ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 273 – 279

A FUZZY VERSION OF TARSKI'S FIXPOINT THEOREM

ABDELKADER STOUTI

ABSTRACT. A fuzzy version of Tarski's fixpoint Theorem for fuzzy monotone maps on nonempty fuzzy compete lattice is given.

1. INTRODUCTION

Let X be a nonempty set. A fuzzy set in X is a function of X in [0, 1]. Fuzzy set theory is a powerful tool for modelling uncertainty and for processing vague or subjective information in mathematical models. In [9], Zadeh introduced the notion of fuzzy order and similarity. Recently, several authors studied the existence of fixed point in fuzzy setting, Heilpern [7], Hadzic [6], Fang [5] and Beg [1, 2, 3]. In fuzzy ordered sets, I. Beg [1] proved the existence of maximal fixed point of fuzzy monotone maps. The aim of this note is to give the following fuzzy version of Tarski's fixpoint Theorem [8]: suppose that (X, r) is a nonempty r-fuzzy complete lattice and $f : X \to X$ is a r-fuzzy monotone map. Then the set Fix(f) of all fixed points of f is a nonempty r-fuzzy complete lattice.

2. Preliminaries

In this note we shall use the following definition of order due to Claude Ponsard (see [4]).

Definition 2.1. Let X be a crisp set. A fuzzy order relation on X is a fuzzy subset R of $X \times X$ satisfying the following three properties

(i) for all $x \in X$, $r(x, x) \in [0, 1]$ (f-reflexivity);

(ii) for all $x, y \in X$, r(x, y) + r(y, x) > 1 implies x = y (f-antisymmetry);

(iii) for all $(x, y, z) \in X^3$, $[r(x, y) \ge r(y, x)$ and $r(y, z) \ge r(z, y)]$ implies $r(x, z) \ge r(z, x)$ (f-transitivity).

A nonempty set X with fuzzy order r defined on it, is called r-fuzzy ordered set. We denote it by (X, r). A r-fuzzy order is said to be total if for all $x \neq y$ we

²⁰⁰⁰ Mathematics Subject Classification: 03E72, 06B23, 47H10.

 $Key\ words\ and\ phrases:$ fuzzy set, fuzzy order relation, complete lattices, monotone map, fixed point.

Received August 2, 2002.

have either r(x, y) > r(y, x) or r(y, x) > r(x, y). A r-fuzzy ordered set on which the r-fuzzy order is total is called r-fuzzy chain.

Let A be a nonempty subset of X. We say that $x \in X$ is a r-upper bound of A if $r(y,x) \ge r(x,y)$ for all $y \in A$. A r-upper bound x of A with $x \in A$ is called a greatest element of A. An $x \in A$ is called a maximal element of A if there is no $y \ne x$ in A for which $r(x,y) \ge r(y,x)$. Similarly, we can define r-lower bound, minimal and least element of A. As usual, $\sup_r(A)$ = the unique least element of r-upper bound of A (if it exists),

 $\max_r(A) =$ the unique greatest element of A (if it exists),

 $\inf_r(A)$ = the unique greatest element of *r*-lower bound of *A* (if it exists), $\min_r(A)$ = the unique least element of *A* (if it exists).

Definition 2.2. Let (X, r) be a nonempty *r*-fuzzy ordered set. The inverse fuzzy relation *s* of *r* is defined by s(x, y) = r(y, x), for all $x, y \in X$.

Definition 2.3. Let (X, r) be a nonempty *r*-fuzzy ordered set. We say that (X, r) is a *r*-fuzzy complete lattice if every nonempty subset of X has a *r*-infimum and a *r*-supremum.

Let X be a r-fuzzy ordered set and let $f : X \to X$ be a map. We say that f is r-fuzzy monotone if for all $x, y \in X$ with $r(x, y) \ge r(y, x)$, then $r(f(x), f(y)) \ge r(f(y), f(x))$.

We denote the set of all fixed points of f by Fix(f).

3. The results

In this section, we establish a fuzzy version of Tarski's fixpoint Theorem [8]. More precisely, we show the following:

Theorem 3.1. Let (X, r) be a nonempty r-fuzzy complete lattice and let $f : X \to X$ be a r-fuzzy monotone map. Then the set Fix(f) of all fixed points of f is a nonempty r-fuzzy complete lattice.

In this section, we shall we need the three following technical lemmas which their proofs will be given in the Appendix.

Lemma 3.2. Let X be a nonempty r-fuzzy ordered set and let E be a nonempty fuzzy ordered subset of X. If $\sup_r(E) = s$, then we have

$$\{x \in X : r(s, x) = r(x, s)\} = \{s\}.$$

Lemma 3.3. Let (X, r) be a nonempty r-fuzzy ordered set and let s be the inverse fuzzy relation of r. Then,

- (i) The fuzzy relation s is a fuzzy order on X.
- (ii) Every r-fuzzy monotone map $f: X \to X$ is also s-fuzzy monotone.
- (iii) If a nonempty subset A of X has a r-infimum, then A has a s-supremum and $\inf_r(A) = \sup_s(A)$.
- (iv) If a nonempty subset A of X has a r-supremum, then A has a s-infimum and $\inf_s(A) = \sup_r(A)$.

274

(v) If (X, r) is a fuzzy complete lattice, then (X, s) is also a fuzzy complete lattice.

For starting the third Lemma, we have to introduce the following subset E of X by $x \in E$ if and only if $r(x, f(x)) \ge r(f(x), x)$ and $r(f(x), y) \ge r(y, f(x))$ for all $y \in A$, where A is a subset of Fix(f).

Lemma 3.4. Let (X, r) be a nonempty r-fuzzy complete lattice and let $f : X \to X$ be a r-fuzzy monotone map. Let us suppose that E is defined as above and $t = \sup_r(E)$. Then t is a fixed point of f.

In order to prove Theorem 3.1, we need the following proposition:

Proposition 3.5. Let (X,r) be a nonempty r-fuzzy complete lattice and let $f : X \to X$ be a r-fuzzy monotone map. Then f has a greatest and least fixed points. Furthermore,

$$\max_{x}(\operatorname{Fix}(f)) = \sup \left\{ x \in X : r(x, f(x)) \ge r(f(x), x) \right\} ,$$

and

$$\min_{r}(\operatorname{Fix}(f)) = \inf_{r} \{ x \in X : r(f(x), x) \ge r(x, f(x)) \} .$$

Proof of Proposition 3.2. Let *D* be the fuzzy ordered subset defined by

$$D = \{x \in X : r(x, f(x)) \ge r(f(x), x)\}.$$

Since $\min_r(X) \in D$, so D is nonempty. Let d be the r-supremum of D. Claim 1. The element d is the greatest fixed point of f. Indeed, as $d = \sup_r(D)$, then $r(x, d) \ge r(d, x)$ for all $x \in D$. Since f is r-fuzzy monotone, so $r(f(x), f(d)) \ge$ r(f(d), f(x)), for all $x \in D$. We know that $r(x, f(x)) \ge r(f(x), x)$, for every $x \in D$. Then by fuzzy transitivity, we obtain $r(x, f(d)) \ge r(f(d), x)$, for all $x \in D$. Thus, f(d) is a r-upper bound of D. On the other hand, d is the least r-upper bound of D. So,

(3.1)
$$r(d, f(d)) \ge r(f(d), d)$$
.

From this and fuzzy monotonicity of f, we get

(3.2)
$$r(f(d), f(f(d))) \ge r(f(f(d)), f(d)).$$

Hence, we get $f(d) \in D$. From this and as $d = \sup_r(D)$, then

$$(3.3) r(f(d),d) \ge r(d,f(d))$$

By combining (3.1) and (3.3), we get r(d, f(d)) = r(f(d), d). From Lemma 3.2, we conclude that we have f(d) = d. Now let $x \in Fix(f)$. Then $x \in D$. So $Fix(f) \subset D$. From this and as d is the r-supremum of D, then we deduce that d is a r-upper bound of Fix(f). Since $d \in Fix(f)$. Therefore d is the greatest element of Fix(f). Claim 2. The map f has a least fixed point. Let s be the fuzzy inverse order relation of r and let B be the following ordered subset of X defined by

$$B = \{ x \in X : r(f(x), x) \ge r(x, f(x)) \} .$$

A. STOUTI

Since $\min_r(X) \in B$, then $B \neq \emptyset$. On the other hand, by the definition of inverse fuzzy relation, we have

$$B = \{x \in X : s(x, f(x)) \ge s(f(x), x)\}.$$

By hypothesis, (X, r) is a nonempty fuzzy complete lattice, then from Lemma 3.3, (X, s) is also a nonempty fuzzy complete lattice. Furthermore, f is s-fuzzy monotone. Then by Claim 1, f has a greatest fixed point l in (X, s) with

$$l = \sup \left\{ x \in X : s(x, f(x)) \ge s(f(x), x) \right\}$$

Thus l is a least fixed point of f in (X, r). By Lemma 3.3, we get

$$l = \inf_{x \in X} \{ x \in X : r(f(x), x) \ge r(x, f(x)) \} .$$

Now we are able to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Let X be a nonempty r-fuzzy complete lattice and $f: X \to X$ be a r-fuzzy monotone map.

First Step. We shall prove that every nonempty subset A of Fix(f) has a r-infimum in (Fix(f), r). Let E and F be the two following subsets of X defined by $x \in E$ if and only if

$$r(x, f(x)) \ge r(f(x), x)$$
 and $r(f(x), y) \ge r(y, f(x))$

for all $y \in A$, and

$$F = \{ x \in \operatorname{Fix}(f) : r(x, y) \ge r(y, x) \text{ for all } y \in A \}.$$

By Proposition 2.5, $\min_r(\operatorname{Fix}(f))$ exists in (X, r). Since $\min_r(\operatorname{Fix}(f)) \in F$, then $F \neq \emptyset$. Let $m = \sup_r(F)$ and $t = \sup_r(E)$. We claim that the element m is the r-infimum of A in $(\operatorname{Fix}(f), r)$. Indeed, Since $F \subset E$, then $r(\sup_r(F), \sup_r(E)) \ge r(\sup_r(E), \sup_r(F))$. Thus $r(m, t) \ge r(t, m)$. On the other hand $t \in F$, hence $r(t, m) \ge r(t, m)$. It follows that we have r(t, m) = r(m, t). From Lemma 3.2, we get m = t. By Lemma 3.4, t is a fixed point of f. Therefore A has a r-infimum in $\operatorname{Fix}(f)$.

Second Step. We shall prove that every nonempty subset A of Fix(f) has a r-supremum in (Fix(f), r). Let G be the following ordered subset of X defined by $x \in G$ if and only if

$$r(y, f(x)) \ge r(f(x), y)$$

for all $y \in A$, and

$$r(f(x), x) \ge r(x, f(x)).$$

By Proposition 3.5, $\max_r(\operatorname{Fix}(f))$ exists in (X, r). As $\max_r(\operatorname{Fix}(f)) \in G$, then $G \neq \emptyset$ and $p = \inf_r(G)$ exists in (X, r). Let s be the fuzzy inverse order relation of r. Then we get, $x \in G$ if and only if

$$s(f(x), y) \ge s(y, f(x))$$

276

for all $y \in A$ and

$$s(x, f(x)) \ge s(f(x), x).$$

We know by Lemma 3.3 that (X, s) is a nonempty fuzzy complete lattice. Moreover, f is s-fuzzy monotone and $p = \sup_s(G)$. From Lemma 3.4, we get f(p) = p. On the other hand, by the first step above, p is the s-supremum of A. Therefore, we deduce by Lemma 3.3 that the element p is the r-infimum of A in (Fix(f), r).

4. Appendix

In this section, we give the proofs of Lemmas 3.2, 3.3 and 3.4.

Proof of Lemma 3.2. Let $s = \sup_r(E)$ and let $x \in X$ such that r(s, x) = r(x, s). Claim 1. The element x is a r-upper bound of E. Indeed, if $a \in E$, then $r(a, s) \ge r(s, a)$. Since r(s, x) = r(x, s), then by fuzzy transitivity we get $r(a, s) \ge r(s, a)$ for all $a \in E$ and our claim is proved.

Claim 2. The element x is a least r-upper bound of E. Indeed, if b is a r-upper bound of E, then $r(s,b) \ge r(b,s)$. As r(s,x) = r(x,s), then $r(x,b) \ge r(b,x)$. It follows that x is a least r-upper bound of E. Hence x is a r-supremum of E.

By Claims 1 and 2, we deduce that the element x is a r-supremum of A. From hypothesis, the r-supremum of A is unique, therefore x = s.

Proof of Lemma 3.3. (i) For all $x \in X$, we have $s(x,x) = r(x,x) \in [0,1]$. Let $x, y \in X$ such that s(x,y)+s(y,x) > 1. Since r(x,y)+r(y,x) = s(x,y)+s(y,x) > 1, so r(x,y) + r(y,x) > 1. By *r*-fuzzy antisymmetry, we deduce that we have x = y. Let $x, y, z \in X$ with $s(x,y) \ge s(y,x)$ and $s(y,z) \ge s(z,y)$. Then we have $r(z,y) \ge r(y,z)$ and $r(y,x) \ge r(x,y)$. By *r*-fuzzy transitivity, we obtain $r(z,x) \ge r(x,z)$. Therefore we get $s(x,z) \ge s(z,x)$. Thus the fuzzy relation *s* is a fuzzy order on *X*.

(ii) Let $x, y \in X$ with $s(x, y) \ge s(y, x)$. Then we get $r(y, x) \ge r(x, y)$. Since f is r-fuzzy monotone, hence $r(f(y), f(x)) \ge r(f(x), f(y))$. Therefore $s(f(x), f(y)) \ge s(f(y), f(x))$. Thus the map f is s-fuzzy monotone.

(iii) Let $m = \sup_r(A)$. Then $r(x,m) \ge r(m,x)$, for all $x \in A$. So $s(m,x) \ge s(x,m)$, for all $x \in A$. Thus m is a s-lower bound of A. Now let t be another s-lower bound of A. Hence $s(t,x) \ge s(x,t)$, for all $x \in A$. Then $r(x,t) \ge r(t,x)$. Thus t is a r-upper bound of A. From this and as $m = \sup_r(A)$, we deduce that we have $r(m,t) \ge r(t,m)$. So $s(t,m) \ge s(m,t)$. Thus m is a greatest s-lower bound of A. Suppose that p is another greatest s-lower bound of A. By using a similar proof as above we deduce that p is a least r-upper bound of A. By hypothesis, the r-supremum of A is unique. Therefore, we conclude that p = m. Thus $m = \inf_s(A)$.

(iv) Since s is the inverse fuzzy relation of r, then r is the inverse fuzzy relation of s. By (iii), we get $\inf_{s}(A) = \sup_{r}(A)$.

A. STOUTI

(v) Let A be a nonempty set in X. Then A has a r-infimum and a r-supremum. From (iii) and (iv), we deduce that A has a s-infimum and a s-supremum. Thus (X, s) is a nonempty fuzzy complete lattice.

Proof of Lemma 3.4. Let *E* be the subset of *X* defined by $x \in E$ if and only if

$$r(x, f(x)) \ge r(f(x), x)$$
 and $r(f(x), y) \ge r(y, f(x))$

for all $y \in A$.

By Proposition 2.5, $\min_r(\operatorname{Fix}(f))$ exists in (X, r). As $\min_r(\operatorname{Fix}(f)) \in E$, then $E \neq \emptyset$ and $t = \sup_r(E)$ exists in X. We claim that we have: t = f(t). Indeed, since for all $x \in E$, we have $r(x, t) \ge r(t, x)$ and as f is r-fuzzy monotone, then

(4.1)
$$r(f(x), f(t)) \ge r(f(t), f(x)), \quad \text{for all} \quad x \in E.$$

By definition, we have

(4.2)
$$r(x, f(x)) \ge r(f(x), x), \quad \text{for all} \quad x \in E.$$

From (4.1) and (4.2) and fuzzy-transitivity, we get $r(x, f(t)) \ge r(f(t), x)$ for all $x \in E$. Thus f(t) is a *r*-upper bound of *E*. From this and as $t = \sup_r(E)$ so

(4.3)
$$r(t, f(t)) \ge r(t, f(t))$$
.

From (4.3) and fuzzy monotonicity of f, we obtain

(4.4)
$$r(f(t), f(f(t))) \ge r(f(f(t)), f(t)).$$

Now let $y \in A$. Then for all $x \in E$, we have $r(f(x), y) \ge r(y, f(x))$. By using (4.2) and r-fuzzy transitivity, we obtain $r(x, y) \ge r(y, x)$ for all $x \in E$. Thus every element of A is a r-upper bound of E. Since t is the least r-upper bound of E, then we get $r(t, y) \ge r(y, t)$, for all $y \in A$. Then by fuzzy monotonicity of f, we deduce that we have

(4.5)
$$r(f(t), y) \ge r(y, t)$$
, for all $y \in A$.

Combining (4.4) and (4.5) we get $f(t) \in E$. On the other hand the element t is the r-supremum of E, then we deduce that we have

(4.6)
$$r(f(t), t) \ge r(t, f(t))$$
.

By using (4.3) and (4.6) we deduce that we have r(f(t), t) = r(t, f(t)). Therefore by Lemma 3.2, we conclude that we have f(t) = t.

References

- [1] Beg, I., Fixed points of fuzzy monotone maps, Arch. Math. (Brno) 35 (1999), 141-144.
- Beg, I., Fixed points of fuzzy multivalued mappings with values in fuzzy orders sets, J. Fuzzy Math. 6(1) (1998), 127–131.
- Beg, I., Fixed points of expansive mapping on fuzzy preordered sets, J. Fuzzy Math. 7(2) (1999), 746–749.
- Billot, A., Economic theory of fuzzy equilibria, Lecture Notes in Econom. and Math. Systems 373, Springer-Verlag, Berlin 1992.

278

- [5] Fang, J. X., On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107–113.
- [6] Hadzic, O., Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces, Fuzzy Sets and Systems 29 (1989), 115–125.
- [7] Heilpern, S., Fuzzy mapping and fixed point theorem, J. Math. Anal. Appl. 83 (1981), 566– 569.
- [8] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955), 285–309.
- [9] Zadeh, L. A., Fuzzy sets, Inform. and Control 8 (1965), 338-353.

UNIVERSITÉ CADI AYYAD, DÉPARTEMENT DE MATHÉMATIQUES FACULTÉ DES SCIENCES ET TECHNIQUES B. P. 523, BENI - MELLAL, MOROCCO *E-mail:* stouti@yahoo.com