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A FUZZY VERSION OF TARSKI’S FIXPOINT THEOREM

ABDELKADER STOUTI

Abstract. A fuzzy version of Tarski’s fixpoint Theorem for fuzzy monotone
maps on nonempty fuzzy compete lattice is given.

1. Introduction

Let X be a nonempty set. A fuzzy set in X is a function of X in [0, 1]. Fuzzy
set theory is a powerful tool for modelling uncertainty and for processing vague
or subjective information in mathematical models. In [9], Zadeh introduced the
notion of fuzzy order and similarity. Recently, several authors studied the existence
of fixed point in fuzzy setting, Heilpern [7], Hadzic [6], Fang [5] and Beg [1, 2, 3]. In
fuzzy ordered sets, I. Beg [1] proved the existence of maximal fixed point of fuzzy
monotone maps. The aim of this note is to give the following fuzzy version of
Tarski’s fixpoint Theorem [8]: suppose that (X, r) is a nonempty r-fuzzy complete
lattice and f : X → X is a r-fuzzy monotone map. Then the set Fix(f) of all
fixed points of f is a nonempty r-fuzzy complete lattice.

2. Preliminaries

In this note we shall use the following definition of order due to Claude Ponsard
(see [4]).

Definition 2.1. Let X be a crisp set. A fuzzy order relation on X is a fuzzy
subset R of X × X satisfying the following three properties

(i) for all x ∈ X , r(x, x) ∈ [0, 1] (f-reflexivity);
(ii) for all x, y ∈ X, r(x, y) + r(y, x) > 1 implies x = y (f-antisymmetry);
(iii) for all (x, y, z) ∈ X3, [r(x, y) ≥ r(y, x) and r(y, z) ≥ r(z, y)] implies r(x, z) ≥

r(z, x) (f-transitivity).

A nonempty set X with fuzzy order r defined on it, is called r-fuzzy ordered
set. We denote it by (X, r). A r-fuzzy order is said to be total if for all x 6= y we
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have either r(x, y) > r(y, x) or r(y, x) > r(x, y). A r-fuzzy ordered set on which
the r-fuzzy order is total is called r-fuzzy chain.

Let A be a nonempty subset of X. We say that x ∈ X is a r-upper bound of
A if r(y, x) ≥ r(x, y) for all y ∈ A. A r-upper bound x of A with x ∈ A is called
a greatest element of A. An x ∈ A is called a maximal element of A if there is
no y 6= x in A for which r(x, y) ≥ r(y, x). Similarly, we can define r-lower bound,
minimal and least element of A. As usual, sup

r
(A)= the unique least element of

r-upper bound of A (if it exists),
maxr(A)= the unique greatest element of A (if it exists),
infr(A)= the unique greatest element of r-lower bound of A (if it exists),
minr(A)= the unique least element of A (if it exists).

Definition 2.2. Let (X, r) be a nonempty r-fuzzy ordered set. The inverse fuzzy
relation s of r is defined by s(x, y) = r(y, x), for all x, y ∈ X .

Definition 2.3. Let (X, r) be a nonempty r-fuzzy ordered set. We say that (X, r)
is a r-fuzzy complete lattice if every nonempty subset of X has a r-infimum and
a r-supremum.

Let X be a r-fuzzy ordered set and let f : X → X be a map. We say that f

is r-fuzzy monotone if for all x, y ∈ X with r(x, y) ≥ r(y, x), then r(f(x), f(y)) ≥
r(f(y), f(x)).

We denote the set of all fixed points of f by Fix(f).

3. The results

In this section, we establish a fuzzy version of Tarski’s fixpoint Theorem [8].
More precisely, we show the following:

Theorem 3.1. Let (X, r) be a nonempty r-fuzzy complete lattice and let f : X →
X be a r-fuzzy monotone map. Then the set Fix(f) of all fixed points of f is a

nonempty r-fuzzy complete lattice.

In this section, we shall we need the three following technical lemmas which
their proofs will be given in the Appendix.

Lemma 3.2. Let X be a nonempty r-fuzzy ordered set and let E be a nonempty

fuzzy ordered subset of X. If sup
r
(E) = s, then we have

{x ∈ X : r(s, x) = r(x, s)} = {s} .

Lemma 3.3. Let (X, r) be a nonempty r-fuzzy ordered set and let s be the inverse

fuzzy relation of r. Then,

(i) The fuzzy relation s is a fuzzy order on X.

(ii) Every r-fuzzy monotone map f : X → X is also s-fuzzy monotone.

(iii) If a nonempty subset A of X has a r-infimum, then A has a s-supremum

and infr(A) = sup
s
(A).

(iv) If a nonempty subset A of X has a r-supremum, then A has a s-infimum

and infs(A) = sup
r
(A).
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(v) If (X, r) is a fuzzy complete lattice, then (X, s) is also a fuzzy complete

lattice.

For starting the third Lemma, we have to introduce the following subset E of
X by x ∈ E if and only if r(x, f(x)) ≥ r(f(x), x) and r(f(x), y) ≥ r(y, f(x)) for
all y ∈ A, where A is a subset of Fix(f).

Lemma 3.4. Let (X, r) be a nonempty r-fuzzy complete lattice and let f : X →
X be a r-fuzzy monotone map. Let us suppose that E is defined as above and

t = sup
r
(E). Then t is a fixed point of f .

In order to prove Theorem 3.1, we need the following proposition:

Proposition 3.5. Let (X, r) be a nonempty r-fuzzy complete lattice and let f :
X → X be a r-fuzzy monotone map. Then f has a greatest and least fixed points.

Furthermore,

max
r

(Fix(f)) = sup
r

{x ∈ X : r(x, f(x)) ≥ r(f(x), x)} ,

and

min
r

(Fix(f)) = inf
r

{x ∈ X : r(f(x), x) ≥ r(x, f(x))} .

Proof of Proposition 3.2. Let D be the fuzzy ordered subset defined by

D = {x ∈ X : r(x, f(x)) ≥ r(f(x), x)} .

Since minr(X) ∈ D, so D is nonempty. Let d be the r-supremum of D.
Claim 1. The element d is the greatest fixed point of f . Indeed, as d = sup

r
(D),

then r(x, d) ≥ r(d, x) for all x ∈ D. Since f is r-fuzzy monotone, so r(f(x), f(d)) ≥
r(f(d), f(x)), for all x ∈ D. We know that r(x, f(x)) ≥ r(f(x), x), for every x ∈ D.
Then by fuzzy transitivity, we obtain r(x, f(d)) ≥ r(f(d), x), for all x ∈ D. Thus,
f(d) is a r-upper bound of D. On the other hand, d is the least r-upper bound of
D. So,

(3.1) r(d, f(d)) ≥ r(f(d), d) .

From this and fuzzy monotonicity of f , we get

(3.2) r(f(d), f(f(d))) ≥ r(f(f(d)), f(d)) .

Hence, we get f(d) ∈ D. From this and as d = sup
r
(D), then

(3.3) r(f(d), d) ≥ r(d, f(d)) .

By combining (3.1) and (3.3), we get r(d, f(d)) = r(f(d), d). From Lemma 3.2, we
conclude that we have f(d) = d. Now let x ∈ Fix(f). Then x ∈ D. So Fix(f) ⊂ D.
From this and as d is the r-supremum of D, then we deduce that d is a r-upper
bound of Fix(f). Since d ∈ Fix(f). Therefore d is the greatest element of Fix(f).
Claim 2. The map f has a least fixed point. Let s be the fuzzy inverse order
relation of r and let B be the following ordered subset of X defined by

B = {x ∈ X : r(f(x), x) ≥ r(x, f(x))} .
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Since minr(X) ∈ B, then B 6= ∅. On the other hand, by the definition of inverse
fuzzy relation, we have

B = {x ∈ X : s(x, f(x)) ≥ s(f(x), x)} .

By hypothesis, (X, r) is a nonempty fuzzy complete lattice, then from Lemma
3.3, (X, s) ia also a nonempty fuzzy complete lattice. Furthermore, f is s-fuzzy
monotone. Then by Claim 1, f has a greatest fixed point l in (X, s) with

l = sup
s

{x ∈ X : s(x, f(x)) ≥ s(f(x), x)} .

Thus l is a least fixed point of f in (X, r). By Lemma 3.3, we get

l = inf
r

{x ∈ X : r(f(x), x) ≥ r(x, f(x))} .

Now we are able to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Let X be a nonempty r-fuzzy complete lattice and
f : X → X be a r-fuzzy monotone map.

First Step. We shall prove that every nonempty subset A of Fix(f) has a r-infimum
in (Fix(f), r). Let E and F be the two following subsets of X defined by x ∈ E if
and only if

r(x, f(x)) ≥ r(f(x), x) and r(f(x), y) ≥ r(y, f(x))

for all y ∈ A, and

F = {x ∈ Fix(f) : r(x, y) ≥ r(y, x) for all y ∈ A} .

By Proposition 2.5, minr(Fix(f)) exists in (X, r). Since minr(Fix(f)) ∈ F , then
F 6= ∅. Let m = sup

r
(F ) and t = sup

r
(E). We claim that the element m is the

r-infimum of A in (Fix(f), r). Indeed, Since F ⊂ E, then r(sup
r
(F ), sup

r
(E)) ≥

r(sup
r
(E), sup

r
(F )). Thus r(m, t) ≥ r(t, m). On the other hand t ∈ F , hence

r(t, m) ≥ r(t, m). It follows that we have r(t, m) = r(m, t). From Lemma 3.2, we
get m = t. By Lemma 3.4, t is a fixed point of f . Therefore A has a r-infimum in
Fix(f).

Second Step. We shall prove that every nonempty subset A of Fix(f) has a r-
supremum in (Fix(f), r). Let G be the following ordered subset of X defined by
x ∈ G if and only if

r(y, f(x)) ≥ r(f(x), y)

for all y ∈ A, and

r(f(x), x) ≥ r(x, f(x)) .

By Proposition 3.5, maxr(Fix(f)) exists in (X, r). As maxr(Fix(f)) ∈ G, then
G 6= ∅ and p = infr(G) exists in (X, r). Let s be the fuzzy inverse order relation
of r. Then we get, x ∈ G if and only if

s(f(x), y) ≥ s(y, f(x))
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for all y ∈ A and

s(x, f(x)) ≥ s(f(x), x) .

We know by Lemma 3.3 that (X, s) is a nonempty fuzzy complete lattice. More-
over, f is s-fuzzy monotone and p = sup

s
(G). From Lemma 3.4, we get f(p) = p.

On the other hand, by the first step above, p is the s-supremum of A. Therefore, we
deduce by Lemma 3.3 that the element p is the r-infimum of A in (Fix(f), r).

4. Appendix

In this section, we give the proofs of Lemmas 3.2, 3.3 and 3.4.

Proof of Lemma 3.2. Let s = sup
r
(E) and let x ∈ X such that r(s, x) = r(x, s).

Claim 1. The element x is a r-upper bound of E. Indeed, if a ∈ E, then r(a, s) ≥
r(s, a). Since r(s, x) = r(x, s), then by fuzzy transitivity we get r(a, s) ≥ r(s, a)
for all a ∈ E and our claim is proved.

Claim 2. The element x is a least r-upper bound of E. Indeed, if b is a r-upper
bound of E, then r(s, b) ≥ r(b, s). As r(s, x) = r(x, s), then r(x, b) ≥ r(b, x). It
follows that x is a least r-upper bound of E. Hence x is a r-supremum of E.

By Claims 1 and 2, we deduce that the element x is a r-supremum of A. From
hypothesis, the r-supremum of A is unique, therefore x = s.

Proof of Lemma 3.3. (i) For all x ∈ X , we have s(x, x) = r(x, x) ∈ [0, 1]. Let
x, y ∈ X such that s(x, y)+s(y, x) > 1. Since r(x, y)+r(y, x) = s(x, y)+s(y, x) >

1, so r(x, y) + r(y, x) > 1. By r-fuzzy antisymmetry, we deduce that we have
x = y. Let x, y, z ∈ X with s(x, y) ≥ s(y, x) and s(y, z) ≥ s(z, y). Then we
have r(z, y) ≥ r(y, z) and r(y, x) ≥ r(x, y). By r-fuzzy transitivity, we obtain
r(z, x) ≥ r(x, z). Therefore we get s(x, z) ≥ s(z, x). Thus the fuzzy relation s is a
fuzzy order on X .

(ii) Let x, y ∈ X with s(x, y) ≥ s(y, x). Then we get r(y, x) ≥ r(x, y). Since f is
r-fuzzy monotone, hence r(f(y), f(x)) ≥ r(f(x), f(y)). Therefore s(f(x), f(y)) ≥
s(f(y), f(x)). Thus the map f is s-fuzzy monotone.

(iii) Let m = sup
r
(A). Then r(x, m) ≥ r(m, x), for all x ∈ A. So s(m, x) ≥

s(x, m), for all x ∈ A. Thus m is a s-lower bound of A. Now let t be another
s-lower bound of A. Hence s(t, x) ≥ s(x, t), for all x ∈ A. Then r(x, t) ≥ r(t, x).
Thus t is a r-upper bound of A. From this and as m = sup

r
(A), we deduce that

we have r(m, t) ≥ r(t, m). So s(t, m) ≥ s(m, t). Thus m is a greatest s-lower
bound of A. Suppose that p is another greatest s-lower bound of A. By using
a simlar proof as above we deduce that p is a least r-upper bound of A. By
hypothesis, the r-supremum of A is unique. Therefore, we conclude that p = m.
Thus m = infs(A).

(iv) Since s is the inverse fuzzy relation of r, then r is the inverse fuzzy relation
of s. By (iii), we get infs(A) = sup

r
(A).
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(v) Let A be a nonempty set in X . Then A has a r-infimum and a r-supremum.
From (iii) and (iv), we deduce that A has a s-infimum and a s-supremum. Thus
(X, s) is a nonempty fuzzy complete lattice.

Proof of Lemma 3.4. Let E be the subset of X defined by x ∈ E if and only if

r(x, f(x)) ≥ r(f(x), x) and r(f(x), y) ≥ r(y, f(x))

for all y ∈ A.

By Proposition 2.5, minr(Fix(f)) exists in (X, r). As minr(Fix(f)) ∈ E, then
E 6= ∅ and t = sup

r
(E) exists in X . We claim that we have: t = f(t). Indeed,

since for all x ∈ E, we have r(x, t) ≥ r(t, x) and as f is r-fuzzy monotone, then

(4.1) r(f(x), f(t)) ≥ r(f(t), f(x)) , for all x ∈ E .

By definition, we have

(4.2) r(x, f(x)) ≥ r(f(x), x) , for all x ∈ E .

From (4.1) and (4.2) and fuzzy-transitivity, we get r(x, f(t)) ≥ r(f(t), x) for all
x ∈ E. Thus f(t) is a r-upper bound of E. From this and as t = sup

r
(E) so

(4.3) r(t, f(t)) ≥ r(t, f(t)) .

From (4.3) and fuzzy monotonicity of f , we obtain

(4.4) r(f(t), f(f(t))) ≥ r(f(f(t)), f(t)) .

Now let y ∈ A. Then for all x ∈ E, we have r(f(x), y) ≥ r(y, f(x)). By using
(4.2) and r-fuzzy transitivity, we obtain r(x, y) ≥ r(y, x) for all x ∈ E. Thus every
element of A is a r-upper bound of E. Since t is the least r-upper bound of E,
then we get r(t, y) ≥ r(y, t), for all y ∈ A. Then by fuzzy monotonicity of f , we
deduce that we have

(4.5) r(f(t), y) ≥ r(y, t) , for all y ∈ A .

Combining (4.4) and (4.5) we get f(t) ∈ E. On the other hand the element t is
the r-supremum of E, then we deduce that we have

(4.6) r(f(t), t) ≥ r(t, f(t)) .

By using (4.3) and (4.6) we deduce that we have r(f(t), t) = r(t, f(t)). Therefore
by Lemma 3.2, we conclude that we have f(t) = t.
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