(σ, τ)-DERIVATIONS ON PRIME NEAR RINGS

MOHAMMAD ASHRAF, ASMA ALI AND SHAKIR ALI

Abstract

There is an increasing body of evidence that prime near-rings with derivations have ring like behavior, indeed, there are several results (see for example [1], [2], [3], [4], [5] and [8]) asserting that the existence of a suitably-constrained derivation on a prime near-ring forces the near-ring to be a ring. It is our purpose to explore further this ring like behaviour. In this paper we generalize some of the results due to Bell and Mason [4] on near-rings admitting a special type of derivation namely (σ, τ) - derivation where σ, τ are automorphisms of the near-ring. Finally, it is shown that under appropriate additional hypothesis a near-ring must be a commutative ring.

1. Introduction

Throughtout the paper N will denote a zero symmetric left near-ring with multiplicative centre Z. An element x of N is said to be distributive if $(y+z) x=$ $y x+z x$ for all $x, y, z \in N$. A near-ring N is called zero symmetric if $0 x=0$ for all $x \in N$ (recall that left distributivity yields $x 0=0$). An additive mapping $d: N \longrightarrow N$ is said to be a derivation on N if $d(x y)=x d(y)+d(x) y$ for all $x, y \in N$ or equivalently, as noted in [8], that $d(x y)=d(x) y+x d(y)$ for all $x, y \in N$. Following [5], an additive mapping $d: N \longrightarrow N$ is called a σ-derivation if there exists an automorphism $\sigma: N \longrightarrow N$ such that $d(x y)=\sigma(x) d(y)+d(x) y$ for all $x, y \in N$. Further this as a motivation we define an additive mapping $d: N \longrightarrow N$ is called a (σ, τ)-derivation if there exists automorphisms $\sigma, \tau: N \longrightarrow N$ such that $d(x y)=\sigma(x) d(y)+d(x) \tau(y)$ for all $x, y \in N$. In case $\sigma=1$, the identity mapping, d is called τ-derivation. Similarly if $\tau=1, d$ is called σ-derivation. It is straightforward that an $(1,1)$-derivation is ordinary derivation. For $x, y \in N$, the symbol $[x, y]$ will denote the commutator $x y-y x$ while the symbol (x, y) will denote the additive commutator $x+y-x-y$. Following [5] for $x, y \in N$, the symbol $[x, y]_{\sigma, \tau}$ will denote the (σ, τ)-commutator $\sigma(x) y-y \tau(x)$ while (σ, τ)-derivation d will be called (σ, τ)-commuting if $[x, d(x)]_{\sigma, \tau}=0$ for all $x \in N$. A near-ring N is

[^0]said to be prime if $a N b=(0)$ implies that $a=0$ or $b=0$. Further an element $x \in N$ for which $d(x)=0$ is called a constant.

Some recent results on rings deal with commutativity of prime and semi-prime rings admitting suitably constrained derivations. It is natural to look for comparable results on near-rings and this has been done in [1], [2], [3], [4], [5] and [8]. It is our purpose to extend some of these results on prime near-rings admitting suitably constrained (σ, τ)-derivation.

2. Preliminary results

We begin with the following lemmas which are useful in sequel.
Lemma 2.1. An additive endomorphism d on a near-ring N is a (σ, τ)-derivation if and only if $d(x y)=d(x) \tau(y)+\sigma(x) d(y)$, for all $x, y \in N$.

Proof. Let d be a (σ, τ)-derivation on a near-ring N. Since $x(y+y)=x y+x y$, we obtain

$$
\begin{align*}
d(x(y+y))= & \sigma(x) d(y+y)+d(x) \tau(y+y) \\
= & \sigma(x) d(y)+\sigma(x) d(y)+d(x) \tau(y) \tag{2.1}\\
& +d(x) \tau(y), \quad \text { for all } \quad x, y \in N .
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
d(x y+x y)= & d(x y)+d(x y) \\
= & \sigma(x) d(y)+d(x) \tau(y)+\sigma(x) d(y)+d(x) \tau(y) \tag{2.2}\\
& \text { for all } \quad x, y \in N .
\end{align*}
$$

Combining (2.1) and (2.2), we find that

$$
\sigma(x) d(y)+d(x) \tau(y)=d(x) \tau(y)+\sigma(x) d(y), \quad \text { for all } \quad x, y \in N
$$

Thus, we have

$$
\begin{equation*}
d(x y)=d(x) \tau(y)+\sigma(x) d(y), \quad \text { for all } \quad x, y \in N \tag{2.3}
\end{equation*}
$$

Conversely, let $d(x y)=d(x) \tau(y)+\sigma(x) d(y)$, for all $x, y \in N$. Then

$$
\begin{aligned}
d(x(y+y))= & d(x) \tau(y+y)+\sigma(x) d(y+y) \\
= & d(x) \tau(y)+d(x) \tau(y)+\sigma(x) d(y) \\
& +\sigma(x) d(y) \quad \text { for all } \quad x, y \in N .
\end{aligned}
$$

Also,

$$
\begin{align*}
d(x y+x y)= & d(x y)+d(x y) \\
= & d(x) \tau(y)+\sigma(x) d(y)+d(x) \tau(y)+\sigma(x) d(y), \tag{2.5}\\
& \text { for all } \quad x, y \in N .
\end{align*}
$$

Combining (2.4) and (2.5), we obtain

$$
d(x) \tau(y)+\sigma(x) d(y)=\sigma(x) d(y)+d(x) \tau(y), \quad \text { for all } \quad x, y \in N
$$

Lemma 2.2. Let d be a (σ, τ)-derivation on the near-ring N. Then N satisfies the following partial distributive laws:
(i) $(\sigma(x) d(y)+d(x) \tau(y)) z=\sigma(x) d(y) z+d(x) \tau(y) z$, for all $x, y, z \in N$.
(ii) $(d(x) \tau(y)+\sigma(x) d(y)) z=d(x) \tau(y) z+\sigma(x) d(y) z$, for all $x, y, z \in N$.

Proof. Note that for all $x, y, z \in N$,

$$
\begin{equation*}
d((x y) z)=\sigma(x) \sigma(y) d(z)+(\sigma(x) d(y)+d(x) \tau(y)) \tau(z) \tag{2.6}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
d(x(y z))= & \sigma(x) \sigma(y) d(z)+\sigma(x) d(y) \tau(z) \\
& +d(x) \tau(y) \tau(z), \quad \text { for all } \quad x, y, z \in N . \tag{2.7}
\end{align*}
$$

Equating (2.6) and (2.7), we find that

$$
(\sigma(x) d(y)+d(x) \tau(y)) z=\sigma(x) d(y) z+d(x) \tau(y) z, \quad \text { for all } \quad x, y, z \in N
$$

In the similar manner, (ii) can be proved.
Lemma 2.3. Let d be a (σ, τ)-derivation on N and suppose $u \in N$ is not a left zero divisor. If $[u, d(u)]_{\sigma, \tau}=0$, then (x, u) is a constant for every $x \in N$.
Proof. Since $u(u+x)=u^{2}+u x$, so we obtain

$$
\sigma(u) d(x)+d(u) \tau(u)=d(u) \tau(u)+\sigma(u) d(x), \quad \text { for all } \quad u \in N \quad \text { and } \quad x \in N
$$

Due to $[u, d(u)]_{(\sigma, \tau)}=0$, the above expression can be written as

$$
\sigma(u)(d(x)+d(u))=\sigma(u)(d(u)+d(x)), \quad \text { for all } \quad u, x \in N
$$

i.e.,

$$
\sigma(u)(d(x, u))=0, \quad \text { for all } \quad x \in N .
$$

Since σ is an automorphism of $N, \sigma(u)$ is not a left-zero divisor. Thus $d(x, u)=0$. Hence (x, u) is constant, for all $x \in N$.

Theorem 2.1. Let N have no non-zero divisors of zero. If N admits a non-trivial (σ, τ)-commuting (σ, τ)-derivation d, then $(N,+)$ is abelian.

Proof. Let c be any additive commutator. Then application of Lemma 2.3 yields that c is a constant. Moreover, for any $x \in N, x c$ is also an additive commutator, hence a constant. Thus, $0=d(x c)=\sigma(x) d(c)+d(x) \tau(c)$ i.e. $d(x) \tau(c)=0$, for all $x \in N$ and additive commutators c. Since $d(x) \neq 0$ for some $x \in N$, so $\tau(c)=0$, and thus $c=0$ for all additive commutators c. Hence, $(N,+)$ is abelian.

3. Prime near-Rings

Lemma 3.1. Let N be a prime near-ring.
(i) If z is a non-zero element in Z, then z is not a zero divisor.
(ii) If there exists a non-zero element z of Z such that $z+z \in Z$, then $(N,+)$ is abelian.
(iii) Let d be a non-trivial (σ, τ)-derivation on N. Then $x d(N)=(0)$ or $d(N) x=$ (0), implies $x=0$.
(iv) If N is 2-torsion free and d is a (σ, τ)-derivation on N such that $d^{2}=0$ and σ, τ commute with d, then $d=0$.
(v) If N admits a non-trivial (σ, τ)-derivation d for which $d(N) \subseteq Z$, then $c \in Z$ for each constant element c of N.

Proof. (i) and (ii) are already proved in [4].
(iii) Let $x d(r)=0$, for all $r \in N$. Replace r by $y z$, to get $x \sigma(y) d(z)+x d(y) \tau(z)=$ 0 , for all $y, z \in N$. Hence we have $x \sigma(y) d(z)=0$, for all $y, z \in N$. Since σ is an automorphism of $N, x N d(N)=(0)$. Again N is prime and $d(N) \neq 0$, we have $x=0$.

Arguing as above, we can show that $d(r) x=0$, for all $r \in N$, implies that $x=0$.
(iv) For arbitrary $x, y \in N$, we have $d^{2}(x y)=0$. After a simple calculation, we obtain $2 d(\sigma(x)) d(\tau(y))=0$. Since N is 2-torsion free, so $d(\sigma(x)) d(N)=(0)$, for each $x \in N$. Hence $d=0$, by using (iii) and the fact that σ is an automorphisms.
(v) Let c be an arbitrary constant and let x be a non-constant element of N. Then $d(x) \tau(c)=d(x c) \in Z$ for each non-constant element x of N. This implies that $d(x) \tau(c) y=y d(x) \tau(c)$, for all $y \in N$. Since $d(x) \in Z \backslash\{0\}$, it follows that $d(x) \tau(c) y=d(x) y \tau(c)$, for all $y \in N$ and we conclude that $d(x)(y c-c y)=0$; for all $y \in N$ and additive commutator c. Hence, using (i), we get the required result.

Theorem 3.1. Let N be a prime near-ring admitting a non-trivial (σ, τ)-derivation d for which $d(N) \subseteq Z$. Then $(N,+)$ is abelian. Moreover, if N is 2 -torsion free and σ, τ commute with d, then N is a commutative ring.

Proof. Since $d(N) \subseteq Z$ and d is non-trivial, there exists a non-zero element x in N such that $z=d(x) \in Z \backslash\{0\}$ and $z+z=d(x+x) \in Z$. Hence $(N,+)$ is abelian by Lemma 3.1(ii).

Assume now that, N is 2-torsion free and σ, τ commute with d. Application of Lemma 2.2 (i) yields that,

$$
\begin{align*}
(\sigma(x) d(y)+d(x) \tau(y)) r= & \sigma(x) d(y) r+d(x) \tau(y) r, \tag{3.1}\\
& \text { for all } \quad x, y, r \in N .
\end{align*}
$$

Since $d(N) \subseteq Z$, it follows that $d(x y) \in Z$, for all $x, y \in N$. Thus, $d(x y) r=$ $r d(x y)$, for all $x, y, r \in N$ and hence

$$
\begin{align*}
(\sigma(x) d(y)+d(x) \tau(y)) r= & r(\sigma(x) d(y)+d(x) \tau(y)) \tag{3.2}\\
= & r \sigma(x) d(y)+r d(x) \tau(y), \\
& \text { for all } \quad x, y, r \in N
\end{align*}
$$

Combine (3.1) and (3.2) and use the fact that $(N,+)$ is abelian, to get

$$
\begin{align*}
\sigma(x) d(y) r-r \sigma(x) d(y)= & r d(x) \tau(y)-d(x) \tau(y) r, \tag{3.3}\\
& \text { for all } \quad x, y, r \in N
\end{align*}
$$

Since σ is an automorphism and $d(N) \subseteq Z$, the equation (3.3) can be rearranged to yield

$$
d(y) \sigma(x) r-r d(y) \sigma(x)=d(x) r \tau(y)-d(x) \tau(y) r, \text { for all } x, y, r \in N
$$

or

$$
\begin{equation*}
d(y)(\sigma(x) r-r \sigma(x))=d(x)(r \tau(y)-\tau(y) r), \quad \text { for all } \quad x, y, r \in N \tag{3.4}
\end{equation*}
$$

Suppose on contrary that N is not commutative and choose $r, y \in N$ with $r \tau(y)-$ $\tau(y) r \neq 0$. Let $x=d(a), a \in N$. This yields that $\sigma(x)=\sigma(d(a))=d(\sigma(a)) \in$ Z. Now (3.1) becomes $d(y)\left(d(\sigma(a)) r-r d(\sigma(a))=d^{2}(a)(r \tau(y)-\tau(y) r)\right.$, i.e., $d^{2}(a)(r \tau(y)-\tau(y) r)=0$, for all $a \in N$. By Lemma 3.1 (i), we see that the central element $d^{2}(a)$ can not be a divisor of zero, we conclude that $d^{2}(a)=0$, for all $a \in N$. But by Lemma 3.1 (iv), this can not happen for non-trivial derivation d. Thus, $r \tau(y)-\tau(y) r=0$, for all $r, y \in N$. Since τ is an automorphism of N, the above expression implies that $r z-z r=0$, for all $r, z \in N$. Hence N is a commutative ring.

Theorem 3.2. Let N be a prime near-ring admitting a non-trivial (σ, τ)-derivation d such that $d(x) d(y)=d(y) d(x)$, for all $x, y \in N$. Then $(N,+)$ is abelian. Moreover, if N is 2-torsion free and σ, τ commute with d, then N is a commutative ring.

Proof. In view of our hypothesis, we have $d(x+x) d(x+y)=d(x+y) d(x+x)$, for all $x, y \in N$. This implies that $d(x) d(x)+d(x) d(y)=d(x) d(x)+d(y) d(x)$, for all $x, y \in N$ and hence $d(x) d(x, y)=0$, for all $x, y \in N$ i.e., $d(x) d(c)=0$, for all $x \in N$ and additive commutator c. Now, application of Lemma 3.1 (iii) yields that $d(c)=0$, for all additive commutators c. Since N is a left near-ring and c is an additive commutator, $x c$ is also an additive commutator for any $x \in N$. Hence $d(x c)=0$, for all $x \in N$ and additive commutator c. Thus by Lemma 3.1 (iii), $c=0$ and hence $(N,+)$ is abelian.

Assume now that N is 2 -torsion free and σ, τ commute with d. Then applications of Lemmas 2.1 and 2.2 (i) yield that,

$$
\begin{aligned}
d(d(x) y) d(z)= & \left(d^{2}(x) \tau(y)+\sigma(d(x)) d(y)\right) d(z) \\
= & d^{2}(x) \tau(y) d(z)+\sigma(d(x)) d(y) d(z) \\
& \text { for all } \quad x, y, z \in N
\end{aligned}
$$

This implies that

$$
\begin{align*}
d^{2}(x) \tau(y) d(z)= & d(d(x) y) d(z)-\sigma(d(x)) d(y) d(z) \tag{3.5}\\
& \text { for all } x, y, z \in N
\end{align*}
$$

Also, since $d(x) d(y)=d(y) d(x)$, for all $x, y \in N$, we find that

$$
\begin{align*}
d(d(x) y) d(z)= & d(z) d(d(x) y) \\
= & d(z)\left(d^{2}(x) \tau(y)+\sigma(d(x)) d(y)\right) \\
= & d(z) d^{2}(x) \tau(y)+d(z) d(\sigma(x)) d(y) \tag{3.6}\\
= & d^{2}(x) d(z) \tau(y)+\sigma(d(x)) d(y) d(z) \\
& \text { for all } x, y, z \in N .
\end{align*}
$$

Combine (3.5) and (3.6), to get

$$
\begin{equation*}
d^{2}(x)((\tau(y) d(z)-d(z) \tau(y))=0, \quad \text { for all } \quad x, y, z \in N \tag{3.7}
\end{equation*}
$$

Now replacing y by $y r$ in (3.7), we get

$$
d^{2}(x) \tau(y)(\tau(r) d(z)-d(z) \tau(r))=0, \quad \text { for all } \quad r, x, y, z \in N
$$

Thus, $d^{2}(x) N(\tau(r) d(z)-d(z) \tau(r))=(0)$, for all $r, x, z \in N$. Since N is prime and τ is an automorphism, $r d(z)-d(z) r=0$ or $d^{2}(x)=0$, for all $x \in N$. But the last conclusion is impossible by Lemma 3.1 (iv). Hence, we have $r d(z)-d(z) r=0$, for all $r, z \in N$. This implies that $d(N) \subseteq Z$. Hence N is a commutative ring by Theorem 3.1.

Acknowledgement. The authors are greatly indebted to the referee for his/her valuable suggestions. Also, the third author gratefully acknowledges the financial support he received from U.G.C. India for this research.

References

[1] Beidar, K. I., Fong, Y. and Wang, X. K., Posner and Herstein theorems for derivations of 3-prime near-rings, Comm. Algebra 24 (5) (1996), 1581-1589.
[2] Bell, H. E., On derivations in near-rings, II , Kluwer Academic Publishers Netherlands (1997), 191-197.
[3] Bell, H. E. and Mason, G., On derivations in near-rings and rings, Math. J. Okayama Univ. 34 (1992), 135-144.
[4] Bell, H. E. and Mason, G., On derivations in near-rings, Near-Rings and Near-Fields (G. Betsch, ed.) North-Holland, Amsterdam (1987), 31-35.
[5] Kamal, Ahmad A. M., σ - derivations on prime near-rings, Tamkang J. Math. 322 (2001), 89-93.
[6] Meldrum, J. D. P., Near-rings and Their Link with Groups, Pitman, 1985.
[7] Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[8] Wang, X. K., Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), 361-366.

[^0]: 2000 Mathematics Subject Classification: 16W25, 16Y30.
 Key words and phrases: prime near-ring, derivation, σ-derivation, (σ, τ)-derivation, (σ, τ) commuting derivation.

 Received August 29, 2002.

