ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 281 – 286

(σ, τ) -DERIVATIONS ON PRIME NEAR RINGS

MOHAMMAD ASHRAF, ASMA ALI AND SHAKIR ALI

ABSTRACT. There is an increasing body of evidence that prime near-rings with derivations have ring like behavior, indeed, there are several results (see for example [1], [2], [3], [4], [5] and [8]) asserting that the existence of a suitably-constrained derivation on a prime near-ring forces the near-ring to be a ring. It is our purpose to explore further this ring like behaviour. In this paper we generalize some of the results due to Bell and Mason [4] on near-rings admitting a special type of derivation namely (σ, τ) - derivation where σ, τ are automorphisms of the near-ring. Finally, it is shown that under appropriate additional hypothesis a near-ring must be a commutative ring.

1. INTRODUCTION

Throughtout the paper N will denote a zero symmetric left near-ring with multiplicative centre Z. An element x of N is said to be distributive if (y+z)x =yx + zx for all $x, y, z \in N$. A near-ring N is called zero symmetric if 0x = 0for all $x \in N$ (recall that left distributivity yields x0 = 0). An additive mapping $d: N \longrightarrow N$ is said to be a derivation on N if d(xy) = xd(y) + d(x)y for all $x, y \in N$ or equivalently, as noted in [8], that d(xy) = d(x)y + x d(y) for all $x, y \in N$. Following [5], an additive mapping $d: N \longrightarrow N$ is called a σ -derivation if there exists an automorphism $\sigma: N \longrightarrow N$ such that $d(xy) = \sigma(x) d(y) + d(x) y$ for all $x, y \in N$. Further this as a motivation we define an additive mapping $d: N \longrightarrow N$ is called a (σ, τ) -derivation if there exists automorphisms $\sigma, \tau : N \longrightarrow N$ such that $d(xy) = \sigma(x) d(y) + d(x)\tau(y)$ for all $x, y \in N$. In case $\sigma = 1$, the identity mapping, d is called τ -derivation. Similarly if $\tau = 1, d$ is called σ -derivation. It is straightforward that an (1, 1)-derivation is ordinary derivation. For $x, y \in N$, the symbol [x, y] will denote the commutator xy - yx while the symbol (x, y) will denote the additive commutator x+y-x-y. Following [5] for $x, y \in N$, the symbol $[x, y]_{\sigma, \tau}$ will denote the (σ, τ) -commutator $\sigma(x)y - y\tau(x)$ while (σ, τ) -derivation d will be called (σ, τ) -commuting if $[x, d(x)]_{\sigma, \tau} = 0$ for all $x \in N$. A near-ring N is

²⁰⁰⁰ Mathematics Subject Classification: 16W25, 16Y30.

Key words and phrases: prime near-ring, derivation, σ -derivation, (σ, τ) -derivation, (σ, τ) -commuting derivation.

Received August 29, 2002.

said to be prime if aNb = (0) implies that a = 0 or b = 0. Further an element $x \in N$ for which d(x) = 0 is called a constant.

Some recent results on rings deal with commutativity of prime and semi-prime rings admitting suitably constrained derivations. It is natural to look for comparable results on near-rings and this has been done in [1], [2], [3], [4], [5] and [8]. It is our purpose to extend some of these results on prime near-rings admitting suitably constrained (σ, τ) -derivation.

2. Preliminary results

We begin with the following lemmas which are useful in sequel.

Lemma 2.1. An additive endomorphism d on a near-ring N is a (σ, τ) -derivation if and only if $d(xy) = d(x) \tau(y) + \sigma(x) d(y)$, for all $x, y \in N$.

Proof. Let d be a (σ, τ) -derivation on a near-ring N. Since x(y+y) = xy + xy, we obtain

(2.1)
$$d(x(y+y)) = \sigma(x) d(y+y) + d(x) \tau(y+y) = \sigma(x) d(y) + \sigma(x) d(y) + d(x) \tau(y) + d(x) \tau(y), \text{ for all } x, y \in N.$$

On the other hand, we have

(2.2)
$$d(xy + xy) = d(xy) + d(xy)$$
$$= \sigma(x) d(y) + d(x) \tau(y) + \sigma(x) d(y) + d(x) \tau(y)$$
for all $x, y \in N$.

Combining (2.1) and (2.2), we find that

$$\sigma(x) \, d(y) + d(x) \, \tau(y) = d(x) \, \tau(y) + \sigma(x) \, d(y) \,, \quad \text{for all} \quad x, y \in N$$

Thus, we have

(2.3)
$$d(xy) = d(x)\tau(y) + \sigma(x)d(y), \text{ for all } x, y \in N.$$

Conversely, let $d(xy) = d(x) \tau(y) + \sigma(x) d(y)$, for all $x, y \in N$. Then

(2.4)
$$d(x(y+y)) = d(x) \tau(y+y) + \sigma(x) d(y+y) = d(x) \tau(y) + d(x) \tau(y) + \sigma(x) d(y) + \sigma(x) d(y) \text{ for all } x, y \in N.$$

Also,

(2.5)
$$d(xy + xy) = d(xy) + d(xy)$$
$$= d(x)\tau(y) + \sigma(x)d(y) + d(x)\tau(y) + \sigma(x)d(y),$$
for all $x, y \in N$.

Combining (2.4) and (2.5), we obtain

$$d(x)\tau(y) + \sigma(x)\,d(y) = \sigma(x)\,d(y) + d(x)\,\tau(y)\,, \quad \text{for all} \quad x, y \in N\,. \qquad \Box$$

282

Lemma 2.2. Let d be a (σ, τ) -derivation on the near-ring N. Then N satisfies the following partial distributive laws:

(i)
$$(\sigma(x) d(y) + d(x) \tau(y))z = \sigma(x) d(y)z + d(x) \tau(y)z$$
, for all $x, y, z \in N$.

(ii)
$$(d(x)\tau(y) + \sigma(x)d(y))z = d(x)\tau(y)z + \sigma(x)d(y)z$$
, for all $x, y, z \in N$.

Proof. Note that for all $x, y, z \in N$,

(2.6)
$$d((xy)z) = \sigma(x)\sigma(y) \, d(z) + (\sigma(x) \, d(y) + d(x) \, \tau(y))\tau(z) \, .$$

On the other hand, we have

(2.7)
$$d(x(yz)) = \sigma(x)\sigma(y) d(z) + \sigma(x) d(y)\tau(z) + d(x)\tau(y)\tau(z), \quad \text{for all} \quad x, y, z \in N.$$

Equating (2.6) and (2.7), we find that

$$(\sigma(x)\,d(y)+d(x)\,\tau(y))z=\sigma(x)\,d(y)z+d(x)\,\tau(y)z\,,\quad\text{for all}\quad x,y,z\in N\,.$$

In the similar manner, (ii) can be proved.

Lemma 2.3. Let d be a (σ, τ) -derivation on N and suppose $u \in N$ is not a left zero divisor. If $[u, d(u)]_{\sigma,\tau} = 0$, then (x, u) is a constant for every $x \in N$.

Proof. Since $u(u+x) = u^2 + ux$, so we obtain

$$\sigma(u) d(x) + d(u) \tau(u) = d(u) \tau(u) + \sigma(u) d(x), \quad \text{for all} \quad u \in N \quad \text{and} \quad x \in N.$$

Due to $[u, d(u)]_{(\sigma,\tau)} = 0$, the above expression can be written as

$$\sigma(u)(d(x) + d(u)) = \sigma(u)(d(u) + d(x)), \text{ for all } u, x \in N$$

i.e.,

$$\sigma(u)(d(x, u)) = 0$$
, for all $x \in N$.

Since σ is an automorphism of N, $\sigma(u)$ is not a left-zero divisor. Thus d(x, u) = 0. Hence (x, u) is constant, for all $x \in N$.

Theorem 2.1. Let N have no non-zero divisors of zero. If N admits a non-trivial (σ, τ) -commuting (σ, τ) -derivation d, then (N, +) is abelian.

Proof. Let *c* be any additive commutator. Then application of Lemma 2.3 yields that *c* is a constant. Moreover, for any $x \in N$, *xc* is also an additive commutator, hence a constant. Thus, $0 = d(xc) = \sigma(x) d(c) + d(x) \tau(c)$ i.e. $d(x) \tau(c) = 0$, for all $x \in N$ and additive commutators *c*. Since $d(x) \neq 0$ for some $x \in N$, so $\tau(c) = 0$, and thus c = 0 for all additive commutators *c*. Hence, (N, +) is abelian.

3. PRIME NEAR-RINGS

Lemma 3.1. Let N be a prime near-ring.

- (i) If z is a non-zero element in Z, then z is not a zero divisor.
- (ii) If there exists a non-zero element z of Z such that $z + z \in Z$, then (N, +) is abelian.

M. ASHRAF, A. ALI, S. ALI

- (iii) Let d be a non-trivial (σ, τ) -derivation on N. Then xd(N) = (0) or d(N)x = (0), implies x = 0.
- (iv) If N is 2-torsion free and d is a (σ, τ) -derivation on N such that $d^2 = 0$ and σ, τ commute with d, then d = 0.
- (v) If N admits a non-trivial (σ, τ) -derivation d for which $d(N) \subseteq Z$, then $c \in Z$ for each constant element c of N.

Proof. (i) and (ii) are already proved in [4].

(iii) Let xd(r) = 0, for all $r \in N$. Replace r by yz, to get $x\sigma(y) d(z) + x d(y) \tau(z) = 0$, for all $y, z \in N$. Hence we have $x\sigma(y) d(z) = 0$, for all $y, z \in N$. Since σ is an automorphism of N, xNd(N) = (0). Again N is prime and $d(N) \neq 0$, we have x = 0.

Arguing as above, we can show that d(r)x = 0, for all $r \in N$, implies that x = 0.

(iv) For arbitrary $x, y \in N$, we have $d^2(xy) = 0$. After a simple calculation, we obtain $2d(\sigma(x)) d(\tau(y)) = 0$. Since N is 2-torsion free, so $d(\sigma(x)) d(N) = (0)$, for each $x \in N$. Hence d = 0, by using (ii) and the fact that σ is an automorphisms. (v) Let c be an arbitrary constant and let x be a non-constant element of N. Then $d(x) \tau(c) = d(xc) \in Z$ for each non-constant element x of N. This implies that $d(x) \tau(c)y = y d(x) \tau(c)$, for all $y \in N$. Since $d(x) \in Z \setminus \{0\}$, it follows that $d(x) \tau(c)y = d(x) y \tau(c)$, for all $y \in N$ and we conclude that d(x)(yc - cy) = 0; for all $y \in N$ and additive commutator c. Hence, using (i), we get the required result.

Theorem 3.1. Let N be a prime near-ring admitting a non-trivial (σ, τ) -derivation d for which $d(N) \subseteq Z$. Then (N, +) is abelian. Moreover, if N is 2-torsion free and σ , τ commute with d, then N is a commutative ring.

Proof. Since $d(N) \subseteq Z$ and d is non-trivial, there exists a non-zero element x in N such that $z = d(x) \in Z \setminus \{0\}$ and $z + z = d(x + x) \in Z$. Hence (N, +) is abelian by Lemma 3.1(ii).

Assume now that, N is 2-torsion free and σ , τ commute with d. Application of Lemma 2.2 (i) yields that,

(3.1)
$$(\sigma(x) d(y) + d(x)\tau(y))r = \sigma(x) d(y) r + d(x)\tau(y)r,$$
for all $x, y, r \in N$.

Since $d(N) \subseteq Z$, it follows that $d(xy) \in Z$, for all $x, y \in N$. Thus, d(xy)r = r d(xy), for all $x, y, r \in N$ and hence

(3.2)
$$(\sigma(x) d(y) + d(x) \tau(y))r = r(\sigma(x) d(y) + d(x) \tau(y))$$
$$= r\sigma(x) d(y) + r d(x) \tau(y),$$
for all $x, y, r \in N$.

Combine (3.1) and (3.2) and use the fact that (N, +) is abelian, to get

(3.3)
$$\sigma(x) d(y)r - r\sigma(x) d(y) = r d(x) \tau(y) - d(x) \tau(y)r,$$

for all $x, y, r \in N$.

284

Since σ is an automorphism and $d(N) \subseteq Z$, the equation (3.3) can be rearranged to yield

$$d(y)\sigma(x)r - r \, d(y)\sigma(x) = d(x)r\tau(y) - d(x)\tau(y)r \,, \text{ for all } x, y, r \in N$$

or

(3.4)
$$d(y)(\sigma(x)r - r\sigma(x)) = d(x)(r\tau(y) - \tau(y)r), \text{ for all } x, y, r \in N.$$

Suppose on contrary that N is not commutative and choose $r, y \in N$ with $r\tau(y) - \tau(y)r \neq 0$. Let $x = d(a), a \in N$. This yields that $\sigma(x) = \sigma(d(a)) = d(\sigma(a)) \in Z$. Now (3.1) becomes $d(y)(d(\sigma(a))r - rd(\sigma(a)) = d^2(a)(r\tau(y) - \tau(y)r)$, i.e., $d^2(a)(r\tau(y) - \tau(y)r) = 0$, for all $a \in N$. By Lemma 3.1 (i), we see that the central element $d^2(a)$ can not be a divisor of zero, we conclude that $d^2(a) = 0$, for all $a \in N$. But by Lemma 3.1 (iv), this can not happen for non-trivial derivation d. Thus, $r\tau(y) - \tau(y)r = 0$, for all $r, y \in N$. Since τ is an automorphism of N, the above expression implies that rz - zr = 0, for all $r, z \in N$. Hence N is a commutative ring.

Theorem 3.2. Let N be a prime near-ring admitting a non-trivial (σ, τ) -derivation d such that d(x)d(y) = d(y)d(x), for all $x, y \in N$. Then (N, +) is abelian. Moreover, if N is 2-torsion free and σ, τ commute with d, then N is a commutative ring.

Proof. In view of our hypothesis, we have d(x + x) d(x + y) = d(x + y) d(x + x), for all $x, y \in N$. This implies that d(x) d(x) + d(x) d(y) = d(x) d(x) + d(y) d(x), for all $x, y \in N$ and hence d(x) d(x, y) = 0, for all $x, y \in N$ i.e., d(x) d(c) = 0, for all $x \in N$ and additive commutator c. Now, application of Lemma 3.1 (iii) yields that d(c) = 0, for all additive commutators c. Since N is a left near-ring and c is an additive commutator, xc is also an additive commutator for any $x \in N$. Hence d(xc) = 0, for all $x \in N$ and additive commutator c. Thus by Lemma 3.1 (iii), c = 0 and hence (N, +) is abelian.

Assume now that N is 2-torsion free and σ , τ commute with d. Then applications of Lemmas 2.1 and 2.2 (i) yield that,

$$\begin{aligned} d(d(x)y) \, d(z) &= (d^2(x)\tau(y) + \sigma(d(x))d(y)) \, d(z) \\ &= d^2(x)\tau(y) \, d(z) + \sigma(d(x)) \, d(y) \, d(z) \\ &\text{ for all } \quad x, y, z \in N \,. \end{aligned}$$

This implies that

(3.5)
$$d^{2}(x)\tau(y) d(z) = d(d(x)y) d(z) - \sigma(d(x)) d(y) d(z),$$
for all $x, y, z \in N$.

Also, since d(x) d(y) = d(y) d(x), for all $x, y \in N$, we find that

(3.6)

$$d(d(x)y) d(z) = d(z) d(d(x)y) = d(z) (d^{2}(x)\tau(y) + \sigma(d(x))d(y)) = d(z) d^{2}(x)\tau(y) + d(z)d(\sigma(x)) d(y) = d^{2}(x) d(z)\tau(y) + \sigma(d(x)) d(y) d(z)$$
for all $x, y, z \in N$.

Combine (3.5) and (3.6), to get

(3.7)
$$d^2(x)((\tau(y)d(z) - d(z)\tau(y)) = 0$$
, for all $x, y, z \in N$.

Now replacing y by yr in (3.7), we get

$$d^2(x)\tau(y)(\tau(r)d(z) - d(z)\tau(r)) = 0$$
, for all $r, x, y, z \in N$.

Thus, $d^2(x)N(\tau(r)d(z) - d(z)\tau(r)) = (0)$, for all $r, x, z \in N$. Since N is prime and τ is an automorphism, rd(z) - d(z)r = 0 or $d^2(x) = 0$, for all $x \in N$. But the last conclusion is impossible by Lemma 3.1 (iv). Hence, we have rd(z) - d(z)r = 0, for all $r, z \in N$. This implies that $d(N) \subseteq Z$. Hence N is a commutative ring by Theorem 3.1.

Acknowledgement. The authors are greatly indebted to the referee for his/her valuable suggestions. Also, the third author gratefully acknowledges the financial support he received from U.G.C. India for this research.

References

- Beidar, K. I., Fong, Y. and Wang, X. K., Posner and Herstein theorems for derivations of 3-prime near-rings, Comm. Algebra 24 (5) (1996), 1581–1589.
- [2] Bell, H. E., On derivations in near-rings, II, Kluwer Academic Publishers Netherlands (1997), 191–197.
- [3] Bell, H. E. and Mason, G., On derivations in near-rings and rings, Math. J. Okayama Univ. 34 (1992), 135–144.
- Bell, H. E. and Mason, G., On derivations in near-rings, Near-Rings and Near-Fields (G. Betsch, ed.) North-Holland, Amsterdam (1987), 31–35.
- [5] Kamal, Ahmad A. M., $\sigma\text{-}$ derivations on prime near-rings, Tamkang J. Math. **32** 2 (2001), 89–93.
- [6] Meldrum, J. D. P., Near-rings and Their Link with Groups, Pitman, 1985.
- [7] Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [8] Wang, X. K., Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), 361-366.

MOHAMMAD ASHRAF DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY ALIGARH 202002, INDIA *E-mail*: mashraf80@hotmail.com asma_ali2@rediffmail.com shakir50@bharatmail.com