```
ARCHIVUM MATHEMATICUM (BRNO)

\title{
FINITENESS OF A CLASS OF RABINOWITSCH POLYNOMIALS
}

\author{
JAN-CHRISTOPH SCHLAGE-PUCHTA
}

\begin{abstract}
We prove that there are only finitely many positive integers \(m\) such that there is some integer \(t\) such that \(\left|n^{2}+n-m\right|\) is 1 or a prime for all \(n \in[t+1, t+\sqrt{m}]\), thus solving a problem of Byeon and Stark.
\end{abstract}

In 1913, G. Rabinowitsch [4] proved that for any positive integer \(m\) with squarefree \(4 m-1\), the class number of \(\mathbb{Q}(\sqrt{1-4 m})\) is 1 if and only if \(n^{2}+n+m\) is prime for all integers \(0 \leq n \leq m-3\). Recently, D. Byeon and H. M. Stark [1] proved an analogue statement for real quadratic fields. The polynomial \(f_{m}(x)=x^{2}+x-m\) is called a Rabinowitsch polynomial, if there is some integer \(t\) such that \(\left|f_{m}(n)\right|\) is 1 or a prime for all integral \(n \in[t+1, t+\sqrt{m}]\). They proved the following theorem:

Theorem 1. 1. If \(f_{m}\) is Rabinowitsch, then one of the following equations hold: \(m=1, m=2, m=p^{2}\) for some odd prime \(p, m=t^{2}+t \pm 1\), or \(m=\) \(t^{2}+t \pm \frac{2 t+1}{3}\), where \(\frac{2 t+1}{3}\) is an odd prime.
2. If \(f_{m}\) is Rabinowitsch, then \(\mathbb{Q}(\sqrt{4 m+1})\) has class number 1 .
3. There are only finitely many \(m\) such that \(4 m+1\) is squarefree and that \(f_{m}\) is Rabinowitsch.

They asked whether the finiteness of \(m\) holds without the assumption on \(4 m+1\). It is the aim of this note to show that this is indeed the case.

Theorem 2. There are only finitely many \(m \geq 0\) such that \(f_{m}\) is Rabinowitsch.
For the proof write \(4 m+1=u^{2} D\) with \(D\) squarefree and \(u\) a positive integer. We distinguish three cases, namely \(D=1,1<D<m^{1 / 12}\) and \(D \geq m^{1 / 12}\), and formulate each as a seperate lemma. The first two cases are solved elementary, while the last one requires a slight extension of the argument in the case \(4 m+1\) squarefree given by Byeon and Stark.

Lemma 1. If \(f_{m}\) is Rabinowitsch and \(D=1\), then \(m=2\).

\footnotetext{
2000 Mathematics Subject Classification: 11R11, 11R29.
Key words and phrases: real quadratic fields, class number, Rabinowitsch polynomials. Received July 15, 2002.
}

Proof. We only deal with the case \(m=t^{2}+t+\frac{2 t+1}{3}\), the other cases are similar. Assume that \(D=1\), that is \(4 t^{2}+\frac{20 t}{3}+\frac{7}{3}=u^{2}\). We have
\[
4 t^{2}+4 t+1<4 t^{2}+\frac{20 t}{3}+\frac{7}{3}<4 t^{2}+8 t+4
\]
that is, \(2 t+1<u<2 t+2\), which is impossible for integral \(t\) and \(u\).
Lemma 2. There are only finitely many \(m\) such that \(f_{m}\) is Rabinowitsch and \(1<D<m^{1 / 12}\).

Proof. Let \(p\) be the least prime with \(p \equiv 1(\bmod 4 D)\) and \((p, m)=1\). By Linnik's theorem, we have \(p<D^{C}\) for some absolute constant \(C\), moreover, for \(D\) sufficiently large we may take \(C=5.5\), as shown by D. R. Heath-Brown [3]. Hence, there is some constant \(D_{0}\) such that for \(D>D_{0}\) we have \(p<m^{1 / 2} / 6\). By construction of \(p\), in any interval of length \(p\) there is some \(n\) such that \(x-\frac{1+u \sqrt{D}}{2}\) is not coprime to \(p\), i.e. such that \(p\) divides \(n^{2}+n-m\). If \(f_{m}\) is Rabinowitsch, this implies \(f_{m}(n)= \pm p\), since \(f_{m}\) is of degree 2 , this cannot happen but for 4 values of \(n\). However, since \(p<m^{1 / 2} / 6\), in every interval of length \(m^{1 / 2}\), there are at least five such values of \(n\), hence, \(f_{m}\) is not Rabinowitsch.

Finally we choose a prime number \(p_{D} \equiv 1(\bmod 4 D)\) for each \(D \leq D_{0}\), and for \(m>6 \max p_{D}\) we argue as above.
Lemma 3. There are only finitely many \(m\) such that \(f_{m}\) is Rabinowitch and that \(D \geq m^{1 / 12}\).

Proof. We may neglect the case \(m=2\). In each of the other cases, there exists a unit \(\epsilon_{m}\) in \(\mathbb{Q}(\sqrt{D})\) with \(1<\left|\epsilon_{m}\right| \ll m\), more precisely, such a unit is given by
\[
\begin{array}{ll}
m=t^{2} & : \quad \epsilon_{m}=2 t+\sqrt{4 m+1} \\
m=t^{2}+t \pm 1 & : \quad \epsilon_{m}=\frac{2 t+1+\sqrt{4 m+1}}{2} \\
m=t^{2}+t \pm \frac{2 t+1}{3} & : \quad \epsilon_{m}=\frac{6 t+3 \pm 2+3 \sqrt{4 m+1}}{2}
\end{array}
\]

Let \(\epsilon_{D}>1\) be the fundamental unit of \(\mathbb{Q}(\sqrt{D})\). Since the group of positive units in \(\mathbb{Q}(\sqrt{D})\) is free abelian of rank 1 , there is some \(k\) such that \(\epsilon_{m}=\epsilon_{D}^{k}\), hence we have \(\epsilon_{D}<m\). By the Siegel-Brauer-theorem we have \(\log \left(h(\mathbb{Q}(\sqrt{D})) \log \left|\epsilon_{D}\right|\right) \sim \log \sqrt{D}\). If \(f_{m}\) is Rabinowitch, then \(h(\mathbb{Q}(\sqrt{D}))=1\), and by assumption we have
\[
\log \left|\epsilon_{D}\right| \leq \log \left|\epsilon_{m}\right|<\log m \leq 12 \log D
\]
hence we obtain the inequality
\[
12 \log D>D^{1 / 2+o(1)}
\]
which can only be true for finitely many \(D\). Since \(m \leq D^{12}\), there are only finitely many \(m\), and our claim follows.

Note that Lemma 1 and Lemma 2 are effective, while Lemma 3 depends on a bound for Siegel's zero. However, one can deduce that there is an effective constant \(m_{0}\), such that there exists at most one \(m>m_{0}\) such that \(f_{m}\) is Rabinowitsch.

Note added in proof. In the mean time, D. Byeon and H. M. Stark [2] also obtained a proof of Theorem 1, moreover, they determined all Rabinowitsch polynomials up to at most one exception. The same result has also been obtained independently by S. Louboutin.

\section*{References}
[1] Byeon, D., Stark, H. M., On the Finiteness of Certain Rabinowitsch Polynomials, J. Number Theory 94 (2002), 177-180.
[2] Byeon, D., Stark, H. M., On the Finiteness of Certain Rabinowitsch Polynomials. II, J. Number Theory 99 (2003), 219-221.
[3] Heath-Brown, D. R., Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265-338.
[4] Rabinowitsch, G., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Mathematik 142 (1913), 153-164.

Mathematisches Institut
Eckerstr. 1, 79111 Freiburg, Germany
E-mail: jcp@arcade.mathematik.uni-freiburg.de```

