ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 249 – 257

ALMOST Q-RINGS

C. JAYARAM

ABSTRACT. In this paper we establish some new characterizations for Q-rings and Noetherian Q-rings.

1. INTRODUCTION

Throughout this paper R is assumed to be a commutative ring with identity. L(R) denotes the lattice of all ideals of R. R is said to be a Q-ring [4], if every ideal is a finite product of primary ideals. It is well known that if R is a Q-ring, then R_M is a Q-ring for every maximal ideal M of R [4, Lemma 4]. But in general the converse need not be true. For example, if R is an almost Dedekind domain which is not a Dedekind domain, then R_M is a Q-ring, for every maximal ideal M of R, but R is not a Q-ring. We call a ring R an almost Q-ring if R_M is a Q-ring, for every maximal ideal M of R. The goal of this paper is to characterize those almost Q-rings which are also Q-rings. We prove that R is an almost Q-ring if and only if every non-maximal prime ideal is locally principal (see Theorem 1). Using this result, we characterize Q-rings in terms of almost Q-rings (see Theorem 2). Finally, we establish some equivalent conditions for Noetherian Q-rings (see Theorem 3).

For any $A, B \in L(R)$, we denote $A \setminus B = \{x \in A \mid x \notin B\}$. We use \subset for proper set containment. For any $x \in R$, the principal ideal generated by x is denoted by (x). For any ideal $I \in L(R)$, we denote $\theta(I) = \sum \{(I_1 : I) \mid I_1 \subseteq I \text{ and } I_1 \text{ is a}$ finitely generated ideal}. Recall that an ideal I of R is called a *multiplication ideal* if for every ideal $J \subseteq I$, there exists an ideal K with J = KI. If I is a multiplication ideal, then I is locally principal [1, Theorem 1 and Page 761]. An ideal M of Ris called a *quasi-principal ideal* [9, Exercise 10, Page 147] (or a principal element of L(R) [11]) if it satisfies the following identities (i) $(A \cap (B : M))M = AM \cap B$ and (ii) (A + BM) : M = (A : M) + B, for all $A, B \in L(R)$. Obviously, every quasi-principal ideal is a multiplication ideal. It should be mentioned that every quasi-principal ideal is finitely generated and also a finite product of quasi-principal ideals of R is again a quasi-principal ideal [9, Exercise 10, Page 147]. In fact, an ideal I of R is quasi-principal if and only if it is finitely generated and locally

²⁰⁰⁰ Mathematics Subject Classification: 13A15, 13F20, 13G05.

Key words and phrases: Q-ring, almost Q-ring, Noetherian Q-ring.

Received July 11, 2002.

C. JAYARAM

principal (see [6, Theorem 4]) or [11, Theorem 2]). A B_w -prime of I is a prime ideal P such that P is minimal over (I : x) for some $x \in R$. R is said to be a *Laskerian ring* [8], if every ideal is a finite intersection of primary ideals. It is well known that R is a Q-ring if and only if R is a Laskerian ring in which every non-maximal prime ideal is quasi-principal [4, Theorem 13]. R is a π -ring if every principal ideal is a finite product of prime ideals. We say that R has Noetherian spectrum, if R satisfies the ascending chain condition for radical ideals [12]. It is well known that R has Noetherian spectrum if and only if every prime ideal is the radical of a finitely generated ideal [12, Corollary 2.4]. Also it is well known that if R has Noetherian spectrum, then every ideal has only finitely many minimal primes.

For general background and terminology, the reader is referred to [9].

We shall begin with the following definition.

Definition 1. A quasi-local ring R with maximal ideal M is said to satisfy the condition (*) if for each non-maximal prime ideal P with P = PM, there exists $t \in M$ such that P + (t) is finitely generated.

Note that valuation rings (i.e., any two ideals are comparable), quasi-local rings in which the maximal ideals are principal and one dimensional quasi-local domains are examples of quasi-local rings satisfying the condition (*).

Lemma 1. Let R be a quasi-local Q-ring with maximal ideal M. Then R satisfies the condition (*).

Proof. The proof of the lemma follows from [4, Lemma 5].

Lemma 2. Let R be a quasi-local ring with maximal ideal M satisfying the condition (*). Suppose every principal ideal is a finite product of primary ideals. If P is a non-maximal prime ideal with P = PM, then P = (0).

Proof. Suppose P is a non-maximal prime ideal with P = PM. By hypothesis, there exists $a \in M$ such that P + (a) is finitely generated. If $a \in P$, then P = P + (a) is finitely generated, so by Nakayama's lemma, P = 0. Suppose $a \notin P$. Since P + (a) is finitely generated, it follows that $P + (a) = P_1 + (a)$ for some finitely generated ideal $P_1 \subseteq P$. Since P = PM, we have $(P + (a))M = PM + (a)M = P_1M + (a)M$, so $P + (a)M = P_1M + (a)M$ and hence $P + (a) = P_1M + (a)$. Again since $P_1 \subseteq P + (a) = (a) + P_1M$ and P_1 is finitely generated, by Nakayama's lemma, it follows that $P_1 \subset (a)$. Therefore $P \subset (a)$. Let $x \in P$. By hypothesis (x) = QA for some primary ideal $Q \subseteq P$ and $A \in L(R)$. Since $Q \subset (a)$, it follows that Q = (a)Q. Therefore (x) = QA = Q(a)A = (x)(a) and hence by Nakayama's lemma, (x) = (0).

Lemma 3. Let R be a quasi-local ring with maximal ideal M. Suppose every ideal generated by two elements is a finite product of primary ideals. If P is a non-maximal prime ideal with $P \neq PM$, then P is principal.

Proof. Let P be a non-maximal prime ideal with $P \neq PM$. Choose any element $a \in P$ such that $a \notin PM$. Let $t \in M$ be any element such that $t \notin P$. Suppose

250

 $x \in P$. Then by hypothesis, (a) + (xt) is a finite product of primary ideals. Since $a \notin PM$, it follows that (a) + (xt) is primary. Again since $(xt) \subseteq (a) + (xt)$ and $t \notin \sqrt{(a) + (xt)} \subseteq P$, it follows that $x \in (a) + (xt)$, so by Nakayama's lemma $(x) \subseteq (a)$. Therefore P = (a).

Lemma 4. Let R be a quasi-local ring with maximal ideal M satisfying the condition (*). Suppose every ideal generated by two elements is a finite product of primary ideals. Then the non-maximal prime ideals are principal. Hence dim $R \leq 2$.

Proof. By Lemma 2 and Lemma 3, every non-maximal prime ideal is principal. Again as shown in the last paragraph of the proof of Lemma 5 of [4], dim $R \leq 2$. This completes the proof of the lemma.

Lemma 5. Suppose I is an ideal of R such that every prime minimal over I is finitely generated. Then I contains a finite product of prime ideals minimal over I. Further I has only finitely many minimal primes.

Proof. Suppose *I* does not contain a finite product of prime ideals minimal over *I*. Let $\Im = \{J \in L(R) \mid I \subseteq J \text{ and } J \text{ does not contain a finite product of prime ideals minimal over$ *I* $}. By Zorn's lemma, <math>\Im$ has a maximal element, say *P*. It can be easily shown that *P* is a prime ideal. Again note that *P* contains a prime ideal P_0 which is minimal over *I*, a contradiction. Therefore *I* contains a finite product of prime ideals minimal over *I*. Consequently, *I* has only finitely many minimal primes.

Lemma 6. Suppose R is a quasi-local ring. Then the following statements are equivalent:

- (i) R is a Q-ring.
- (ii) R satisfies the condition (*) and every ideal generated by two elements is a finite product of primary ideals.
- (iii) Every non-maximal prime ideal is principal.

Proof. (i) \Rightarrow (ii) follows from Lemma 1.

(ii) \Rightarrow (iii) follows from Lemma 4.

(iii) \Rightarrow (i). Suppose (iii) holds. Then every ideal I is either M-primary (M is a maximal ideal of R) or by Lemma 5, I has only finitely many minimal primes. Again by the last paragraph of the proof of [4, Lemma 5], R is Laskerian. Now the result follows from [4, Theorem 10].

Lemma 7. Let R be an almost Q-ring. Suppose every principal ideal is a finite product of primary ideals. Then every non-maximal prime ideal of R is a multiplication ideal.

Proof. Using Lemma 6 and by imitating the proof of [4, Lemma 7], we can get the result. \Box

Lemma 8. Let dim $R \leq 2$ and let every ideal generated by two elements has only finitely many minimal primes. Then R has Noetherian spectrum.

Proof. First we show that every minimal prime ideal is the radical of a finitely generated ideal. By hypothesis, R has only finitely many minimal primes. Let P_1, P_2, \ldots, P_n be the distinct minimal prime ideals. If n = 1, then P_1 is the radical of the zero ideal. Suppose n > 1. Then $P_1 \not\subseteq \bigcup_{i=2}^{n} P_i$. Choose any $x \in P_1$ such that $x \notin \bigcup_{i=2}^{n} P_i$. Let Q_1, Q_2, \ldots, Q_m be the distinct primes minimal over (x). Then $P_1 = Q_j$ for some j, say $P_1 = Q_1$. If m = 1, then P_1 is the radical of (x). Suppose m > 1. Then $P_1 \nsubseteq \bigcup_{i=2}^{m} Q_i$. Choose any $y \in P_1$ such that $y \notin \bigcup_{i=2}^{m} Q_i$. By hypothesis, (x) + (y) has only finitely many minimal primes. Let Q'_1, Q'_2, \ldots, Q'_k be the distinct primes minimal over (x) + (y). Note that $P_1 = Q'_j$ for some j, say $P_1 = Q'_1$. If k = 1, then P_1 is the radical of (x) + (y). Suppose k > 1. Observe that any Q'_j different from P_1 contains Q_i properly, for some $i \neq 1$, and each Q_i different from P_1 is non-minimal. So each Q'_j is maximal, for $j = 2, 3, \ldots, k$. Choose any element $z \in P_1$ such that $z \notin \bigcup_{i=2}^{k} Q'_i$. Now it can be easily shown that P_1 is the radical of (x) + (y) + (z). Thus we have shown that every minimal prime ideal is the radical of a finitely generated ideal.

Next we show that every non-minimal prime ideal is the radical of a finitely generated ideal. Let P be a non-minimal prime ideal. Then $P \not\subseteq \bigcup_{i=1}^{n} P_i$. Choose any $x \in P$ such that $x \notin \bigcup_{i=1}^{n} P_i$. Let Q_1, Q_2, \ldots, Q_m be the distinct primes minimal over (x). Then $P \supseteq Q_j$ for some j, say $P \supseteq Q_1$. If m = 1 and $P = Q_1$, then P is the radical of (x) and so we are through. Suppose $m \ge 1$ and $Q_1 \subset P$. Then $P \not\subseteq \bigcup_{i=1}^{m} Q_i$. Choose any $y \in P$ such that $y \notin \bigcup_{i=1}^{m} Q_i$. Then (x) + (y) has only finitely many minimal primes and every prime minimal over (x) + (y) is a maximal ideal. Therefore there exists a finitely generated ideal I such that P is the radical of I. Finally assume that m > 1 and $P = Q_1$. Then $P \not\subseteq \bigcup_{i=2}^{m} Q_i$. Choose any $y \in P$ such that $y \notin \bigcup_{i=2}^{m} Q_i$. Let Q'_1, Q'_2, \ldots, Q'_k be the distinct primes minimal over (x) + (y). Note that $P_1 \supseteq Q'_j$ for some j, say $P_1 \supseteq Q'_1$. Since $x \in Q'_1$ and $Q_1 = P \supseteq Q'_1$, it follows that $P = Q_1 = Q'_1$. If k = 1, then P_1 is the radical of (x) + (y). Suppose k > 1. Then $P \nsubseteq \bigcup_{i=2}^{k} Q'_i$. Then P is the radical of (x) + (y) + (z). Thus every prime ideal is the radical of a finitely generated ideal and hence R has Noetherian spectrum.

For any $I \in L(R)$ and for any prime ideal P minimal over I, we denote $P_I = \bigcap \{Q \in L(R) \mid Q \text{ is a } P\text{-primary ideal containing } I\}$. It can be easily seen that P_I is the smallest P-primary ideal containing I. For any $x \in R$, and for any prime ideal P minimal over (x), we denote $P_x = \bigcap \{Q \in L(R) \mid Q \text{ is a } P\text{-primary ideal containing } (x)\}$.

For any $x \in R$, we denote $(x)^* = \cap \{P_x \mid P \text{ is a prime ideal minimal over } (x)\}$.

ALMOST Q-RINGS

Lemma 9. Let P be a prime minimal over an ideal I of R and let P_1 be a prime properly containing P. Then the following statements hold:

- (i) If P is a multiplication ideal, then $P \subset ((I + PP_I) : P_I)$.
- (ii) If P_1 is a B_w -prime of I, then $(P_I)_M \neq I_M$ (in R_M) for all maximal ideals M containing P_1 .

Proof. (i) Consider the ideal $((I + PP_I) : P_I)$. Note that $P \subseteq ((I + PP_I) : P_I)$. Suppose $P = ((I + PP_I) : P_I)$. We claim that $I + PP_I$ is *P*-primary. Let $yz \in I + PP_I$ and $z \notin P$. Then $yz \in P_I$, so $y \in P_I$. Since *P* is a multiplication ideal, by [3, Lemma 1] and [2, Corollary], P_I is a multiplication ideal. As P_I is a multiplication ideal, it follows that $(y) = P_I C$ for some ideal *C* of *R*. If $C \subseteq P$, then we are through. Suppose $C \not\subseteq P$. Then $(yz) = (z)P_IC \subseteq I + PP_I$, so $zC \subseteq ((I + PP_I) : P_I) = P$, a contradiction. Therefore $I + PP_I$ is *P*-primary and hence $P_I = I + PP_I$. Consequently, $1 \in ((I + PP_I) : P_I) = P$, a contradiction. Therefore $P \subset ((I + PP_I) : P_I)$.

(ii) Suppose P_1 is a B_w -prime of I. Then P_1 is minimal over (I : r) for some $r \in R$. Since $(I : r)r \subseteq I \subseteq P_I$, $(I : r) \not\subseteq P$ and P_I is P-primary, it follows that $r \in P_I$. If $(P_I)_M = I_M$ for some maximal ideal M containing P_1 , then $rs \in I$ for some $s \notin M$. So $s \in (I : r) \subseteq M$, a contradiction. Therefore the result is true. \Box

Lemma 10. Let every non-maximal prime ideal of R be a multiplication ideal. Suppose P is a non-maximal minimal prime and minimal over an ideal I of R. Then the following statements hold:

- (i) Any B_w-prime of I which contains P properly, is a rank one maximal ideal and minimal over ((I + PP_I) : P_I).
- (ii) If the maximal ideals of R are finitely generated, then the ideal $((I + PP_I) : P_I)$ has only finitely many minimal primes.

Proof. (i) Let P_1 be any B_w -prime of I which contains P properly. If M is a maximal ideal containing P_1 , then by Lemma 9(ii), R_M is not a domain. Note that by Lemma 6, R is an almost Q-ring. As R is an almost Q-ring, by [4, Corollary 6], it follows that rank M = 1, so P_1 is a rank one maximal ideal. If $((I + PP_I) : P_I) \not\subseteq P_1$, then $(P_I)_{P_1} \subseteq I_{P_1} + (PP_I)_{P_1}$. As P is a multiplication ideal, it follows that P_I is a multiplication ideal, so P_I is locally principal, and hence by Nakayama's lemma, it follows that $(P_I)_{P_1} = I_{P_1}$. But this contradicts the statement of Lemma 9(ii). Therefore $((I + PP_I) : P_I) \subseteq P_1$ and hence by Lemma 9(i), P_1 is minimal over $((I + PP_I) : P_I)$.

(ii) Note that by hypothesis, R is an almost Q-ring and so dim $R \leq 2$. By Lemma 9(i), every prime minimal over $((I + PP_I) : P_I)$ is either a non-minimal maximal ideal or a rank one non-maximal prime. As every non-maximal prime is a multiplication ideal, by [2, Theorem 3], the rank one non-maximal primes are quasi-principal. By hypothesis, the minimal primes over $((I + PP_I) : P_I)$ are finitely generated and so by Lemma 5, the ideal $((I + PP_I) : P_I)$ has only finitely many minimal primes.

C. JAYARAM

Lemma 11. Suppose every ideal (of R) generated by two elements has only finitely many minimal primes and the non-maximal prime ideals are multiplication ideals. Then the non-maximal prime ideals are quasi-principal.

Proof. Let P be a non-maximal prime ideal. As dim $R \leq 2$, it follows that P is either minimal or a rank one prime. If P is non-minimal, then P is quasi-principal [2, Theorem 3]. Suppose P is minimal. By Lemma 8, $P = \sqrt{I}$ for some finitely generated ideal I of R. Note that every B_w -prime of I contains P, and by Lemma 8, the ideal $((I + PP_I) : P_I)$ has only finitely many minimal primes. Therefore by Lemma 10(i), I has only finitely many B_w -primes. Again note that by Lemma 10(i), for every finitely generated ideal I_0 with $I \subseteq I_0 \subseteq P$, I_0 has only finitely many B_w -primes. As dim $R \leq 2$, by [7, Theorem 1.3], P is finitely generated and hence quasi-principal.

Lemma 12. Suppose every non-maximal prime ideal of R is a multiplication ideal, the maximal ideals of R are finitely generated and every principal ideal has only finitely many minimal primes. Then every principal ideal is a finite intersection of primary ideals.

Proof. Note that by hypothesis, R is an almost Q-ring, so by Lemma 4, dim $R \leq 2$. Let $x \in R$. Then by hypothesis, $(x)^*$ is a finite intersection of primary ideals. Suppose (x) is not contained in any minimal prime. We show that $(x) = (x)^*$. Let M be a maximal ideal. If $x \notin M$, then $(x)_M = (x)^*_M$. Suppose $x \in M$. If M is minimal over (x), then $(x)_M = (x)^*_M$. Suppose M is not minimal over (x). Then rank M = 2, so by [4, Corollary 6], R_M is a π -domain. Therefore $(x)_M = (x)^*_M$ (see the proof of [10, Theorem 1.2] or [5, Theorem 3]). This shows that $(x)_M = (x)^*_M$ for all maximal ideals containing x and hence $(x) = (x)^*$.

Now assume that P_1, P_2, \ldots, P_m be the primes minimal over (x). Let P_1, P_2 , \dots, P_t be the non-maximal minimal primes and let $P_{t+1}, P_{t+2}, \dots, P_m$ be the primes which are either maximal or rank one non-maximal primes. By Lemma 10(ii), the ideals $((x) + P_i(P_i)_x : (P_i)_x)$ for $i = 1, 2, \ldots, t$ have only finitely many minimal primes, say M_1, M_2, \ldots, M_n . Again by the proof of Lemma 10(ii), these are either non-minimal maximal ideals or rank one non-maximal prime ideals. Without loss of generality, assume that M_1, M_2, \ldots, M_k are the rank one maximal prime ideals and $M_{k+1}, M_{k+2}, \ldots, M_n$ are either rank two maximal ideals or rank one non-maximal prime ideals. Let M be any maximal ideal different from M_1, M_2, \ldots, M_k . We claim that $(x)_M = (x)^*_M$. Obviously, if $x \notin M$, then $(x)_M = (x)^*_M$. Suppose $x \in M$. If either M is minimal over (x) or rank M = 2, then $(x)_M = (x)^*_M$. Suppose M is not minimal over (x) and rank M = 1. Then M is different from $M_1, M_2, ..., M_n$, so $((x) + P_i(P_i)_x : (P_i)_x) \not\subseteq M$ for i = 1, 2, ..., tand hence $((P_i)_x)_M = (x)_M$ for i = 1, 2, ..., k. Consequently, $(x)_M = (x)^*_M$. If $(x)_{M_i} = (x)^*_{M_i}$ for i = 1, 2, ..., k, then $(x)_M = (x)^*_M$ for all maximal ideals, so $(x) = (x)^*$. Suppose $(x)_{M_i} \neq (x)^*_{M_i}$ for i = 1, 2, ..., l $(1 \le l \le k)$. As R_{M_i} is a Laskerian ring, it follows that there exist M_i -primary Q_i such that $(x)_{M_i} =$ $((x)^*)_{M_i} \cap (Q_i)_{M_i}$ for i = 1, 2, ..., l. Then $(x)_M = ((x)^* \cap Q_1 \cap Q_2 \cap \cdots \cap Q_l)_M$ for all maximal ideals M of R. Therefore $(x) = (x)^* \cap Q_1 \cap Q_2 \cap \cdots \cap Q_l$ and

254

hence (x) is a finite intersection of primary ideals. This completes the proof of the lemma.

Lemma 13. Suppose R is a quasi-local ring in which the maximal ideal M is finitely generated. If every ideal generated by two elements is a finite product of primary ideals, then R is a Noetherian Q-ring.

Proof. If M is minimal, then we are through. Suppose M is non-minimal. By Lemma 6, it is enough if we show that R satisfies the condition (*). Let P be a non-maximal prime ideal with P = PM. Let $\Psi = \{P_{\alpha} \mid P \subseteq P_{\alpha}, P_{\alpha} \text{ is prime and} P_{\alpha} = P_{\alpha}M\}$. Clearly $\Psi \neq \emptyset$ and by Zorn's lemma, Ψ has a maximal element, say P_0 . Note that $P_0 \neq M$. If $P_0 \subset P_1 \subset M$ for some prime ideal P_1 , then $P_1 \neq P_1M$, so by Lemma 3, P_1 is principal and hence P is contained in a principal ideal. Now assume that M covers P_0 . Choose any $x \in M$ such that $x \notin P_0$. Then $P_0 + (x)$ is M-primary. As M is finitely generated, it follows that $M^k \subseteq P_0 + (x)$ for some positive integer k. Again since $P_0 = P_0M$, it follows that $P_0 \subseteq M^n$ for all positive integers n. Therefore $M^k \subseteq P_0 + (x) \subseteq (x) + M^{k+1} = (x) + M^k M$ and hence by Nakayama's lemma $P_0 \subset M^k \subseteq (x)$. This shows that P is properly contained in (x) and hence R satisfies the condition (*).

Lemma 14. Suppose every finitely generated ideal of R is a finite product of primary ideals. Suppose I is an ideal of R such that I is locally finitely generated and every prime minimal over I is a maximal ideal. Then I is finitely generated.

Proof. We claim that $\theta(I) = R$. Suppose $\theta(I) \neq R$. Then $\theta(I) \subseteq M$ for some maximal ideal M of R. Since I is locally finitely generated, it follows that $I_M = (I_1)_M$ for some finitely generated ideal I_1 contained in I. By hypothesis, there exist primary ideals Q_1, Q_2, \ldots, Q_n such that $I_1 = Q_1 Q_2 \ldots Q_n$. Without loss of generality, assume that $Q_i \subseteq M$ for $i = 1, 2, \ldots, k$ and $Q_j \not\subseteq M$ for j = k + 1, $k + 2, \ldots, n$. Then $I_M = (I_1)_M = (Q_1)_M (Q_2)_M \ldots (Q_k)_M$. Since $I_M \subseteq (Q_i)_M$, it follows that $I \subseteq Q_i$ for $i = 1, 2, \ldots, k$. Since M is minimal over I, it follows that each Q_i is M-primary and hence $Q_1 Q_2 \ldots Q_k$ is M-primary. Therefore $I \subseteq Q_1 Q_2 \ldots Q_k$. Choose elements $x_j \in Q_j$ such that $x_j \notin M$ for $j = k+1, k+2, \ldots, n$. Let $z = x_{k+1}x_{k+2} \ldots x_n$. Since $I \subseteq Q_1 Q_2 \ldots Q_k$ and $z \in Q_{k+1}Q_{k+2} \ldots Q_n$, it follows that $Iz \subseteq Q_1 Q_2 \ldots Q_n = I_1$, so $z \in (I_1 : I) \subseteq \theta(I) \subseteq M$, which is a contradiction. Therefore $\theta(I) = R$ and hence $R = \sum_{i=1}^n (I_i : I)$, where I_i 's are

finitely generated ideals contained in I. So $I = \sum_{i=1}^{n} I_i$. This shows that I is a finitely generated ideal.

Theorem 1. *R* is an almost *Q*-ring if and only if every non-maximal prime ideal is locally principal.

Proof. The result follows from Lemma 6.

Corollary 1. Suppose every principal ideal is a finite product of primary ideals. Then R is an almost Q-ring if and only if every non-maximal prime ideal is a multiplication ideal.

C. JAYARAM

Proof. The proof of the corollary follows from Theorem 1 and Lemma 7. \Box

Corollary 2. Suppose every principal ideal is a finite intersection of primary ideals. Then R is an almost Q-ring if and only if every non-maximal prime ideal is quasi-principal.

Proof. The proof of the corollary follows from Theorem 1 and [4, Theorem 12]. \Box

Theorem 2. The following statements on R are equivalent:

- (i) R is a Q-ring.
- (ii) R is an almost Q-ring in which every ideal generated by two elements is a finite intersection of primary ideals.
- (iii) R is an almost Q-ring in which every ideal generated by two elements is a finite product of primary ideals.
- (iv) Every ideal generated by two elements is a finite product of primary ideals and for every maximal ideal M of R, R_M satisfies the condition (*).
- (v) Every non-maximal prime ideal is a multiplication ideal and every ideal generated by two elements has only finitely many minimal primes.

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (iii) follow from [4, Lemma 4 and Theorem 10].

(ii) \Rightarrow (v) follows from Corollary 2.

 $(iii) \Rightarrow (iv)$ follows from Lemma 1.

 $(iv) \Rightarrow (v)$ follows from Lemma 6 and Corollary 1.

 $(v) \Rightarrow (i)$. Suppose (v) holds. By Lemma 4 and Lemma 6, dim $R \leq 2$. By Lemma 8, R has Noetherian spectrum. Also by Lemma 11, every non-maximal prime ideal is quasi-principal. Therefore by [4, Lemma 1], every primary ideal whose radical is non-maximal is a power of its radical and hence quasi-principal. Consequently, every primary ideal whose radical is non-maximal is finitely generated. Again by [8, Corollary 2.3], R is Laskerian and hence by [4, Theorem 13], R is a Q-ring.

The following theorem gives some new equivalent conditions for Noetherian Q-rings.

Theorem 3. The following statements on R are equivalent:

- (i) R is a Noetherian Q-ring.
- (ii) The maximal ideals are locally finitely generated and every ideal generated by two elements is a finite product of primary ideals.
- (iii) R is an almost Q-ring in which the maximal ideals are finitely generated and every principal ideal is a finite product of primary ideals.

Proof. (i) \Rightarrow (ii) is obvious.

 $(ii) \Rightarrow (iii)$. Suppose (ii) holds. By Lemma 13, R is locally Noetherian and an almost Q-ring. By Theorem 2, R is a Q-ring and so by Lemma 14, the maximal ideals are finitely generated. Therefore (iii) holds.

 $(iii) \Rightarrow (i)$. Suppose (iii) holds. By Corollary 1, Corollary 2 and Lemma 12, R is a Noetherian ring and hence by Theorem 2, R is a Noetherian Q-ring. This completes the proof of the theorem.

256

ALMOST Q-RINGS

References

- Anderson, D. D., Multiplication ideals, Multiplication rings and the ring R(X), Canad. J. Math. XXVIII (1976), 760–768.
- [2] Anderson, D. D., Some remarks on multiplication ideals, Math. Japon. 25 (1980), 463–469.
- [3] Anderson, D. D., Noetherian rings in which every ideal is a product of primary ideals, Canad. Math. Bull. 23 (4), (1980), 457–459.
- [4] Anderson, D. D. and Mahaney, L. A., Commutative rings in which every ideal is a product of primary ideals, J. Algebra 106 (1987), 528–535.
- [5] Anderson, D. D. and Mahaney, L. A., On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141–154.
- [6] Becerra, L. and Johnson, J. A., A note on quasi-principal ideals, Tamkang J. Math. (1982), 77–82.
- [7] Heinzer, W. and Ohm, J., Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273–284.
- [8] Heinzer, W. and Lantz, D., The Laskerian property in commutative rings, J. Algebra 72 (1981), 101–114.
- [9] Larsen, M. D. and McCarthy, P. J., *Multiplicative theory of ideals* Academic Press, New York 1971.
- [10] Levitz, K. B., A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376–380.
- [11] McCarthy, P. J., Principal elements of lattices of ideals, Proc. Amer. Math. Soc. 30 (1971), 43–45.
- [12] Ohm, J. and Pendleton, R. L., Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631–639.

UNIVERSITY OF BOTSWANA, DEPARTMENT OF MATHEMATICS P/ BAG 00704, GABORONE, BOTSWANA *E-mail:* chillumu@mopipi.ub.bw