ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 259 – 261

FINITENESS OF A CLASS OF RABINOWITSCH POLYNOMIALS

JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. We prove that there are only finitely many positive integers m such that there is some integer t such that $|n^2 + n - m|$ is 1 or a prime for all $n \in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark.

In 1913, G. Rabinowitsch [4] proved that for any positive integer m with square-free 4m-1, the class number of $\mathbb{Q}(\sqrt{1-4m})$ is 1 if and only if n^2+n+m is prime for all integers $0 \le n \le m-3$. Recently, D. Byeon and H. M. Stark [1] proved an analogue statement for real quadratic fields. The polynomial $f_m(x) = x^2 + x - m$ is called a Rabinowitsch polynomial, if there is some integer t such that $|f_m(n)|$ is 1 or a prime for all integral $n \in [t+1, t+\sqrt{m}]$. They proved the following theorem:

Theorem 1. 1. If f_m is Rabinowitsch, then one of the following equations hold: $m=1, \ m=2, \ m=p^2$ for some odd prime $p, \ m=t^2+t\pm 1$, or $m=t^2+t\pm \frac{2t+1}{3}$, where $\frac{2t+1}{3}$ is an odd prime.

- 2. If f_m is Rabinowitsch, then $\mathbb{Q}(\sqrt{4m+1})$ has class number 1.
- 3. There are only finitely many m such that 4m + 1 is squarefree and that f_m is Rabinowitsch.

They asked whether the finiteness of m holds without the assumption on 4m+1. It is the aim of this note to show that this is indeed the case.

Theorem 2. There are only finitely many $m \geq 0$ such that f_m is Rabinowitsch.

For the proof write $4m+1=u^2D$ with D squarefree and u a positive integer. We distinguish three cases, namely $D=1,\,1< D< m^{1/12}$ and $D\geq m^{1/12}$, and formulate each as a seperate lemma. The first two cases are solved elementary, while the last one requires a slight extension of the argument in the case 4m+1 squarefree given by Byeon and Stark.

Lemma 1. If f_m is Rabinowitsch and D = 1, then m = 2.

²⁰⁰⁰ Mathematics Subject Classification: 11R11, 11R29.

Key words and phrases: real quadratic fields, class number, Rabinowitsch polynomials. Received July 15, 2002.

Proof. We only deal with the case $m=t^2+t+\frac{2t+1}{3}$, the other cases are similar. Assume that D=1, that is $4t^2+\frac{20t}{3}+\frac{7}{3}=u^2$. We have

$$4t^2 + 4t + 1 < 4t^2 + \frac{20t}{3} + \frac{7}{3} < 4t^2 + 8t + 4$$

that is, 2t + 1 < u < 2t + 2, which is impossible for integral t and u.

Lemma 2. There are only finitely many m such that f_m is Rabinowitsch and $1 < D < m^{1/12}$.

Proof. Let p be the least prime with $p \equiv 1 \pmod{4D}$ and (p,m) = 1. By Linnik's theorem, we have $p < D^C$ for some absolute constant C, moreover, for D sufficiently large we may take C = 5.5, as shown by D. R. Heath-Brown [3]. Hence, there is some constant D_0 such that for $D > D_0$ we have $p < m^{1/2}/6$. By construction of p, in any interval of length p there is some p such that $p = \frac{1+u\sqrt{D}}{2}$ is not coprime to p, i.e. such that $p = \frac{1+u\sqrt{D}}{2}$ is Rabinowitsch, this implies $f_m(n) = \pm p$, since f_m is of degree 2, this cannot happen but for 4 values of $p = \frac{1+u\sqrt{D}}{2}$ is not Rabinowitsch.

Finally we choose a prime number $p_D \equiv 1 \pmod{4D}$ for each $D \leq D_0$, and for $m > 6 \max p_D$ we argue as above.

Lemma 3. There are only finitely many m such that f_m is Rabinowitch and that $D \ge m^{1/12}$.

Proof. We may neglect the case m=2. In each of the other cases, there exists a unit ϵ_m in $\mathbb{Q}(\sqrt{D})$ with $1<|\epsilon_m|\ll m$, more precisely, such a unit is given by

$$m = t^2$$
 : $\epsilon_m = 2t + \sqrt{4m+1}$
 $m = t^2 + t \pm 1$: $\epsilon_m = \frac{2t+1+\sqrt{4m+1}}{2}$
 $m = t^2 + t \pm \frac{2t+1}{3}$: $\epsilon_m = \frac{6t+3\pm 2+3\sqrt{4m+1}}{2}$

Let $\epsilon_D > 1$ be the fundamental unit of $\mathbb{Q}(\sqrt{D})$. Since the group of positive units in $\mathbb{Q}(\sqrt{D})$ is free abelian of rank 1, there is some k such that $\epsilon_m = \epsilon_D^k$, hence we have $\epsilon_D < m$. By the Siegel-Brauer-theorem we have $\log(h(\mathbb{Q}(\sqrt{D}))\log|\epsilon_D|) \sim \log\sqrt{D}$. If f_m is Rabinowitch, then $h(\mathbb{Q}(\sqrt{D})) = 1$, and by assumption we have

$$\log |\epsilon_D| \le \log |\epsilon_m| < \log m \le 12 \log D,$$

hence we obtain the inequality

$$12 \log D > D^{1/2 + o(1)}$$

which can only be true for finitely many D. Since $m \leq D^{12}$, there are only finitely many m, and our claim follows.

Note that Lemma 1 and Lemma 2 are effective, while Lemma 3 depends on a bound for Siegel's zero. However, one can deduce that there is an effective constant m_0 , such that there exists at most one $m > m_0$ such that f_m is Rabinowitsch.

Note added in proof. In the mean time, D. Byeon and H. M. Stark [2] also obtained a proof of Theorem 1, moreover, they determined all Rabinowitsch polynomials up to at most one exception. The same result has also been obtained independently by S. Louboutin.

References

- Byeon, D., Stark, H. M., On the Finiteness of Certain Rabinowitsch Polynomials, J. Number Theory 94 (2002), 177–180.
- [2] Byeon, D., Stark, H. M., On the Finiteness of Certain Rabinowitsch Polynomials. II, J. Number Theory 99 (2003), 219–221.
- [3] Heath-Brown, D. R., Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265–338.
- [4] Rabinowitsch, G., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Mathematik 142 (1913), 153–164.

MATHEMATISCHES INSTITUT ECKERSTR. 1, 79111 FREIBURG, GERMANY E-mail: jcp@arcade.mathematik.uni-freiburg.de