THE CONTACT SYSTEM FOR A-JET MANIFOLDS

R. J. ALONSO-BLANCO AND J. MUÑOZ-DÍAZ

Abstract

Jets of a manifold M can be described as ideals of $\mathcal{C}^{\infty}(M)$. This way, all the usual processes on jets can be directly referred to that ring. By using this fact, we give a very simple construction of the contact system on jet spaces. The same way, we also define the contact system for the recently considered A-jet spaces, where A is a Weil algebra. We will need to introduce the concept of derived algebra.

Although without formalization, jets are present in the work of S. Lie (see, for instance, $[6] ; \S 130, \mathrm{pp} .541)$ who does not assume a fibered structure on the concerned manifold; on the contrary, this assumption is usually done nowadays in the more narrow approach given by the jets of sections.

It is an old idea to consider the points of a manifold other than the ordinary ones. This can be traced back to Plücker, Grassmann, Lie or Weil. Jets are 'points' of a manifold M and can be described as ideals of its ring of differentiable functions [9, 13]. Indeed, the k-jets of m-dimensional submanifolds of M are those ideals $\mathfrak{p} \subset$ $\mathcal{C}^{\infty}(M)$ such that $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ is isomorphic to $\mathbb{R}_{m}^{k} \stackrel{\text { def }}{=} \mathbb{R}\left[\epsilon_{1}, \ldots, \epsilon_{m}\right] /\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{k+1}$ (where the ϵ^{\prime} are undetermined variables).

This point of view was introduced in the Ph. D. thesis of J. Rodríguez, advised by the second author [13]. Subsequently, several applications were done showing the improvement given by this approach with respect to the usual one: formal integrability theory [10], Lie equations and Lie pseudogroups [7, 8], differential invariants [12] and transformations of partial differential equations [3]. Even the present paper may be placed into that series.

The main advantage of considering jets as ideals is the following. All the operations on the space of (m, k)-jets $J_{m}^{k} M$ are directly referred to $\mathcal{C}^{\infty}(M)$, making the usual processes much more transparent and natural. In particular, the tangent space $T_{\mathfrak{p}} J_{m}^{k} M$ is given by classes of derivations from $\mathcal{C}^{\infty}(M)$ to $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ (where two of these derivations are considered as equivalent if they agree on

[^0]$\left.\mathfrak{p} \subset \mathcal{C}^{\infty}(M)\right)$. As a result, the very functions $f \in \mathfrak{p}$ define canonically $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ linear maps $\mathfrak{d}_{\mathfrak{p}} f: T_{\mathfrak{p}} J_{m}^{k} M \rightarrow \mathcal{C}^{\infty}(M) / \mathfrak{p}$ whose real components span the cotangent space $T_{\mathfrak{p}}^{*} J_{m}^{k} M$ (Corollary 1.5).

We will construct the contact system starting from the following remark. Let p be the unique point of M such that $\mathfrak{p} \subset \mathfrak{m}_{p}$ (where \mathfrak{m}_{p} denotes the ideal of the functions vanishing on p). When f runs over \mathfrak{p} and $D_{\mathfrak{p}}$ runs over the tangent spaces to jet prolongations of m-dimensional submanifolds $X \subset M$, the set of the values of $\mathfrak{d}_{\mathfrak{p}} f\left(D_{\mathfrak{p}}\right)$ equals $\mathfrak{m}_{p}^{k} / \mathfrak{p}$.

As a consequence, it is natural to define the contact system by composing each $\mathfrak{o}_{\mathfrak{p}} f$ with the projection $\mathcal{C}^{\infty}(M) / \mathfrak{p} \rightarrow \mathcal{C}^{\infty}(M) / \mathfrak{p}+\mathfrak{m}_{p}^{k}$ (Definition 1.6). The resulting maps annihilate all the tangent vectors to jet prolongations of m-dimensional submanifolds. This way, the basic properties of the contact system are easily established.

On the other hand, for each Weil algebra A (finite local rational commutative \mathbb{R} algebra), we can define an A-jet on M as an ideal $\mathfrak{p} \subset \mathcal{C}^{\infty}(M)$ such that $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ is isomorphic to A. The set of A-jets $J^{A} M$ can be also endowed with an smooth structure [1]. The way we have defined the contact system for (m, k)-jets can be translated into A-jets. All we have to do is looking for a suitable substitute for $\mathcal{C}^{\infty}(M) / \mathfrak{p}+\mathfrak{m}_{p}^{k}$. Such a substitute turns to be the derived algebra associated with $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ (Proposition 3.9). Once this is done, we can proceed as in the case of $A=\mathbb{R}_{m}^{k}$.
Notation. Let $\phi: A \rightarrow B$ be an \mathbb{R}-algebra morphism; by $\operatorname{Der}_{\mathbb{R}}(A, B)_{\phi}$ we will denote the set of \mathbb{R}-derivations from A to B where B is considered as an A-module via ϕ. When ϕ is implicitly assumed, we will omit it. The characters α, β will be reserved to denoting multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \beta=\left(\beta_{1}, \ldots, \beta_{k}\right) \in \mathbb{N}^{k}$ (typically, k will be n or m). Besides, we will denote by 1_{j} the multi-indice $\left(1_{j}\right)_{i}=\delta_{i j}$.

1. The contact system on Jet spaces

In the whole of this paper, M will be a smooth manifold of dimension n. Besides, 'submanifold' will mean 'locally closed submanifold'. When X is a closed submanifold of M, I_{X} will be the ideal of $C^{\infty}(M)$ consisting of the functions vanishing on X. When X is only locally closed, one would replace M by the open set U into which X is a closed submanifold but, for the sake of simplicity in the exposition, that will be implicitly understood.

Let us consider an m-dimensional submanifold $X \subset M$, its associated ideal $I_{X} \subset \mathcal{C}^{\infty}(M)$, and a point $p \in X$. The class of the submanifolds having at p a contact of order k with X is naturally identified with the ideal $\mathfrak{p} \stackrel{\text { def }}{=} I_{X}+\mathfrak{m}_{p}^{k+1} \subset$ $\mathcal{C}^{\infty}(M)$. Moreover, an isomorphism $\mathcal{C}^{\infty}(M) / \mathfrak{p} \simeq \mathbb{R}_{m}^{k}$ is deduced by taking local coordinates $\left\{x_{i}, y_{j}\right\}$ centered at p and such that $I_{X}=\left(y_{j}\right)$.

Definition 1.1. A jet of dimension m and order k (or, simply, an (m, k)-jet) of M is, by definition, an ideal $\mathfrak{p} \subset \mathcal{C}^{\infty}(M)$ such that $\mathcal{C}^{\infty}(M) / \mathfrak{p} \simeq \mathbb{R}_{m}^{k}$. The set of (m, k)-jets of M will be denoted by $J_{m}^{k} M$.

Given $\mathfrak{p} \in J_{m}^{k} M$, there is a unique point $p \in M$ such that $\mathfrak{p} \subset \mathfrak{m}_{p}$. This way, it is deduced a map $J_{m}^{k} M \rightarrow M, \mathfrak{p} \mapsto p$.

The smooth structure on $J_{m}^{k} M$ is obtained in the following way (see [13, 9]). Let $\left(U ; x_{1}, \ldots, x_{n}\right)$ be a local chart of M. Now, let us choose m coordinates, for instance x_{1}, \ldots, x_{m}, and let us consider the subset $J_{m}^{k} U$ given by those jets $\mathfrak{p} \in J_{m}^{k} U$ such that $\mathbb{R}\left[x_{1}, \ldots, x_{m}\right] / \mathfrak{p} \cap \mathbb{R}\left[x_{1}, \ldots, x_{m}\right] \simeq \mathcal{C}^{\infty}(U) / \mathfrak{p}$. So, with each function $f \in \mathcal{C}^{\infty}(U)$ we can associate a unique polynomial $P_{f}(x)$ of degree $\leq k$ such that $f-P_{f} \in \mathfrak{p}$.

Let us denote by y_{j} the coordinate x_{m+j}. Then we have

$$
\begin{equation*}
P_{y_{j}}(x)=\sum_{|\alpha| \leq k} y_{j \alpha}(\mathfrak{p}) \frac{(x-x(p))^{\alpha}}{\alpha!}, \tag{1.1}
\end{equation*}
$$

for suitable numbers $y_{j \alpha}(\mathfrak{p})$. Besides, \mathfrak{p} is spanned by the functions $y_{j}-P_{y_{j}}$ together with \mathfrak{m}_{p}^{k+1}. So the set of functions $\left\{x_{i}, y_{j}, y_{j \alpha}\right\}$ provides one with a coordinate system on $\underline{J}_{m}^{k} U$.

By taking in the above process all the possible choices of m elements of $\left\{x_{1}, \ldots, x_{n}\right\}$ in all the local charts of M we get an atlas on $J_{m}^{k} M$.

The following basic statement was proved in [13] (see also [1, 9]).
Theorem 1.2. For each $\mathfrak{p} \in J_{m}^{k} M$ the following isomorphism holds,

$$
T_{\mathfrak{p}} J_{m}^{k} M \simeq \mathcal{D}_{\mathfrak{p}} / \mathcal{D}_{\mathfrak{p}}^{\prime}
$$

where $\mathcal{D}_{p}=\operatorname{Der}_{\mathbb{R}}\left(\mathcal{C}^{\infty}(M), \mathcal{C}^{\infty}(M) / \mathfrak{p}\right)$ and $\mathcal{D}_{\mathfrak{p}}^{\prime}=\left\{D \in \mathcal{D}_{\mathfrak{p}} \mid D f=0, \forall f \in \mathfrak{p}\right\}$.
The correspondence in the above theorem is locally given by

$$
\begin{equation*}
\left(\frac{\partial}{\partial x_{i}}\right)_{\mathfrak{p}}=\left[\frac{\partial}{\partial x_{i}}\right]_{\mathfrak{p}}, \quad\left(\frac{\partial}{\partial y_{j \alpha}}\right)_{\mathfrak{p}}=\left[\frac{(x-x(p))^{\alpha}}{\alpha!} \frac{\partial}{\partial y_{j}}\right]_{\mathfrak{p}} \tag{1.2}
\end{equation*}
$$

where $[D]_{\mathfrak{p}}$ denotes the class of a derivation $D \in \mathcal{D}_{\mathfrak{p}}$ modulo $\mathcal{D}_{\mathfrak{p}}^{\prime}$ (see [9], pp. 744-45, for this calculation).

Remark 1.3. Since Theorem 1.2 it is deduced that the tangent space at a jet $\mathfrak{p} \in J_{m}^{k} M$ is naturally provided with the structure of $\mathcal{C}^{\infty}(M) / \mathfrak{p}$-module.
Corollary 1.4. Each function $f \in \mathfrak{p}$ defines an $\mathcal{C}^{\infty}(M) / \mathfrak{p}$-linear map

$$
\mathfrak{d}_{\mathfrak{p}} f: T_{\mathfrak{p}} J_{m}^{k} M \longrightarrow \mathcal{C}^{\infty}(M) / \mathfrak{p} ; \quad D_{\mathfrak{p}}=[D]_{\mathfrak{p}} \mapsto[D f]_{\mathfrak{p}}
$$

where $[D f]_{\mathfrak{p}}$ denotes the class of the function $D f$ modulo \mathfrak{p}.
The local expression of $\mathfrak{d}_{\mathfrak{p}} f$ is given by

$$
\begin{equation*}
\mathfrak{d}_{\mathfrak{p}} f=\sum_{i}\left[\frac{\partial f}{\partial x_{i}}\right]_{\mathfrak{p}} d_{\mathfrak{p}} x_{i}+\sum_{j, \alpha}\left[\frac{(x-x(p))^{\alpha}}{\alpha!} \frac{\partial f}{\partial y_{j}}\right]_{\mathfrak{p}} d_{\mathfrak{p}} y_{j \alpha} . \tag{1.3}
\end{equation*}
$$

Corollary 1.5. For each jet \mathfrak{p}, the cotangent space $T_{\mathfrak{p}}^{*} J_{m}^{k} M$ is spanned by the real components of the $\mathfrak{d}_{\mathfrak{p}} f, f \in \mathfrak{p}$:

$$
T_{\mathfrak{p}}^{*} J_{m}^{k} M=\text { Real components of }\left\{\mathfrak{d}_{\mathfrak{p}} f \mid f \in \mathfrak{p}\right\} .
$$

Proof. Given $D_{\mathfrak{p}} \in T_{\mathfrak{p}} J_{m}^{k} M$, there exist at least a function $f \in \mathfrak{p}$ such that $\mathfrak{d}_{\mathfrak{p}} f\left(D_{\mathfrak{p}}\right) \neq 0$ (elsewhere, $D_{\mathfrak{p}}=0$); so, also a real component of $\mathfrak{d}_{\mathfrak{p}} f$ is not vanishing on $D_{\mathfrak{p}}$.

Let us denote by $\mathfrak{d}_{\mathfrak{p}}^{\prime} f$ the following composition

$$
T_{\mathfrak{p}} J_{m}^{k} M \xrightarrow{\mathfrak{o}_{\mathfrak{p}} f} \mathcal{C}^{\infty}(M) / \mathfrak{p} \xrightarrow{\pi^{\prime}} \mathcal{C}^{\infty}(M) / \mathfrak{p}^{\prime},
$$

where $\mathfrak{p}^{\prime} \stackrel{\text { def }}{=} \mathfrak{p}+\mathfrak{m}_{p}^{k}$.
Definition 1.6. The distribution of tangent vectors \mathcal{C} given by

$$
\mathcal{C}_{\mathfrak{p}} \stackrel{\text { def }}{=} \bigcap_{f \in \mathfrak{p}} \operatorname{ker}\left(\mathfrak{d}_{\mathfrak{p}}^{\prime} f\right) \subset T_{\mathfrak{p}} J_{m}^{k} M
$$

will be called the contact distribution on $J_{m}^{k} M$. The Pfaffian system associated with \mathcal{C} will be called the contact system on $J_{m}^{k} M$ and we will denote it by Ω.

In order to get the local expression of Ω let us consider the functions $f_{j}=$ $y_{j}-P_{y_{j}} \in \mathfrak{p}$ (thus, $\mathfrak{p}=\left(f_{j}\right)+\mathfrak{m}_{p}^{k+1}$). From relations (1.1)-(1.3) we get

$$
\begin{aligned}
\mathfrak{d}_{\mathfrak{p}}^{\prime} f_{j} & =\sum_{|\alpha| \leq k-1}\left[\frac{(x-x(p))^{\alpha}}{\alpha!}\right]_{\mathfrak{p}^{\prime}} d_{\mathfrak{p}} y_{j \alpha}-\sum_{i,|\alpha| \leq k} y_{j \alpha}(\mathfrak{p})\left[\frac{(x-x(p))^{\alpha-1_{i}}}{\left(\alpha-1_{i}\right)!}\right]_{\mathfrak{p}^{\prime}} d_{\mathfrak{p}} x_{i} \\
& =\sum_{|\alpha| \leq k-1}\left[\frac{(x-x(p))^{\alpha}}{\alpha!}\right]_{\mathfrak{p}^{\prime}}\left(d_{\mathfrak{p}} y_{j \alpha}-\sum_{i} y_{j \alpha+1_{i}}(\mathfrak{p}) d_{\mathfrak{p}} x_{i}\right) .
\end{aligned}
$$

Because $\mathfrak{d}_{\mathfrak{p}}^{\prime} \mathfrak{m}_{p}^{k+1}=0$, we deduce that the contact system Ω is generated by the 1-forms

$$
\begin{equation*}
\omega_{j \alpha} \stackrel{\text { def }}{=} d y_{j \alpha}-\sum_{i} y_{j \alpha+1_{i}} d x_{i} \tag{1.4}
\end{equation*}
$$

which are the real components of the $\mathfrak{d}_{\mathfrak{p}}^{\prime} f_{j}$.
Since (1.4) it is obvious that Ω is the usual contact system. Nevertheless, in the rest of this section we will explain why Ω is well behaved.

Let X be an m-dimensional submanifold of M; each (m, k)-jet $\mathfrak{q} \in J_{m}^{k} X$ is necessarily of the form $\mathfrak{q}=\overline{\mathfrak{m}}_{p}^{k+1}$, where $\overline{\mathfrak{m}}_{p} \subset \mathcal{C}^{\infty}(X)$ denotes the maximal ideal of a point $p \in X$. Accordingly, an identification $J_{m}^{k} X \approx X$ arises. Moreover, if $I_{X} \subset \mathcal{C}^{\infty}(M)$ denotes the ideal associated with X, we can consider the inclusion $X \approx J_{m}^{k} X \hookrightarrow J_{m}^{k} M$ by $p \mapsto I_{X}+\mathfrak{m}_{p}^{k+1}$. That defines an immersion which will be called the k-jet prolongation of X. The ideal of $J_{m}^{k} X$ into $J_{m}^{k} M$ is the prolongation of I_{X} to $\mathcal{C}^{\infty}\left(J_{m}^{k} M\right)$ (see [9]). As a result, and taking into account the characterization of the tangent spaces given in Theorem 1.2, we obtain item (2) of the following statement (item (1) is easy).

Theorem 1.7. Let X be an m-dimensional submanifold of M and consider its jet prolongation $J_{m}^{k} X$ immersed into $J_{m}^{k} M$.
(1) A jet $\mathfrak{p} \in J_{m}^{k} M$ belongs to $J_{m}^{k} X$ if and only if $\mathfrak{p} \supset I_{X}$.
(2) A vector $D_{\mathfrak{p}} \in T_{\mathfrak{p}} J_{m}^{k} M$ is tangent to $J_{m}^{k} X$ if and only if

$$
\mathfrak{d}_{\mathfrak{p}} f\left(D_{\mathfrak{p}}\right)=0, \quad \forall f \in I_{X} .
$$

Let us suppose $\mathfrak{p}=\left(y_{j}\right)+\mathfrak{m}_{p}^{k+1}$ where $\left\{x_{i}, y_{j}\right\}$ are local coordinates around $p \in M$. All the submanifolds X such that $I_{X} \subset \mathfrak{p}$ are locally given by equations $y_{j}=P_{j}(x) ; j=1, \ldots, n-m$, where $P_{j}(x) \in \mathfrak{m}_{p}^{k+1}$. As a consequence,

Lemma 1.8. Given a jet $\mathfrak{p} \in J_{m}^{k} M$, the set of the values $\mathfrak{d}_{\mathfrak{p}} f\left(D_{\mathfrak{p}}\right)$ when f runs over \mathfrak{p} and $D_{\mathfrak{p}}$ runs over the tangent spaces to jet prolongations of m-dimensional submanifolds $X \subset M$, equals $\mathfrak{m}_{p}^{k} / \mathfrak{p}$.

According to the above lemma, if $f \in \mathfrak{p}$ then $\mathfrak{d}_{\mathfrak{p}}^{\prime} f$ annihilates each vector which is tangent to a jet prolongation $J_{m}^{k} X$. This is why Definition 1.6 gives the usual contact system.

From this point the basic properties of Ω could be deduced. However, we have preferred to do it in the more general context of A-jets where a similar construction of the contact system will be carried on (see below).

2. A-JETS

It is well known that a manifold M can be recovered as the set of \mathbb{R}-algebra morphisms $\mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$; also the tangent bundle $T M$ is obtained by taking the morphisms with values in $\mathbb{R}[\epsilon] / \epsilon^{2}$. In general we can consider the morphisms taking values in an algebra A. This concept comes back to Weil [14], who called them 'points A-proches' of M.

Definition 2.1. A commutative \mathbb{R}-algebra A is called a Weil algebra if it is finite dimensional, local and rational. Let us denote by \mathfrak{m}_{A} the maximal ideal of A. The integer k such that $\mathfrak{m}_{A}^{k+1}=0, \mathfrak{m}_{A}^{k} \neq 0$, will be called the order of A and denoted by $o(A)$. The dimension of $\mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}$ will be called the width of A and denoted by $w(A)$.

The main examples of Weil algebras are the rings of truncated polynomials \mathbb{R}_{m}^{k} (here, $o\left(\mathbb{R}_{m}^{k}\right)=k$ and $w\left(\mathbb{R}_{m}^{k}\right)=m$). On the other hand, if \mathfrak{m}_{p} denotes the maximal ideal associated to a point p in a manifold M, the quotient $\mathcal{C}^{\infty}(M) / \mathfrak{m}_{p}^{k+1}$ is also a Weil algebra isomorphic to \mathbb{R}_{n}^{k} where n is the dimension of M (an isomorphism is induced by taking local coordinates).

Definition 2.2. Let M be a manifold and A a Weil algebra. An \mathbb{R}-algebra morphism

$$
p^{A}: \mathcal{C}^{\infty}(M) \longrightarrow A
$$

is called an A-point (or A-velocity) of M. The set of A-points of M will be called the Weil bundle of A-points of M and denoted by M^{A}. We will say that an A point p^{A} is regular if it is surjective. The set of regular A-points of M will be denoted by \check{M}^{A}.

To simplify notation, when $A=\mathbb{R}_{m}^{k}$ we will write M_{m}^{k} instead of $M^{\mathbb{R}_{m}^{k}}$. For instance, $M_{m}^{0}=M$ (for any m) and $M_{1}^{1}=T M$.

If we compose an A-point p^{A} with the canonical projection $A \rightarrow A / \mathfrak{m}_{A}=\mathbb{R}$ we obtain an \mathbb{R}-point of M, that is, an ordinary point $p \in M$; this defines a projection $M^{A} \longrightarrow M$.

On the other hand, each function $f \in \mathcal{C}^{\infty}(M)$ defines a map

$$
f^{A}: M^{A} \longrightarrow A
$$

by the tautological rule $f^{A}\left(p^{A}\right) \stackrel{\text { def }}{=} p^{A}(f)$.
For the proof of the following statement see [5] or [9].
Theorem 2.3. There exists a differentiable structure on M^{A} determined by the condition that the maps f^{A} are smooth (\check{M}^{A} is a dense open set of M^{A}). Furthermore, $M^{A} \rightarrow M$ is a fiber bundle with typical fiber $\operatorname{Hom}\left(\mathbb{R}_{n}^{k}, A\right)$, where $n=\operatorname{dim} M$ and $k=o(A)$.
Remark 2.4. If $\left\{y_{j}\right\}$ is a local chart on M and $\left\{a_{\alpha}\right\}$ is a basis of A, then the collection of functions $y_{j \alpha}$ determined by the rule $y_{j}^{A}\left(p^{A}\right)=\sum_{\alpha} y_{j \alpha}\left(p^{A}\right) a_{\alpha}$, define a local chart on M^{A}.

The next proposition is straightforward (see, for instance, [2]).
Proposition 2.5. (1) Let $\psi: A \longrightarrow B$ be a morphism of Weil algebras. For each smooth manifold M, ψ induces a differentiable map

$$
\psi_{M}: M^{A} \longrightarrow M^{B} ; \quad p^{A} \mapsto \psi_{M}\left(p^{A}\right) \stackrel{\text { def }}{=} \psi \circ p^{A}
$$

(2) Let $\phi: M \longrightarrow N$ be an smooth map between the smooth manifolds M and N. For each Weil algebra A, ϕ induces a differentiable map

$$
\phi^{A}: M^{A} \longrightarrow N^{A} ; \quad p^{A} \mapsto \phi^{A}\left(p^{A}\right) \stackrel{\text { def }}{=} p^{A} \circ \phi^{*}
$$

where ϕ^{*} stands for the map induced between the rings of functions of M and N.

The following theorem was given in [9].
Theorem 2.6. There is a natural identification

$$
T_{p^{A}} M^{A} \simeq \operatorname{Der}_{\mathbb{R}}\left(\mathcal{C}^{\infty}(M), A\right)_{p^{A}}
$$

where each $X \in T_{p^{A}} M^{A}$ is related to the derivation $X^{\prime} \in \operatorname{Der}_{\mathbb{R}}\left(\mathcal{C}^{\infty}(M), A\right)_{p^{A}}$ determined by $X^{\prime}(f)=X\left(f^{A}\right) \in A, f \in \mathcal{C}^{\infty}(M)$ (where X derives componentwise the vector-valued function f^{A}).
Remark 2.7. According with this theorem, the tangent maps corresponding with Proposition 2.5 are given respectively by

$$
\begin{aligned}
\left(\psi_{M}\right)_{*} D_{p^{A}} & =\psi \circ D_{p^{A}}^{\prime} \in T_{\psi_{M}\left(p^{A}\right)} M^{B} \\
\left(\phi^{A}\right)_{*} D_{p^{A}} & =D_{p^{A}}^{\prime} \circ \phi^{*} \in T_{\phi^{A}\left(p^{A}\right)} N^{A}
\end{aligned}
$$

Next, we will generalize the notion of jet for any Weil algebra A.
Definition 2.8. An A-jet on M is, by definition, an ideal $\mathfrak{p} \subset \mathcal{C}^{\infty}(M)$ such that $\mathcal{C}^{\infty}(M) / \mathfrak{p} \simeq A$. The space of A-jets of M will be denoted by $J^{A} M$.

We have a surjective map Ker: $\check{M}^{A} \rightarrow J^{A} M$ which associates with each A-point its kernel. The group $\operatorname{Aut}(A)$ acts on \check{M}^{A} by composition and there is an obvious equivalence between the set of orbits of this action and $J^{A} M$.

The proof of the following two theorems was given in [1].
Theorem 2.9. On $J^{A} M$ there exists an smooth structure such that

$$
\text { Ker: } \check{M}^{A} \longrightarrow J^{A} M
$$

is a principal fiber bundle with structure group $\operatorname{Aut}(A)$.
Remark 2.10. In particular, $J_{m}^{k} M$ is the quotient manifold of \check{M}_{m}^{k} under the action of $\operatorname{Aut}\left(\mathbb{R}_{m}^{k}\right)$.

Theorem 2.11. For each $\mathfrak{p} \in J^{A} M$, the following isomorphism holds,

$$
T_{\mathfrak{p}} J^{A} M \simeq \mathcal{D}_{\mathfrak{p}} / \mathcal{D}_{\mathfrak{p}}^{\prime}
$$

where $\mathcal{D}_{\mathfrak{p}}=\operatorname{Der}_{\mathbb{R}}\left(\mathcal{C}^{\infty}(M), \mathcal{C}^{\infty}(M) / \mathfrak{p}\right)$ and $\mathcal{D}_{\mathfrak{p}}^{\prime}=\left\{D \in \mathcal{D}_{\mathfrak{p}} \mid D f=0, \forall f \in \mathfrak{p}\right\}$.
As a result and similarly to the case of (m, k)-jets, each function $f \in \mathfrak{p}$ defines a $\mathcal{C}^{\infty}(M) / \mathfrak{p}$-linear map

$$
\mathfrak{d}_{\mathfrak{p}} f: T_{\mathfrak{p}} J^{A} M \longrightarrow \mathcal{C}^{\infty}(M) / \mathfrak{p}
$$

and Corollaries $1.4-1.5$ also hold for A-jets with the same proof.
On the other hand, each smooth map $\phi: M \rightarrow N$ induces a new map between the corresponding A-Weil bundles, $\phi^{A}: M^{A} \rightarrow N^{A}$ (Definition 2.5). However, the condition of regularity of an A-point is not, in general, preserved, that is, $\phi^{A}\left(\check{M}^{A}\right) \nsubseteq \check{N}^{A}$. This is why we give the following definition (see [2]).

Definition 2.12. Let $\phi: M \longrightarrow N$ be a differentiable map. An A-point $p^{A} \in M^{A}$ will be called ϕ-regular if $\phi^{A}\left(p^{A}\right)=p^{A} \circ \phi^{*} \in \check{N}^{A}$. The set of ϕ-regular A-points of M^{A} will be denoted by \check{M}_{ϕ}^{A}.

The proof of the following propositions is not difficult (see [2]).
Proposition 2.13. The set of ϕ-regular A-points, \check{M}_{ϕ}^{A}, is an open subset of M^{A} (eventually the empty set).

The set of jets of ϕ-regular A-points will be denoted by $J_{\phi}^{A} M$. In particular, we have a principal fiber bundle Ker: $\check{M}_{\phi}^{A} \rightarrow J_{\phi}^{A} M$.

Proposition 2.14. The map $\phi: M \rightarrow N$ induces maps

$$
\begin{array}{rlr}
\check{M}_{\phi}^{A} \xrightarrow{\phi^{A}} \check{N}^{A}, & p^{A} \mapsto \phi^{A}\left(p^{A}\right) \stackrel{\text { def }}{=} p^{A} \circ \phi^{*} \\
J_{\phi}^{A} M \stackrel{j^{A} \phi}{\longrightarrow} J^{A} N, & \mathfrak{p} \mapsto j^{A} \phi(\mathfrak{p}) \stackrel{\text { def }}{=}\left(\phi^{*}\right)^{-1} \mathfrak{p}
\end{array}
$$

in such a way that $\operatorname{Ker} \circ \phi^{A}=j^{A} \phi \circ \operatorname{Ker}$.

Example 2.15. 1) If $\gamma: X \rightarrow M$ is an immersion, then $\gamma^{*}: \mathcal{C}^{\infty}(M) \rightarrow \mathcal{C}^{\infty}(X)$ is surjective on germs; so $\check{X}_{\gamma}^{A}=\check{X}^{A}$ and $J_{\gamma}^{A} X=J^{A} X$. In particular, J^{A} defines a functor in the category of differentiable manifolds with immersions (see [4]). When γ is the inclusion of an m-dimensional submanifold $X \subset M$ and $A=\mathbb{R}_{m}^{k}, j^{A} \gamma$ gives the jet prolongation of X.
2) If $\pi: M \longrightarrow X$ is a fiber bundle and s is a section of π, then we have induced maps $\pi^{A}, s^{A}, j^{A} \pi$ and $j^{A} s$ such that $\pi^{A} \circ s^{A}=i d_{\text {T }^{A}}$ and $j^{A} \pi \circ j^{A} s=i d_{J^{A} X}$. When $A=\mathbb{R}_{m}^{k}$ and $m=\operatorname{dim} X, J_{\pi}^{A} M$ equals the well known bundle of k-jets of sections of π.
Proposition 2.16. Let $\phi: M \rightarrow N, A$ be as above. The tangent map corresponding to $j^{A} \phi$ at a point $\mathfrak{p} \in J_{\phi}^{A} M$ sends each $D_{\mathfrak{p}}=[D]_{\mathfrak{p}} \in T_{\mathfrak{p}} J_{\phi}^{A} M$ to

$$
\left(j^{A} \phi\right)_{*} D_{\mathfrak{p}}=\left[\left[\phi^{*}\right]^{-1} \circ D \circ \phi^{*}\right]_{j^{A} \phi(\mathfrak{p})} \in T_{j^{A} \phi(\mathfrak{p})} J^{A} N
$$

where $\left[\phi^{*}\right]$ denotes the isomorphism $\mathcal{C}^{\infty}(M) / \mathfrak{p} \simeq \mathcal{C}^{\infty}(N) / j^{A} \phi(\mathfrak{p})$ induced by ϕ^{*}.
Proof. It follows from Remark 2.7 and Theorem 2.11 (see [2] for details).
Definition 2.17. Let $i: X \hookrightarrow M$ be an m-dimensional submanifold of M, where $m=w(A)$; then $j^{A} i: J^{A} X \hookrightarrow J^{A} M$ will be called the A-jet prolongation of X.

Theorem 1.7 remain valid for A-jet prolongations. It can be shown by means of an attentive inspection of the definitions. There is just a difference: as a rule, $J^{A} X$ can not be identified with X.

Definition 2.18. Let $\mathfrak{p} \in J^{A} M$, and $p \in M$ be its projection (that is, $\mathfrak{p} \subset \mathfrak{m}_{p} \subset$ $\mathcal{C}^{\infty}(M)$) and let us denote by \mathfrak{m} the maximal ideal of $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ (i.e., $\mathfrak{m}=\mathfrak{m}_{p} / \mathfrak{p}$).

A local chart $\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n-m}\right\}$ (where $m=w(A)$) in a neighborhood of p will be called adapted to the jet \mathfrak{p} if it holds

1. The classes of $\left\{x_{i}\right\}$ modulo \mathfrak{m}^{2} generate $\mathfrak{m} / \mathfrak{m}^{2}$.
2. The functions y_{j} belong to \mathfrak{p} and they are linearly independent modulo \mathfrak{m}_{p}^{2}.

It is easily deduced the existence of local charts adapted to a given jet.
Lemma 2.19. Let $\left\{x_{i}, y_{j}\right\}$ be a local chart adapted to a jet $\mathfrak{p} \in J^{A} M$; then, there exists polynomials $Q_{s}(x), \operatorname{deg}\left(Q_{s}\right) \leq o(A)=k$ such that

$$
\mathfrak{p}=\left(y_{j}\right)+\left(Q_{s}(x)\right)+\mathfrak{m}_{p}^{k+1} .
$$

Proof. By hypothesis we have an epimorphism

$$
\mathbb{R}\left[x_{1}, \ldots, x_{m}\right] /\left(x_{1}, \ldots, x_{m}\right)^{k+1} \hookrightarrow \mathcal{C}^{\infty}(M) / \mathfrak{m}_{p}^{k+1} \longrightarrow \mathcal{C}^{\infty}(M) / \mathfrak{p}
$$

whose kernel is generated by a finite number polynomials $Q_{s}(x)$. This way we get an isomorphism

$$
\mathbb{R}\left[x_{1}, \ldots, x_{m}\right] /\left(Q_{s}\right)+\left(x_{1}, \ldots, x_{m}\right)^{k+1} \simeq \mathcal{C}^{\infty}(M) / \mathfrak{p}
$$

from which we deduce the statement.
Remark 2.20. We have $Q_{s} \in \mathfrak{m}_{p}^{2}$, elsewhere $w(A)$ could not be m, but lower.
The proof of Corollaries 2.21 and 2.22 below is straightforward.

Corollary 2.21. Let X be an m-dimensional submanifold of M, and $\mathfrak{p} \in J^{A} M$ be an A-jet containing I_{X}. There exists local coordinates $\left\{x_{i}, y_{j}\right\}$ such that the local equations of X into M are

$$
y_{j}=P_{j}(x),
$$

for suitable functions $P_{j}(x) \in \mathfrak{p}$.
Corollary 2.22. Let $X \stackrel{i}{\hookrightarrow} M$ be as above, and $\mathfrak{p}=j^{A} i(\mathfrak{q})$ where $\mathfrak{q} \in J^{A} X$ and $j^{A} i: J^{A} X \longrightarrow J^{A} M$ is the jet prolongation of i. Besides, let $\left\{x_{i}, y_{j}\right\}$ be a local chart adapted to \mathfrak{p}. Then the tangent map is given by

$$
T_{\mathfrak{q}} J^{A} X \xrightarrow{\left(j^{A} i\right)_{*}} T_{\mathfrak{p}} J^{A} M ; \quad\left[\frac{\partial}{\partial x_{i}}\right]_{\mathfrak{q}} \mapsto\left[\frac{\partial}{\partial x_{i}}+\sum_{j} \frac{\partial P_{j}(x)}{\partial x_{i}} \frac{\partial}{\partial y_{j}}\right]_{\mathfrak{p}}
$$

3. Derived algebra of a Weil algebra

Each Weil algebra A has several canonically defined ideals; examples of which are the powers of its maximal ideal. We show here two more of them which are a key point in order to obtain a contact system for A-jet spaces.

Definition 3.1. Let \mathcal{W} be the category whose objects are the Weil algebras and whose morphims are the Weil algebra isomorphisms.

A functor $\mathcal{W} \xrightarrow{F} \mathcal{W}$ will be called an equivariant projection of Weil algebras if for each $A \in \mathcal{W}$ there is an epimorphism $A \xrightarrow{\pi_{F}} F(A)$ such that for any isomorphim $A \xrightarrow{\psi} B$ of Weil algebras we have

$$
\pi_{F} \circ \psi=F(\psi) \circ \pi_{F} .
$$

Example 3.2. For each positive integer j we define the functor $F_{j}: \mathcal{W} \rightarrow \mathcal{W}$ which maps a Weil algebra A to $F_{j}(A) \stackrel{\text { def }}{=} A_{j}=A / \mathfrak{m}_{A}^{j+1}$, where \mathfrak{m}_{A} is the maximal ideal of A; because any isomorphism $A \stackrel{\psi}{\simeq} B$ holds $\psi\left(\mathfrak{m}_{A}\right)=\mathfrak{m}_{B}$, we deduce that F_{j} is an equivariant projection (A_{j} is the j-th underlying algebra of A, see [4]).

The proof of the following lemma is straightforward.
Lemma 3.3. Each equivariant projection F defines a group morphism

$$
\operatorname{Aut}(A) \xrightarrow{F} \operatorname{Aut}(F(A)) ; \quad g \mapsto F(g)
$$

The projections $\pi_{F}: A \rightarrow F(A)$ induce maps of Weil bundles $\pi_{F}: \check{M}^{A} \rightarrow \check{M}^{F(A)}$ for each smooth manifold M (Proposition 2.5). The equivariance property of π_{F} ensures that we have an induced map at the level of jet spaces. This way,

Theorem 3.4. Given an smooth manifold M and a Weil algebra A, each equivariant projection F defines a differentiable map

$$
\pi_{F}: J^{A} M \rightarrow J^{F(A)} M
$$

Remark 3.5. By the very definition, $F\left(\mathcal{C}^{\infty}(M) / \mathfrak{p}\right)=\mathcal{C}^{\infty}(M) / \pi_{F}(\mathfrak{p})$.

Corollary 3.6. Under the identification in Theorem 2.11, the tangent map corresponding to π_{F} is given by

$$
T_{\mathfrak{p}} J^{A} M \xrightarrow{\left(\pi_{F}\right)_{*}} T_{\pi_{F}(\mathfrak{p})} J^{F(A)} M ; \quad D_{\mathfrak{p}}=[D]_{\mathfrak{p}} \mapsto\left(\pi_{F}\right)_{*} D_{\mathfrak{p}}=\left[\pi_{F} \circ D\right]_{\pi_{F}(\mathfrak{p})}
$$

where $\pi_{F} \circ D \in \operatorname{Der}_{\mathbb{R}}\left(\mathcal{C}^{\infty}(M), \mathcal{C}^{\infty}(M) / \pi_{F}(\mathfrak{p})\right)$.
Let $w(A)=m$ and $o(A)=k$.
Definition 3.7. For each given epimorphism $H: \mathbb{R}_{m}^{k+1} \rightarrow A$ we define

$$
I_{H}^{\prime} \stackrel{\text { def }}{=}\left\{D_{H} P \mid P \in \operatorname{ker} H, D_{H} \in \operatorname{Der}_{\mathbb{R}}\left(\mathbb{R}_{m}^{k+1}, A\right)_{H}\right\}
$$

Lemma 3.8. Let $\psi: A \xrightarrow{\sim} B$ be an isomorphism of Weil algebras and let $H: \mathbb{R}_{m}^{k+1} \rightarrow A, \bar{H}: \mathbb{R}_{m}^{k+1} \rightarrow B$ be algebra epimorphisms. Then $\psi\left(I_{H}^{\prime}\right)=I \bar{H}$.

Proof. By Lemma 1 in the Appendix there exists an automorphism $g \in \operatorname{Aut}\left(\mathbb{R}_{m}^{k+1}\right)$ such that $\bar{H} \circ g=\psi \circ H$. Moreover, g establishes an isomorphism

$$
\psi_{g}: \operatorname{Der}_{\mathbb{R}}\left(\mathbb{R}_{m}^{k+1}, A\right)_{H} \xrightarrow{\sim} \operatorname{Der}_{\mathbb{R}}\left(\mathbb{R}_{m}^{k+1}, B\right)_{\bar{H}}
$$

defined by $\psi_{g}\left(D_{\bar{H}}\right) \stackrel{\text { def }}{=} \psi \circ D_{\bar{H}} \circ g^{-1}$.
If $D_{H} P \in I_{H}^{\prime}$, then $\psi\left(D_{H} P\right)=\psi_{g}\left(D_{\bar{H}}\right)(g P) \in I_{\bar{H}}^{\prime}$. So that $\psi\left(I_{H}^{\prime}\right)$ is included into $I \frac{1}{H}$. By symmetry the proof is finished.

From this lemma it follows that I_{H}^{\prime} is not depending on H; let us denote it by I_{A}^{\prime}. By using again the lemma above we also deduce

Proposition 3.9. If $\psi: A \xrightarrow{\sim} B$ is a Weil algebra isomorphism, then $\psi\left(I_{A}^{\prime}\right)=I_{B}^{\prime}$. This way,

$$
F^{\prime}(A) \stackrel{\text { def }}{=} A^{\prime}=A / I_{A}^{\prime}
$$

defines an equivariant projection (Definition 3.1) where $\pi_{F^{\prime}} \stackrel{\text { def }}{=} \pi^{\prime}$ is the natural epimorphism $A \rightarrow A^{\prime}$. We will call A^{\prime} the derived algebra of A.

Remark 3.10. The ideal I_{A}^{\prime} is just the first Fitting ideal of the module of differentials $\Omega_{A / \mathbb{R}}$.
Computation of A^{\prime}. Let $A=\mathbb{R}\left[\epsilon_{1}, \ldots, \epsilon_{m}\right] / I$ where $I=\left(Q_{s}(\epsilon)\right)+\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{k+1}$ (the Q_{s} are suitable polynomials of degree lower than $k+1$). Let us consider the projection

$$
\mathbb{R}_{m}^{k+1}=\mathbb{R}\left[\epsilon_{1}, \ldots, \epsilon_{m}\right] /\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{k+2} \xrightarrow{H} \mathbb{R}\left[\epsilon_{1}, \ldots, \epsilon_{m}\right] / I
$$

in such a way that ker $H=\left(Q_{s}(\epsilon)\right)+\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{k+1} \bmod \left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{k+2}$. On the other hand, $\operatorname{Der}_{\mathbb{R}}\left(\mathbb{R}_{m}^{k+1}, A\right)_{H}$ is spanned by the partial derivatives $\partial / \partial \epsilon_{i}$. So we see that $I^{\prime}=\left(\partial Q_{s} / \partial \epsilon_{i}\right)+\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{k} \bmod I$ and then

$$
\begin{equation*}
A^{\prime}=\mathbb{R}\left[\epsilon_{1}, \ldots, \epsilon_{m}\right] /\left(\left(Q_{s}\right)+\left(\partial Q_{s} / \partial \epsilon_{i}\right)+\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{k}\right) \tag{3.1}
\end{equation*}
$$

In particular, $\left(\mathbb{R}_{m}^{k}\right)^{\prime}=\mathbb{R}_{m}^{k-1}$ and $\left(\mathbb{R}_{m}^{k} \otimes \mathbb{R}_{n}^{l}\right)^{\prime}=\mathbb{R}_{m}^{k-1} \otimes \mathbb{R}_{n}^{l-1}$.

Remark 3.11. Because $\left(\mathbb{R}_{m}^{k}\right)^{\prime}=\mathbb{R}_{m}^{k-1}$, the notation π^{\prime} used here, is compatible with that of Section 1. Indeed, we think that A^{\prime}, better than A / \mathfrak{m}_{A}^{k}, is the natural generalization of \mathbb{R}_{m}^{k-1}.

By applying Proposition 3.5 we have an induced map

$$
\pi^{\prime}: J^{A} M \longrightarrow J^{A^{\prime}} M
$$

which takes each $\mathfrak{p} \in J^{A} M$ to the kernel of the composition

$$
\mathcal{C}^{\infty}(M) \longrightarrow \mathcal{C}^{\infty}(M) / \mathfrak{p} \xrightarrow{\pi^{\prime}}\left(\mathcal{C}^{\infty}(M) / \mathfrak{p}\right)^{\prime}
$$

Corollary 3.12. If $\left\{x_{i}, y_{j}\right\}$ is a local chart adapted to a jet $\mathfrak{p} \in J^{A} M$ such that $\mathfrak{p}=\left(y_{j}\right)+\left(Q_{s}(x)\right)+\mathfrak{m}_{p}^{k+1}$ for suitable polynomials Q_{s} (Lemma 2.19), then

$$
\pi^{\prime}(\mathfrak{p})=\left(y_{j}\right)+\left(Q_{s}(x)\right)+\left(\partial Q_{s} / \partial x_{i}\right)+\mathfrak{m}_{p}^{k}
$$

There is a second ideal canonically associated to any Weil algebra A. Let us take en epimorphism $H: \mathbb{R}_{m}^{k+1} \rightarrow A$ as above and define the following set

$$
\widehat{I}_{H} \stackrel{\text { def }}{=}\left\{H(P) \in I_{A}^{\prime} \mid D_{H}(P) \in I_{A}^{\prime}, \forall D_{H} \in \operatorname{Der}_{\mathbb{R}}\left(\mathbb{R}_{m}^{k+1}, A\right)_{H}\right\}
$$

It is straightforward to check that \widehat{I}_{H} is an ideal of A. A similar reasoning like that used for I_{A}^{\prime}, shows that \widehat{I}_{H} is not depending on H. Let us denote this ideal by \widehat{I}_{A}. Then we also have

Proposition 3.13. If $\psi: A \xrightarrow{\sim} B$ is an isomorphism of Weil algebras, then $\psi\left(\widehat{I}_{A}\right)=\widehat{I}_{B}$. In particular,

$$
\widehat{F}(A) \stackrel{\text { def }}{=} \widehat{A}=A / \widehat{I}_{A} ;
$$

defines an equivariant projection.
Example 3.14. The algebras $A=\mathbb{R}_{n}^{k}=\mathbb{R}\left[\epsilon_{1}, \ldots, \epsilon_{n}\right] /\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{k+1}$ hold $\widehat{I}_{A}=$ 0 . Indeed, let $\mathbb{R}_{n}^{k+1} \xrightarrow{H} \mathbb{R}_{n}^{k}$ be the natural projection and denote by \mathfrak{m} the ideal $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, then $I_{\mathbb{R}_{n}^{k}}^{\prime}=\mathfrak{m}^{k}$. On the other hand, if a polynomial $P \in \mathbb{R}_{n}^{k+1}$ verifies $\frac{\partial P}{\partial \epsilon_{i}} \in I_{\mathbb{R}_{n}^{k}}^{\prime}=\mathfrak{m}^{k}, i=1, \ldots, m$, then necessarily P belongs to \mathfrak{m}^{k+1} and so $H(P)=$ 0 . However, $\epsilon_{1} \epsilon_{2}$ defines a non trivial element of \widehat{I}_{A} when $A=\mathbb{R}\left[\epsilon_{1}, \epsilon_{2}\right] /\left(\epsilon_{1}^{2}, \epsilon_{2}^{2}\right)$.

4. The contact system on A-Jets

In this section we will construct the contact system on A-jet spaces. The way we have defined the contact system for (m, k)-jets (Section 1) can be mostly translated to the new context. However, there is a number of necessary modifications we will focuses ourselves on.

Let \mathfrak{p} be an A-jet on M and $\left\{x_{i}, y_{j}\right\}$ a local chart adapted to \mathfrak{p} such that $\mathfrak{p}=\left(y_{j}\right)+\left(Q_{s}(x)\right)+\mathfrak{m}_{p}^{k+1}$. Taking into account Corollaries 2.21 and 2.22, the set of values $\mathfrak{d}_{\mathfrak{p}} f\left(D_{\mathfrak{p}}\right) \in \mathcal{C}^{\infty}(M) / \mathfrak{p}$, where f runs over \mathfrak{p} and $D_{\mathfrak{p}}$ runs over the tangent spaces to m-dimensional submanifolds of M, equals to

$$
\left(\left(\partial Q_{s} / \partial x_{i}\right)+\mathfrak{m}_{p}^{k}\right) / \mathfrak{p}
$$

(compare with Lemma 1.8).
Let us consider the epimorphim

$$
\left.\mathcal{C}^{\infty}(M) / \mathfrak{p} \longrightarrow \mathcal{C}^{\infty}(M) /\left(\mathfrak{p}+\left(\partial Q_{s} / \partial x_{i}\right)+\mathfrak{m}_{p}^{k}\right)\right)
$$

and observe that $\mathfrak{p}+\left(\partial Q_{s} / \partial x_{i}\right)+\mathfrak{m}_{p}^{k}$ equals $\pi^{\prime}(\mathfrak{p})$ (see computation (3.1)).
As in the case of (m, k)-jets, if $f \in \mathfrak{p}$ we can define

$$
\mathfrak{d}_{\mathfrak{p}}^{\prime} f \stackrel{\text { def }}{=} \pi^{\prime} \circ \mathfrak{d}_{\mathfrak{p}} f: T_{\mathfrak{p}} J^{A} M \longrightarrow \mathcal{C}^{\infty}(M) / \pi^{\prime}(\mathfrak{p})
$$

where π^{\prime} denotes the canonical projection of $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ onto $\mathcal{C}^{\infty}(M) / \pi^{\prime}(\mathfrak{p})$. From the above discussion it follows that $\mathfrak{d}_{\mathfrak{p}}^{\prime} f$ vanishes on the tangent subspaces $T_{\mathfrak{p}} J^{A} X \subset$ $T_{\mathfrak{p}} J^{A} M$.
Remark 4.1. For each tangent vector $D_{\mathfrak{p}} \in T_{\mathfrak{p}} J^{A} M$, we have

$$
\mathfrak{d}_{\mathfrak{p}}^{\prime} f\left(D_{\mathfrak{p}}\right)=\mathfrak{d}_{\mathfrak{p}^{\prime}} f\left(\pi_{*}^{\prime} D_{\mathfrak{p}}\right)
$$

where \mathfrak{p}^{\prime} denotes $\pi^{\prime}(\mathfrak{p}) \in J^{A^{\prime}} M$.
Remark 4.2. By the very definition and using the above notation we have $\mathfrak{d}_{\mathfrak{p}}^{\prime}\left(Q_{s}\right)=$ 0 and $\mathfrak{d}_{\mathfrak{p}}^{\prime} \mathfrak{m}_{p}^{k+1}=0$ (i.e., $\mathfrak{d}_{p}^{\prime} f=0$ if $f \in\left(Q_{s}\right)+\mathfrak{m}_{p}^{k+1}$).
Definition 4.3. The distribution of tangent vectors \mathcal{C} given by

$$
\mathcal{C}_{\mathfrak{p}} \stackrel{\text { def }}{=} \bigcap_{f \in \mathfrak{p}} \operatorname{ker}\left(\mathfrak{d}_{\mathfrak{p}}^{\prime} f\right) \subset T_{\mathfrak{p}} J^{A} M
$$

will be called the contact distribution on $J^{A} M$. The Pfaffian system associated with \mathcal{C} will be called the contact system on $J^{A} M$ and we will denote it by Ω.
Remark 4.4. Let $\phi: N \longrightarrow M$ be a differentiable map. It is deduced from the definition of the contact system that the jet prolongation $j^{A} \phi: J_{\phi}^{A} N \rightarrow J^{A} M$ is a contact transformation, i.e., $\left(j^{A} \phi\right)_{*} \mathcal{C}_{\mathfrak{q}} \subseteq \mathcal{C}_{\left(j^{A} \phi\right) \mathfrak{q}}$ for each $\mathfrak{q} \in J_{\phi}^{A} N$.

Since the construction of \mathcal{C} and the discussion before Remark 4.1 we have,
Proposition 4.5. Let X be a submanifold of M with $\operatorname{dim} X=w(A)=m$. The prolongation $J^{A} X \subset J^{A} M$ is a solution of the contact distribution.
Lemma 4.6. Let $\mathfrak{p}_{0} \in J^{A} M, f \in \mathfrak{p}_{0}$ and $\left\{x_{i}, y_{j}\right\}$ a local chart adapted to \mathfrak{p}_{0}. For each jet \mathfrak{p} in a neighborhood of \mathfrak{p}_{0} there exists a polynomial $P_{f, \mathfrak{p}}=P_{f, \mathfrak{p}}(x)$ of degree $\leq o(A)$, such that

$$
f-P_{f, \mathfrak{p}} \in \mathfrak{p}
$$

Moreover, the coefficients of $P_{f, \mathfrak{p}}$ can be choosen in such a way that they depend smoothly on \mathfrak{p}.
Proof. Let p_{0}^{A} be a regular A-velocity with $\operatorname{ker} p_{0}^{A}=\mathfrak{p}_{0}$ and let Λ be a set of multi-indices such that $\left\{p_{0}^{A}(x)^{\alpha}\right\}_{\alpha \in \Lambda}$ is a basis of A.

Now, let us consider $a_{i}=p_{0}^{A}\left(x_{i}\right)$ and $b_{i}=p^{A}\left(x_{i}-x_{i}(p)\right)$ in Lemma 2 of the Appendix. We deduce the existence of differentiable functions Φ_{β} in a neighborhood of p_{0}^{A} such that

$$
p^{A}(f)=\sum_{\alpha \in \Lambda} \Phi_{\alpha}\left(p^{A}\right) p^{A}(x-x(p))^{\alpha}
$$

provided that p^{A} is near enough of p_{0}^{A}. So, $f-\sum \Phi_{\alpha}\left(p^{A}\right)(x-x(p))^{\alpha} \in \operatorname{ker} p^{A}$.
Finally, by taking a local section s of Ker: $\check{M}^{A} \rightarrow J^{A} M$ defined around \mathfrak{p}_{0} and such that $s\left(\mathfrak{p}_{0}\right)=p_{0}^{A}$, we can choose the polynomials in the statement to be

$$
P_{f, \mathfrak{p}} \stackrel{\text { def }}{=} \sum_{\alpha \in \Lambda} \Phi_{\alpha}(s(\mathfrak{p}))(x-x(p))^{\alpha} .
$$

Theorem 4.7. The contact distribution is smooth.
Proof. Let $\mathfrak{p}_{0} \in J^{A} M$. The incident subspace to $\mathcal{C}_{\mathfrak{p}_{0}}$ is generated by the real components of the $\mathfrak{d}_{\mathfrak{p}_{0}}^{\prime} f$ when f runs over \mathfrak{p}_{0}.

This way, the theorem follows if each $\mathfrak{d}_{\mathfrak{p}_{0}}^{\prime} f, f \in \mathfrak{p}_{0}$, can be extended in the following sense: for all jet \mathfrak{p} in a neighborhood of \mathfrak{p}_{0}, there is a suitable $\mathcal{C}^{\infty}(M) / \mathfrak{p}$ linear map $\omega_{\mathfrak{p}}: T_{\mathfrak{p}} J^{A} M \rightarrow \mathcal{C}^{\infty}(M) / \mathfrak{p}^{\prime}$ fulfilling
(1) $\omega_{\mathfrak{p}}$ annihilates each vector $D_{p} \in \mathcal{C}_{\mathfrak{p}}$.
(2) $\omega_{\mathfrak{p}}$ depends smoothly on \mathfrak{p}.
(3) $\omega_{\mathfrak{p}_{0}}=\mathfrak{d}_{\mathfrak{p}_{0}}^{\prime} f$.

Since the lema above, items (1) and (2) hold if we take $\omega_{\mathfrak{p}} \stackrel{\text { def }}{=} \mathfrak{d}_{\mathfrak{p}}^{\prime}\left(f-P_{f, \mathfrak{p}}\right)$. Item (3) also holds because $\mathfrak{d}_{\mathfrak{p}_{0}}^{\prime} P_{f, \mathfrak{p}_{0}}=0$ (see Remark 4.2).

Proposition 4.8. The vector subspace $\mathcal{C}_{\mathfrak{p}}$ equals the linear span of the tangent spaces at \mathfrak{p} of the m-dimensional submanifolds X such that $I_{X} \subset \mathfrak{p}$:

$$
\mathcal{C}_{\mathfrak{p}}=\sum_{I_{X} \subset \mathfrak{p}} T_{\mathfrak{p}} J^{A} X
$$

Proof. Let a fix local coordinates $\left\{x_{i}, y_{j}\right\}$ adapted to \mathfrak{p}. A tangent vector $D_{\mathfrak{p}}=$ $\left[\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}+\sum_{j} b_{j} \frac{\partial}{\partial y_{j}}\right]_{\mathfrak{p}}$ (where we can assume that a_{i}, b_{j} are polynomials in the x_{i}) belongs to $\mathcal{C}_{\mathfrak{p}}$ if and only if $\pi^{\prime}\left(b_{j}\right)=0$. So, $b_{j} \in \mathfrak{p}^{\prime} \stackrel{\text { def }}{=} \pi^{\prime}(\mathfrak{p})$ and therefore $b_{j}=\sum_{s i} b_{s i}^{j} \frac{\partial Q_{s}}{\partial x_{i}}$, for suitable polynomials $b_{s i}^{j}(x)$ (see Corollary 3.12). If we denote by H_{i}^{j} the sum $\sum_{s} b_{s i}^{j} Q_{s}$ we will have $D_{\mathfrak{p}}=\left[\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}+\sum_{i j} \frac{\partial H_{i}^{j}}{\partial x_{i}} \frac{\partial}{\partial y_{j}}\right]_{\mathfrak{p}}$.

Next, let us consider the following submanifolds: $X_{0}=\left\{y_{j}=0\right\} \stackrel{i_{0}}{\hookrightarrow} M, X_{h}=$ $\left\{y_{j}=H_{h}^{j}(x)\right\} \stackrel{i_{h}}{\hookrightarrow} M, h=1, \ldots, m$. Then, a calculation gives

$$
D_{\mathfrak{p}}=\left(j^{A} i_{0}\right)_{*}\left[\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}\right]_{\mathfrak{p}}+\sum_{h}\left(\left(j^{A} i_{h}\right)_{*}\left[\frac{\partial}{\partial x_{h}}\right]_{\mathfrak{p}}-\left(j^{A} i_{0}\right)_{*}\left[\frac{\partial}{\partial x_{h}}\right]_{\mathfrak{p}}\right)
$$

which belongs to $T_{\mathfrak{p}} J^{A} X_{0}+\sum_{h} T_{\mathfrak{p}} J^{A} X_{h}$.
Remark 4.9. An easy consequence follows. Let $\pi^{\prime}: J^{A} M \rightarrow J^{A^{\prime}} M$ be the natural projection and $\mathfrak{p}^{\prime}=\pi^{\prime}(\mathfrak{p}), \mathfrak{p} \in J^{A} M$. If $w\left(A^{\prime}\right)=w(A)=m$, then $\pi_{*}^{\prime} \mathcal{C}_{\mathfrak{p}} \subset \mathcal{C}_{\mathfrak{p}^{\prime}}$.

Lemma 4.10. Let $U \subset J^{A} M$ be a solution of the contact system and \mathfrak{p} a jet in U. Then $\operatorname{dim} \pi_{*}^{\prime} T_{\mathfrak{p}} U \leq \operatorname{dim} J^{A^{\prime}} \mathbb{R}^{m}$ where $m=w(A)$. Moreover, if $\mathfrak{p} \supset I_{X}$, where I_{X} is the ideal of a given m-dimensional submanifold X, then $\pi_{*}^{\prime} T_{\mathfrak{p}} U \subseteq T_{\mathfrak{p}^{\prime}} J^{A^{\prime}} X$.

Proof. It is sufficient to show the second part in the claim. If $\mathfrak{p} \supset I_{X}$, also we have $\mathfrak{p}^{\prime} \supset I_{X}$ (that is, $\mathfrak{p}^{\prime} \in J^{A^{\prime}} X$). Then, by using Remark 4.1, for each given tangent vector $D_{\mathfrak{p}} \in T_{\mathfrak{p}} U \subset \mathcal{C}_{\mathfrak{p}}$ we have

$$
\mathfrak{d}_{\mathfrak{p}} f\left(\pi_{*}^{\prime} D_{\mathfrak{p}}\right)=\mathfrak{d}_{\mathfrak{p}}^{\prime} f\left(D_{\mathfrak{p}}\right)=0, \quad \forall f \in I_{X}
$$

From the version of Theorem 1.7 in the case of A-jets, it follows that $\pi_{*}^{\prime} D_{\mathfrak{p}} \in$ $T_{\mathfrak{p}^{\prime}} J^{A^{\prime}} X$ 。

Lemma 4.11. Let $U \subset J^{A} M$ be a solution of the contact system which contains $J^{A} X$, where X is an m-dimensional submanifold of M. If $\mathfrak{p} \in J^{A} X$, there exist a neighborhood of $\pi^{\prime}(\mathfrak{p})=\mathfrak{p}^{\prime}$ where

$$
\pi^{\prime}(U)=J^{A^{\prime}} X
$$

Proof. By applying the lema above to the inclusion $J^{A} X \subseteq U$ we have

$$
T_{\mathfrak{p}^{\prime}} J^{A^{\prime}} X \subseteq \pi_{*}^{\prime} T_{\mathfrak{p}} U \subseteq T_{\mathfrak{p}^{\prime}} J^{A^{\prime}} X
$$

So, the equality holds and the dimension of $\pi_{*}^{\prime} T_{\mathfrak{p}} U$ is the highest possible. Therefore, the rank of $\left.\pi^{\prime}\right|_{U}$ is constant in a neighborhood of \mathfrak{p}. We deduce that, in a neighborhood of $\mathfrak{p}^{\prime}, \pi^{\prime}(U)$ is a submanifold. Moreover, also locally, $\pi^{\prime}(U)$ contains $J^{A^{\prime}} X$ and $\operatorname{dim} \pi^{\prime}(U)=\operatorname{dim} J^{A^{\prime}} X$. As a consequence, near of $\mathfrak{p}^{\prime}, \pi^{\prime}(U)=$ $J^{A^{\prime}} X$.

Finally, the proof of the maximality of the solutions $J^{A} X$ requires an additional hypothesis on the algebra A.
Theorem 4.12. Let us suppose that $\widehat{I}_{A}=0$. The prolongations $J^{A} X \subseteq J^{A} M$ (with $\operatorname{dim} X=m=w(A)$) are maximal solutions of the contact system. In other words, if $J^{A} X \subseteq U \subseteq J^{A} M$ where U is a solution of the contact system, then $\operatorname{dim} J^{A} X=\operatorname{dim} U$.

Proof. Let $\mathfrak{p} \in J^{A} X \subseteq U$ with $\mathfrak{p}^{\prime}=\pi^{\prime}(\mathfrak{p})$ and let us suppose that $\overline{\mathfrak{p}} \in U$ is another jet such that $\pi^{\prime}(\overline{\mathfrak{p}})=\pi^{\prime}(\mathfrak{p})=\mathfrak{p}^{\prime}$ and $\overline{\mathfrak{p}} \notin J^{A} X$.

In a suitable local chart $\left\{x_{i}, y_{j}\right\}$ we have $I_{X}=\left(y_{j}\right)$ and

$$
\overline{\mathfrak{p}}=\left(y_{j}-P_{j}(x)\right)+\left(\bar{Q}_{s}(x)\right)+\mathfrak{m}_{p}^{k+1},
$$

for certain polynomials $P_{j}(x), \bar{Q}_{s}(x)$, where at least one among the P^{\prime}, say $P_{j_{0}}(x)$, is not in $\overline{\mathfrak{p}}$ (elsewhere, $\overline{\mathfrak{p}} \supset I_{X}$, and then $\overline{\mathfrak{p}} \in J^{A} X$, in contradiction with the above assumption).

For each given index i, let us pick a tangent vector $D_{\bar{p}}=[D]_{\bar{p}} \in T_{\bar{p}} U$ such that $\pi_{*}^{\prime} D_{\overline{\mathfrak{p}}}=\left[\frac{\partial}{\partial x_{i}}\right]_{\mathfrak{p}^{\prime}} \in T_{\mathfrak{p}^{\prime}} J^{A^{\prime}} X$, which is always possible according to Lemma 4.11. From U being a solution of the contact system, we get

$$
0=\mathfrak{d}_{\overline{\mathfrak{p}}}^{\prime}\left(y_{j_{0}}-P_{j_{0}}\right)\left(D_{\overline{\mathfrak{p}}}\right)=\mathfrak{d}_{\overline{\mathfrak{p}}}\left(y_{j_{0}}-P_{j_{0}}\right)\left(\pi_{*}^{\prime} D_{\overline{\mathfrak{p}}}\right)=-\left[\frac{\partial P_{j_{0}}}{\partial x_{i}}\right]_{\mathfrak{p}^{\prime}} .
$$

It is deduced that $\frac{\partial P_{j_{0}}}{\partial x_{i}} \in \pi^{\prime}(\overline{\mathfrak{p}})=\mathfrak{p}^{\prime}$. Moreover, $P_{j_{0}} \in \pi^{\prime}(\overline{\mathfrak{p}})$ because $y_{j_{0}}-P_{j_{0}} \in$ $\overline{\mathfrak{p}} \subset \pi^{\prime}(\overline{\mathfrak{p}})$ and $y_{j_{0}} \in \mathfrak{p} \subset \mathfrak{p}^{\prime}=\pi^{\prime}(\overline{\mathfrak{p}})$. This way, we have a polynomial $P_{j_{0}} \notin \overline{\mathfrak{p}}$ but
$P_{j_{0}}, \frac{\partial P_{j_{0}}}{\partial x_{i}} \in \pi^{\prime}(\overline{\mathfrak{p}}), i=1, \ldots, m$. As a consequence, $P_{j_{0}}$ belongs to the ideal \widehat{I} of $\mathcal{C}^{\infty}(M) / \bar{p} \simeq A$ and then $\widehat{I}_{A} \neq 0$.
Corollary 4.13. On the spaces $J_{m}^{k} M$ the prolongations of m-dimensional submanifolds of M are maximal solutions of the contact system.

Proof. It is sufficient to taking into account Example 3.14.

Appendix

Lemma 1. Let $H, \bar{H}: \mathbb{R}_{n}^{k} \rightarrow A$ be \mathbb{R}-algebra epimorphisms; then there exists an automorphism $g \in \operatorname{Aut}\left(\mathbb{R}_{n}^{k}\right)$ such that $H=\bar{H} \circ g$.
Proof. If the classes of a_{1}, \ldots, a_{m} generate $\mathfrak{m}_{A} / \mathfrak{m}_{A}{ }^{2}$, one easily deduces that each element in A can be obtained as a polynomial on a_{1}, \ldots, a_{m}. It is not difficult to see that elements x_{1}, \ldots, x_{n} can be chosen in \mathbb{R}_{n}^{k} such that they generate the maximal ideal and we have $H\left(x_{i}\right)=a_{i}$ if $i \leq m$ and $H\left(x_{m+j}\right)=0$. Analogously, we can choose a elements $\bar{x}_{1}, \ldots, \bar{x}_{n}$ which hold the same property with respect to \bar{H}. Finally, we define g by the condition of mapping the first basis to the second one.

Lemma 2. Let $\left\{a_{i}\right\}$ be a basis of \mathfrak{m}_{A} modulo \mathfrak{m}_{A}^{2} and let us choose a collection of multi-indices Λ such that the set $\left\{a^{\alpha}\right\}_{\alpha \in \Lambda}$ is a basis of \mathfrak{m}_{A}. Then, there exist rational functions $\Psi_{\alpha \beta}, \alpha, \beta \in \Lambda$ such that for any other basis $\left\{b_{i}\right\}$ of \mathfrak{m}_{A} modulo \mathfrak{m}_{A}^{2}, near enough of $\left\{a_{i}\right\}$ we have

$$
a^{\alpha}=\sum_{\beta \in \Lambda} \Psi_{\alpha \beta}\left(\lambda_{i \sigma}\right) b^{\beta}, \quad \alpha \in \Lambda
$$

where $b_{i}=\sum_{i \sigma \in \Lambda} \lambda_{i \sigma} a^{\sigma}$.
Proof. Let us suppose the multiplication law on A being $a^{\alpha} a^{\sigma}=\sum_{\gamma \in \Lambda} c_{\alpha \sigma}^{\gamma} a^{\gamma}$, $c_{\alpha \sigma}^{\gamma} \in \mathbb{R}$ (structure constants).

Because each b_{i} is near enough of $a_{i}, i=1, \ldots, m$ we deduce that the set of powers $\left\{b^{\beta}\right\}_{\beta \in \Lambda}$ is also a basis of \mathfrak{m}_{A}.

From $b_{i}=\sum_{i \sigma \in \Lambda} \lambda_{i \sigma} a^{\sigma}$ we can write each b^{β} as a linear combination of the $a^{\alpha}, \alpha \in \Lambda$ whose coefficients are polynomials in the $\lambda_{i \sigma}$ (multiplication law of A). These linear relations can be inverted and we get the required expressions for a^{α}.

Acknowledgements. We would like to thank Prof. P. Arias, S. Jiménez and J. Rodríguez for useful discussions and suggestions.

References

[1] Alonso Blanco, R. J., Jet manifold associated to a Weil bundle, Arch. Math. (Brno) 36 (2000), 195-199.
[2] _ On the local structure of A-jet manifolds, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math Publ. 3, Silesian Univ. Opava 2001, 51-61.
[3] Jiménez, S., Muñoz, J., Rodríguez, J., On the reduction of some systems of partial differential equations to first order systems with only one unknown function, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math. Publ. 3, Silesian Univ. Opava 2001, 187-195.
[4] Kolář, I., Affine structure on Weil bundles, Nagoya Math. J. 158 (2000), 99-106.
[5] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, 1993.
[6] Lie, S., Theorie der Transformationsgruppen, Leipzig, 1888. (Second edition in Chelsea Publishing Company, New York 1970).
[7] Muñoz, J., Muriel, J., Rodríguez, J., The canonical isomorphism between the prolongation of the symbols of a nonlinear Lie equation and its attached linear Lie equation, in Proccedings of Diff. Geom. and its Appl. (Brno, 1998), Masaryk Univ., Brno 1999, 255-261.
[8] \qquad , Integrability of Lie equations and pseudogroups, J. Math. Anal. Appl. 252 (2000), 32-49.
[9] \qquad , Weil bundles and jet spaces, Czechoslovak Math. J. 50 (125) (2000), no. 4, 721-748.
[10] __ A remark on Goldschmidt's theorem on formal integrability, J. Math. Anal. Appl. 254 (2001), 275-290.
[11] _, The contact system on the (m, l)-jet spaces, Arch. Math. (Brno) 37 (2001), 291-300.
[12] , On the finiteness of differential invariants, J. Math. Anal. Appl. 284 (2003), No. 1, 266-282.
[13] Rodríguez, J., Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales, Ph. D. Thesis, Salamanca, 1990.
[14] Weil, A., Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, C. N. R. S. (1953), 111-117.

Departamento de Matemáticas, Universidad de Salamanca
Plaza de la Merced 1-4, E-37008 Salamanca, Spain
E-mail: ricardo@usal.es clint@usal.es

[^0]: 2000 Mathematics Subject Classification: 58A20.
 Key words and phrases: jet, contact system, Weil algebra, Weil bundle.
 The first author was partially founded by Junta de Castilla y León under contract SA30/00B.
 Received July 10, 2002.

