group morphism

Aut(A)
F

−→ Aut(F (A)) ; g 7→ F (g) .

The projections πF : A→ F (A) induce maps of Weil bundles πF : M̌A → M̌F (A)

for each smooth manifold M (Proposition 2.5). The equivariance property of πF
ensures that we have an induced map at the level of jet spaces. This way,

Theorem 3.4. Given an smooth manifold M and a Weil algebra A, each equi-
variant projection F defines a differentiable map

πF : JAM → JF (A)M .

Remark 3.5. By the very definition, F (C∞(M)/p) = C∞(M)/πF (p).
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Corollary 3.6. Under the identification in Theorem 2.11, the tangent map cor-
responding to πF is given by

TpJ
AM

(πF )∗
−→ TπF (p)J

F (A)M ; Dp = [D]p 7→ (πF )∗Dp = [πF ◦D]πF (p)

where πF ◦D ∈ DerR(C∞(M), C∞(M)/πF (p)).

Let w(A) = m and o(A) = k.

Definition 3.7. For each given epimorphism H : Rk+1
m → A we define

I ′H
def
= {DHP | P ∈ kerH,DH ∈ DerR(Rk+1

m , A)H} .

Lemma 3.8. Let ψ : A
∼
→ B be an isomorphism of Weil algebras and let

H : Rk+1
m → A, H : Rk+1

m → B be algebra epimorphisms. Then ψ(I ′H ) = I ′
H

.

Proof. By Lemma 1 in the Appendix there exists an automorphism g ∈ Aut(Rk+1
m )

such that H ◦ g = ψ ◦H . Moreover, g establishes an isomorphism

ψg : DerR(Rk+1
m , A)H

∼
−→ DerR(Rk+1

m , B)H ,

defined by ψg(DH)
def
= ψ ◦DH ◦ g−1.

If DHP ∈ I ′H , then ψ(DHP ) = ψg(DH)(gP ) ∈ I ′
H

. So that ψ(I ′H ) is included

into I ′
H

. By symmetry the proof is finished.

From this lemma it follows that I ′H is not depending on H ; let us denote it by
I ′A. By using again the lemma above we also deduce

Proposition 3.9. If ψ : A
∼
→ B is a Weil algebra isomorphism, then ψ(I ′A) = I ′B .

This way,

F ′(A)
def
= A′ = A/I ′A

defines an equivariant projection (Definition 3.1) where πF ′

def
= π′ is the natural

epimorphism A→ A′. We will call A′ the derived algebra of A.

Remark 3.10. The ideal I ′A is just the first Fitting ideal of the module of differ-
entials ΩA/R.

Computation of A′. Let A = R[ε1, . . . , εm]/I where I = (Qs(ε))+(ε1, . . . , εm)k+1

(the Qs are suitable polynomials of degree lower than k + 1). Let us consider the
projection

Rk+1
m = R[ε1, . . . , εm]/(ε1, . . . , εm)k+2 H

−→ R[ε1, . . . , εm]/I ,

in such a way that kerH = (Qs(ε))+(ε1, . . . , εm)k+1 mod (ε1, . . . , εm)k+2. On the
other hand, DerR(Rk+1

m , A)H is spanned by the partial derivatives ∂/∂εi. So we
see that I ′ = (∂Qs/∂εi) + (ε1, . . . , εm)k mod I and then

A′ = R[ε1, . . . , εm]/((Qs) + (∂Qs/∂εi) + (ε1, . . . , εm)k) .(3.1)

In particular, (Rkm)′ = Rk−1
m and (Rkm ⊗ Rln)

′ = Rk−1
m ⊗ Rl−1

n .



THE CONTACT SYSTEM FOR A-JET SPACES 243

Remark 3.11. Because (Rkm)′ = Rk−1
m , the notation π′ used here, is compatible

with that of Section 1. Indeed, we think that A′, better than A/mk
A, is the natural

generalization of Rk−1
m .

By applying Proposition 3.5 we have an induced map

π′ : JAM −→ JA
′

M

which takes each p ∈ JAM to the kernel of the composition

C∞(M) −→ C∞(M)/p
π′

−→ (C∞(M)/p)′ .

Corollary 3.12. If {xi, yj} is a local chart adapted to a jet p ∈ JAM such that
p = (yj) + (Qs(x)) + mk+1

p for suitable polynomials Qs (Lemma 2.19), then

π′(p) = (yj) + (Qs(x)) + (∂Qs/∂xi) + mk
p .

There is a second ideal canonically associated to any Weil algebra A. Let us
take en epimorphism H : Rk+1

m → A as above and define the following set

ÎH
def
= {H(P ) ∈ I ′A | DH(P ) ∈ I ′A, ∀DH ∈ DerR(Rk+1

m , A)H} .

It is straightforward to check that ÎH is an ideal of A. A similar reasoning like

that used for I ′A, shows that ÎH is not depending on H . Let us denote this ideal

by ÎA. Then we also have

Proposition 3.13. If ψ : A
∼
−→ B is an isomorphism of Weil algebras, then

ψ(ÎA) = ÎB. In particular,

F̂ (A)
def
= Â = A/ÎA ;

defines an equivariant projection.

Example 3.14. The algebras A = Rkn = R[ε1, . . . , εn]/(ε1, . . . , εn)
k+1 hold ÎA =

0. Indeed, let Rk+1
n

H
→ Rkn be the natural projection and denote by m the ideal

(ε1, . . . , εn), then I ′
Rk

n
= mk. On the other hand, if a polynomial P ∈ Rk+1

n verifies
∂P
∂εi

∈ I ′
Rk

n
= mk, i = 1, . . . ,m, then necessarily P belongs to mk+1 and so H(P ) =

0. However, ε1ε2 defines a non trivial element of ÎA when A = R[ε1, ε2]/(ε
2
1, ε

2
2).

4. The contact system on A-jets

In this section we will construct the contact system on A-jet spaces. The way we
have defined the contact system for (m, k)-jets (Section 1) can be mostly translated
to the new context. However, there is a number of necessary modifications we will
focuses ourselves on.

Let p be an A-jet on M and {xi, yj} a local chart adapted to p such that
p = (yj) + (Qs(x)) + mk+1

p . Taking into account Corollaries 2.21 and 2.22, the set
of values dpf(Dp) ∈ C∞(M)/p, where f runs over p and Dp runs over the tangent
spaces to m-dimensional submanifolds of M , equals to

((∂Qs/∂xi) + mk
p)/p
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(compare with Lemma 1.8).
Let us consider the epimorphim

C∞(M)/p −→ C∞(M)/(p + (∂Qs/∂xi) + mk
p))

and observe that p + (∂Qs/∂xi) + mk
p equals π′(p) (see computation (3.1)).

As in the case of (m, k)-jets, if f ∈ p we can define

d′pf
def
= π′ ◦ dpf : TpJ

AM −→ C∞(M)/π′(p)

where π′ denotes the canonical projection of C∞(M)/p onto C∞(M)/π′(p). From
the above discussion it follows that d′pf vanishes on the tangent subspaces TpJ

AX ⊂

TpJ
AM .

Remark 4.1. For each tangent vector Dp ∈ TpJ
AM , we have

d′pf(Dp) = dp′f(π′
∗Dp)

where p′ denotes π′(p) ∈ JA
′

M .

Remark 4.2. By the very definition and using the above notation we have d′p(Qs) =

0 and d′pmk+1
p = 0 (i.e., d′pf = 0 if f ∈ (Qs) + mk+1

p ).

Definition 4.3. The distribution of tangent vectors C given by

Cp
def
=
⋂

f∈p

ker(d′pf) ⊂ TpJ
AM

will be called the contact distribution on JAM . The Pfaffian system associated
with C will be called the contact system on JAM and we will denote it by Ω.

Remark 4.4. Let φ : N −→ M be a differentiable map. It is deduced from the
definition of the contact system that the jet prolongation jAφ : JAφ N → JAM is a

contact transformation, i.e., (jAφ)∗Cq ⊆ C(jAφ)q for each q ∈ JAφ N .

Since the construction of C and the discussion before Remark 4.1 we have,

Proposition 4.5. Let X be a submanifold of M with dimX = w(A) = m. The
prolongation JAX ⊂ JAM is a solution of the contact distribution.

Lemma 4.6. Let p0 ∈ JAM , f ∈ p0 and {xi, yj} a local chart adapted to p0.
For each jet p in a neighborhood of p0 there exists a polynomial Pf,p = Pf,p(x) of
degree ≤ o(A), such that

f − Pf,p ∈ p .

Moreover, the coefficients of Pf,p can be choosen in such a way that they depend
smoothly on p.

Proof. Let pA0 be a regular A-velocity with ker pA0 = p0 and let Λ be a set of
multi-indices such that {pA0 (x)α}α∈Λ is a basis of A.

Now, let us consider ai = pA0 (xi) and bi = pA(xi−xi(p)) in Lemma 2 of the Ap-
pendix. We deduce the existence of differentiable functions Φβ in a neighborhood
of pA0 such that

pA(f) =
∑

α∈Λ

Φα(pA)pA(x − x(p))α
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provided that pA is near enough of pA0 . So, f −
∑

Φα(pA)(x − x(p))α ∈ ker pA.
Finally, by taking a local section s of Ker: M̌A → JAM defined around p0 and

such that s(p0) = pA0 , we can choose the polynomials in the statement to be

Pf,p
def
=
∑

α∈Λ

Φα(s(p))(x − x(p))α .

Theorem 4.7. The contact distribution is smooth.

Proof. Let p0 ∈ JAM . The incident subspace to Cp0
is generated by the real

components of the d′p0
f when f runs over p0.

This way, the theorem follows if each d′p0
f , f ∈ p0, can be extended in the

following sense: for all jet p in a neighborhood of p0, there is a suitable C∞(M)/p-
linear map ωp : TpJ

AM → C∞(M)/p′ fulfilling

(1) ωp annihilates each vector Dp ∈ Cp.
(2) ωp depends smoothly on p.
(3) ωp0

= d′p0
f .

Since the lema above, items (1) and (2) hold if we take ωp
def
= d

′
p(f − Pf,p). Item

(3) also holds because d′p0
Pf,p0

= 0 (see Remark 4.2).

Proposition 4.8. The vector subspace Cp equals the linear span of the tangent
spaces at p of the m-dimensional submanifolds X such that IX ⊂ p:

Cp =
∑

IX⊂p

TpJ
AX .

Proof. Let a fix local coordinates {xi, yj} adapted to p. A tangent vector Dp =[∑
i ai

∂
∂xi

+
∑
j bj

∂
∂yj

]
p

(where we can assume that ai, bj are polynomials in the

xi) belongs to Cp if and only if π′(bj) = 0. So, bj ∈ p′
def
= π′(p) and therefore

bj =
∑

si b
j
si
∂Qs

∂xi
, for suitable polynomials bjsi(x) (see Corollary 3.12). If we denote

by Hj
i the sum

∑
s b
j
siQs we will have Dp =

[∑
i ai

∂
∂xi

+
∑
ij
∂Hj

i

∂xi

∂
∂yj

]
p
.

Next, let us consider the following submanifolds: X0 = {yj = 0}
i0
↪→ M , Xh =

{yj = Hj
h(x)}

ih
↪→M , h = 1, . . . ,m. Then, a calculation gives

Dp = (jAi0)∗

[
∑

i

ai
∂

∂xi

]

p

+
∑

h

(
(jAih)∗

[
∂

∂xh

]

p

− (jAi0)∗

[
∂

∂xh

]

p

)

which belongs to TpJ
AX0 +

∑
h TpJ

AXh.

Remark 4.9. An easy consequence follows. Let π′ : JAM → JA
′

M be the natu-
ral projection and p′ = π′(p), p ∈ JAM . If w(A′) = w(A) = m, then π′

∗Cp ⊂ Cp′ .

Lemma 4.10. Let U ⊂ JAM be a solution of the contact system and p a jet in
U . Then dimπ′

∗TpU ≤ dim JA
′

Rm where m = w(A). Moreover, if p ⊃ IX , where

IX is the ideal of a given m-dimensional submanifold X, then π′
∗TpU ⊆ Tp′JA

′

X.
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Proof. It is sufficient to show the second part in the claim. If p ⊃ IX , also we
have p′ ⊃ IX (that is, p′ ∈ JA

′

X). Then, by using Remark 4.1, for each given
tangent vector Dp ∈ TpU ⊂ Cp we have

dpf(π′
∗Dp) = d

′
pf(Dp) = 0 , ∀f ∈ IX .

From the version of Theorem 1.7 in the case of A-jets, it follows that π′
∗Dp ∈

Tp′JA
′

X .

Lemma 4.11. Let U ⊂ JAM be a solution of the contact system which contains
JAX, where X is an m-dimensional submanifold of M . If p ∈ JAX, there exist a
neighborhood of π′(p) = p′ where

π′(U) = JA
′

X .

Proof. By applying the lema above to the inclusion JAX ⊆ U we have

Tp′JA
′

X ⊆ π′
∗TpU ⊆ Tp′JA

′

X .

So, the equality holds and the dimension of π′
∗TpU is the highest possible.

Therefore, the rank of π′|U is constant in a neighborhood of p. We deduce that,
in a neighborhood of p′, π′(U) is a submanifold. Moreover, also locally, π′(U)

contains JA
′

X and dimπ′(U) = dim JA
′

X . As a consequence, near of p′, π′(U) =

JA
′

X .
Finally, the proof of the maximality of the solutions JAX requires an additional

hypothesis on the algebra A.

Theorem 4.12. Let us suppose that ÎA = 0. The prolongations JAX ⊆ JAM
(with dimX = m = w(A)) are maximal solutions of the contact system. In other
words, if JAX ⊆ U ⊆ JAM where U is a solution of the contact system, then
dim JAX = dimU .

Proof. Let p ∈ JAX ⊆ U with p′ = π′(p) and let us suppose that p ∈ U is
another jet such that π′(p) = π′(p) = p′ and p /∈ JAX .

In a suitable local chart {xi, yj} we have IX = (yj) and

p = (yj − Pj(x)) + (Qs(x)) + m
k+1
p ,

for certain polynomials Pj(x), Qs(x), where at least one among the P ’, say Pj0(x),
is not in p (elsewhere, p ⊃ IX , and then p ∈ JAX , in contradiction with the above
assumption).

For each given index i, let us pick a tangent vector Dp = [D]p ∈ TpU such that

π′
∗Dp = [ ∂

∂xi
]p′ ∈ Tp′JA

′

X , which is always possible according to Lemma 4.11.
From U being a solution of the contact system, we get

0 = d′p(yj0 − Pj0)(Dp) = dp(yj0 − Pj0)(π
′
∗Dp) = −

[
∂Pj0
∂xi

]

p′

.

It is deduced that
∂Pj0

∂xi
∈ π′(p) = p′. Moreover, Pj0 ∈ π′(p) because yj0 −Pj0 ∈

p ⊂ π′(p) and yj0 ∈ p ⊂ p′ = π′(p). This way, we have a polynomial Pj0 /∈ p but
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Pj0 ,
∂Pj0

∂xi
∈ π′(p), i = 1, . . . ,m. As a consequence, Pj0 belongs to the ideal Î of

C∞(M)/p ' A and then ÎA 6= 0.

Corollary 4.13. On the spaces JkmM the prolongations of m-dimensional sub-
manifolds of M are maximal solutions of the contact system.

Proof. It is sufficient to taking into account Example 3.14.

Appendix

Lemma 1. Let H,H : Rkn → A be R-algebra epimorphisms; then there exists an
automorphism g ∈ Aut(Rkn) such that H = H ◦ g.

Proof. If the classes of a1, . . . , am generate mA/mA
2, one easily deduces that each

element in A can be obtained as a polynomial on a1, . . . , am. It is not difficult
to see that elements x1, . . . , xn can be chosen in Rkn such that they generate the
maximal ideal and we have H(xi) = ai if i ≤ m and H(xm+j) = 0. Analogously,
we can choose a elements x1, . . . , xn which hold the same property with respect to
H. Finally, we define g by the condition of mapping the first basis to the second
one.

Lemma 2. Let {ai} be a basis of mA modulo m2
A and let us choose a collection

of multi-indices Λ such that the set {aα}α∈Λ is a basis of mA. Then, there exist
rational functions Ψαβ, α, β ∈ Λ such that for any other basis {bi} of mA modulo
m2
A, near enough of {ai} we have

aα =
∑

β∈Λ

Ψαβ(λiσ)bβ , α ∈ Λ ,

where bi =
∑

iσ∈Λ λiσa
σ.

Proof. Let us suppose the multiplication law on A being aαaσ =
∑
γ∈Λ c

γ
ασa

γ ,

cγασ ∈ R (structure constants).
Because each bi is near enough of ai, i = 1, . . . ,m we deduce that the set of

powers {bβ}β∈Λ is also a basis of mA.
From bi =

∑
iσ∈Λ λiσa

σ we can write each bβ as a linear combination of the
aα, α ∈ Λ whose coefficients are polynomials in the λiσ (multiplication law of
A). These linear relations can be inverted and we get the required expressions for
aα.
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