ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 287 – 293

PARAMETERIZED CURVE AS ATTRACTORS OF SOME COUNTABLE ITERATED FUNCTION SYSTEMS

NICOLAE-ADRIAN SECELEAN

ABSTRACT. In this paper we will demonstrate that, in some conditions, the attractor of a countable iterated function system is a parameterized curve. This fact results by generalizing a construction of J. E. Hutchinson [3].

1. Preliminary facts

We will present some notions and results used in the sequel (more complete and rigorous treatments may be found in [2], [1]).

1.1. Hausdorff metric. Let (X, d) be a complete metric space and $\mathcal{K}(X)$ be the class of all compact non-empty subsets of X.

If we define a function $\delta : \mathcal{K}(X) \times \mathcal{K}(X) \longrightarrow \mathbb{R}_+$,

$$\delta(A, B) = \max\{\mathrm{d}(A, B), \mathrm{d}(B, A)\},\$$

where

$$\mathbf{d}(A,B) = \sup_{x \in A} \left(\inf_{y \in B} \mathbf{d}(x,y) \right), \quad \text{for all} \quad A,B \in \mathcal{K}(X) \,,$$

we obtain a metric, namely the *Hausdorff metric*.

The set $\mathcal{K}(X)$ is a complete metric space with respect to this metric δ .

1.2. Parameterized curve in the case of iterated function systems. In this section, we will present the iterated functions system (abbreviated IFS) and the Hutchinson's construction of a continuous function f defined to [0, 1] such that Im(f) (the image of f) is the attractor of some IFS (for details see [3]).

Let (X, d) be a complete metric space. A set of contractions $(\omega_n)_{n=1}^N$, $N \ge 1$, is called an *iterated function system* (IFS), according to M. Barnsley. Such a system of maps induces a set function $\mathcal{S} : \mathcal{K}(X) \longrightarrow \mathcal{K}(X)$,

$$\mathcal{S}(E) = \bigcup_{n=1}^{N} \omega_n(E)$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 28A80, Secondary 37C70, 47H10. Key words and phrases: Hausdorff metric, countable iterated function system, attractor. Received September 10, 2002.

which is a contraction on $\mathcal{K}(X)$ with contraction ratio $r \leq \max_{1 \leq n \leq N} r_n$, r_n being the contraction ratio of ω_n , $n = 1, \ldots, N$. According to the Banach contraction principle, there is a unique set $A \in \mathcal{K}(X)$ which is invariant with respect to \mathcal{S} , that is

$$A = \mathcal{S}(A) = \bigcup_{n=1}^{N} \omega_n(A) \,.$$

The set $A \in \mathcal{K}(X)$ is called the *attractor* of IFS $(\omega_n)_{n=1}^N$. Suppose that $(\omega_n)_{n=1}^N$ has the property that

> $a = e_1$ is the fixed point of ω_1 , $b = e_N$ is the fixed point of ω_N ,

 $\omega_i(b) = \omega_{i+1}$ if $1 \le i \le N - 1$.

Fix $0 = t_1 < t_2 < \dots < t_{N+1} = 1$. Define $g_i : [t_i, t_{i+1}] \to [0, 1]$ for $1 \le i \le N$ by $x - t_i$

$$g_i(x) = \frac{x - t_i}{t_{i+1} - t_i}$$

Let

 $\mathcal{F} = \{f : [0,1] \longrightarrow X : f \text{ is continuous, and obeys } f(0) = a, f(1) = b\}.$ Define $\mathcal{S}(f)$ for $f \in \mathcal{F}$ by

$$\mathcal{S}(f)(x) = \omega_i \circ f \circ g_i(x) \quad \text{for} \quad x \in [t_i, t_{i+1}], \quad 1 \le i \le N.$$

Theorem 1. Under the above hypotheses, there is a unique $f \in \mathcal{F}$ such that $\mathcal{S}(f) = f$. Furthermore $\operatorname{Im}(f) = A$.

1.3. Countable iterated function systems. In this section, we will present the compact set invariant with respect to a sequence of contraction maps (for details see [4]).

Suppose that (X, d) is a compact metric space.

A sequence of contractions $(\omega_n)_{n\geq 1}$ on X whose contraction ratios are, respectively, r_n , $r_n > 0$, such that $\sup_n r_n < 1$ is called a *countable iterated function* system, for simplicity CIFS.

Let $(\omega_n)_{n\geq 1}$ be a CIFS.

We define the set function $\mathcal{S}: \mathcal{K}(X) \longrightarrow \mathcal{K}(X)$ by

$$\mathcal{S}(E) = \overline{\bigcup_{n \ge 1} \omega_n(E)} \,,$$

where the bar means the closure of the corresponding set. Then, S is a contraction map on $(\mathcal{K}(X), \delta)$ with contraction ratio $r \leq \sup r_n$. According to the Banach contraction principle, it follows that there exists a unique non-empty compact set $A \subset X$ which is invariant for the family $(\omega_n)_{n\geq 1}$, that is

$$A = \mathcal{S}(A) = \overline{\bigcup_{n \ge 1} \omega_n(A)}.$$

The set A is called the attractor of CIFS $(\omega_n)_{n\geq 1}$.

2. PARAMETERIZED CURVE

Let (X, d) be a compact and connected metric space and $(\omega_n)_{n\geq 1}$ be a sequence of contraction maps on X whose contraction ratios are, respectively, r_n , $r_n > 0$, such that sup $r_n < 1$ having the following properties:

- a) $r_n \xrightarrow{n} 0;$
- b) $(e_n)_n$ is a convergent sequence, we denote by $b = \lim_n e_n$ $(e_n$ is the unique fixed point of the contraction map $\omega_n, n \in \mathbb{N}^*$;

c) if we denote by $a = e_1$, then $\omega_n(b) = \omega_{n+1}(a), \forall n \ge 1$.

We note that there exists a sequence of contractions as above, this fact results from the example which is presented in the sequel.

We shall show that, in the above conditions, there exists a continuous function $h: [0,1] \longrightarrow X$ with $\operatorname{Im}(h) = A$, A being the attractor of CIFS $(\omega_n)_{n \ge 1}$, where we denote by $\operatorname{Im} h = h([0,1])$ the image of h.

We consider a sequence of real numbers $(t_n)_n$ such that

$$0 = t_1 < t_2 < \dots < t_n < t_{n+1} < \dots < 1$$
 and $\lim_n t_n = 1$.

We define, for each $n \ge 1$, $g_n : [t_n, t_{n+1}] \longrightarrow [0, 1]$,

$$g_n(x) = \frac{x - t_n}{t_{n+1} - t_n}$$

We denote by

 $\mathcal{F} = \{f : [0,1] \longrightarrow X : f \text{ is continuous, and obeys } f(0) = a, f(1) = b\}$ and by \mathcal{P} the uniform metric on \mathcal{F} , $\mathcal{P}(f_1, f_2) = \sup d(f_1(x), f_2(x)).$

and by \mathcal{P} the uniform metric on \mathcal{F} , $\mathcal{P}(f_1, f_2) = \sup_{x \in [0,1]} \operatorname{al}(f_1(x), f_2(x)).$

It is a standard fact that $(\mathcal{F}, \mathcal{P})$ is a complete metric space. For every $f \in \mathcal{F}$, we define $\mathcal{S}(f)$ by

$$S(f)(x) = \begin{cases} \omega_n \circ f \circ g_n(x), & x \in [t_n, t_{n+1}], & n = 1, 2, \dots \\ b, & x = 1. \end{cases}$$

Proposition 1. The application $S : \mathcal{F} \longrightarrow \mathcal{F}$ is well-defined and S is a contraction map with respect to the metric \mathcal{P} .

Proof. First we observe that $g_n(t_n) = 0$, $g_n(t_{n+1}) = 1$ for all n. Next, if $x = t_{n+1}$, then

$$\omega_n \circ f \circ g_n(x) = \omega_n(f(1)) = \omega_n(b) \stackrel{c_j}{=} \omega_{n+1}(a)$$
$$= \omega_{n+1} \circ f \circ g_{n+1}(t_{n+1}) = \omega_{n+1} \circ f \circ g_{n+1}(x) ,$$

thus $\mathcal{S}(f)$ is uniquely defined.

I We shall show that $\mathcal{S}(f) \in \mathcal{F}$

We consider $x_0 \in [0, 1]$ and we will demonstrate that $\mathcal{S}(f)$ is continuous in x_0 . If $x_0 \in (t_n, t_{n+1})$, the assertion is obvious since $\mathcal{S}(f)$ is a composition of three continuous functions. If $x_0 = t_n, n \ge 2$, then

$$\lim_{x \nearrow x_0} \mathcal{S}(f)(x) = \lim_{x \nearrow x_0} \omega_{n-1} \circ f \circ g_{n-1}(x) = \omega_{n-1}(f(1)) = \omega_{n-1}(b) \stackrel{c)}{=} \omega_n(a) ,$$
$$\lim_{x \searrow x_0} \mathcal{S}(f)(x) = \mathcal{S}(f)(x_0) = \omega_n \circ f \circ g_n(t_n) = \omega_n(f(0)) = \omega_n(a) .$$

We suppose that $x_0 = 1$.

Let $(x_k)_k \subset [0,1], x_k \nearrow 1$. For each $k \in \mathbb{N}^*$, there exists $n_k \in \mathbb{N}^*$ such that $\begin{array}{l} x_k \in [t_{n_k},t_{n_k+1}].\\ \text{Let } \varepsilon > 0. \text{ Then there exists } k_\varepsilon \in \mathbb{N}, \text{ such that, for all } k \geq k_\varepsilon, \text{ we have } \end{array}$

(1)
$$r_{n_k} \cdot \operatorname{diam}(X) < \frac{\varepsilon}{2} \quad (\text{by a}));$$

and

(2)
$$d(e_{n_k}, b) < \frac{\varepsilon}{2}$$

where $\operatorname{diam}(X) = \sup_{x,y \in X} \operatorname{d}(x,y)$ is the diameter of the set X.

Thus, for all $k \geq k_{\varepsilon}$, one has

$$d(\mathcal{S}(f)(x_k), b) = d(\omega_{n_k} \circ f \circ g_{n_k}(x_k), b)$$

$$\leq d(\omega_{n_k} \circ f \circ g_{n_k}(x_k), \omega_{n_k}(e_{n_k})) + d(\omega_{n_k}(e_{n_k}), b)$$

$$\leq r_{n_k} d(f(g_{n_k}(x_k)), e_{n_k}) + d(e_{n_k}, b)$$

$$\leq r_{n_k} \operatorname{diam}(X) + d(e_{n_k}, b) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

It follows that $\mathcal{S}(f)(x_k) \longrightarrow b = \mathcal{S}(f)(1)$, hence $\mathcal{S}(f)$ is continuous. It is clearly that $\mathcal{S}(f)(0) = a$, $\mathcal{S}(f)(1) = b$. Thus $\mathcal{S}(f) \in \mathcal{F}$.

II S is a contraction map with respect to P: Choose $f_1, f_2 \in \mathcal{F}$ and $x \in [0, 1]$. If x = 1, then, it is evident that $d(\mathcal{S}(f_1)(x), \mathcal{S}(f_2)(x)) = d(b, b) = 0$. Assume that $x \in [t_n, t_{n+1}], n \in \mathbb{N}^*$. Then

$$d(\mathcal{S}(f_1)(x), \mathcal{S}(f_2)(x)) = d(\omega_n \circ f_1 \circ g_n(x), \omega_n \circ f_2 \circ g_n(x))$$

$$\leq r_n d(f_1(g_n(x)), f_2(g_n(x))) \leq r_n \mathcal{P}(f_1, f_2).$$

Thus $\mathcal{P}(\mathcal{S}(f_1), \mathcal{S}(f_2)) \leq r \mathcal{P}(f_1, f_2)$, where $r = \sup_n r_n < 1$ (by a)).

Theorem 2. In the above context, there is a unique function $h \in \mathcal{F}$ such that $\mathcal{S}(h) = h$. Further $\operatorname{Im}(h) = A$.

Proof. The existence and uniqueness result by the contraction principle. The second assertion follows by equality

(3)
$$\operatorname{Im}\mathcal{S}(f) = \overline{\bigcup_{n \ge 1} \omega_n(\operatorname{Im} f)}, \quad \forall f \in \mathcal{F}$$

We will demonstrate that equality by using the double inclusion.

290

"⊂"

Choose $y \in \text{Im}\mathcal{S}(f)$. Then there exists $x \in [0, 1]$ such that $\mathcal{S}(f)(x) = y$. A. If x = 1, then $\mathcal{S}(f)(x) = \mathcal{S}(f)(1) = b = y$.

For each $b \in \text{Im}f$, we have the relations:

$$\omega_n(b) \in \bigcup_{n=1}^{\infty} \omega_n(\operatorname{Im} f), \quad \forall n \in \mathbb{N};$$

$$\mathrm{d}(\omega_n(b), e_n) = \mathrm{d}(\omega_n(b), \omega_n(e_n)) \leq r_n \mathrm{d}(b, e_n).$$

Hence

$$d(\omega_n(b), b) \le d(\omega_n(b), e_n) + d(e_n, b) \le (r_n + 1)d(b, e_n) \xrightarrow{n} 0$$

(by using b)).

It follows that
$$\omega_n(b) \longrightarrow b \in \overline{\bigcup_{n \ge 1} \omega_n(\operatorname{Im} f)}$$
. Thus
 $y \in \overline{\bigcup_{n \ge 1} \omega_n(\operatorname{Im} f)}$.

B. If $x \in [0, 1)$, then there exists $n \ge 1$ such that $x \in [t_n, t_{n+1}]$, hence $\omega_n \circ f \circ g_n(x) = y$. It follows that

$$y = \omega_n(f(g_n(x))) \in \omega_n(\operatorname{Im} f)$$

which implies $y \in \overline{\bigcup_{n \ge 1} \omega_n(\mathrm{Im}f)}$.

"⊃ Choose $y \in \mathcal{S}(\mathrm{Im} f) = \overline{\bigcup_{n \ge 1} \omega_n(\mathrm{Im} f)}$. Then there exists $(y_k)_k \subset \bigcup_{n=1}^{\infty} \omega_n(\mathrm{Im} f), y_k \longrightarrow y$. For every fixed $k \in \mathbb{N}^*$, one has:

 $\exists n_k \in \mathbb{N}^* \text{ such that } y_k \in \omega_{n_k}(\mathrm{Im} f) \text{ hence } z_k \in \mathrm{Im} f \text{ with } y_k = \omega_{n_k}(z_k) \,.$ Thus there exists $x_k \in [0, 1]$ such that

$$f(x_k) = z_k \, .$$

If $x_k = 1$, it follows that

$$z_k = f(x_k) = b = \mathcal{S}(f)(x_k) \in \mathrm{Im}\mathcal{S}(f)$$

Assume that $x_k \in [0, 1)$. Then there is $x'_k \in [t_{n_k}, t_{n_k+1}]$ such that

$$g_{n_k}(x'_k) = x_k$$

We deduce that

$$\omega_{n_k} \circ f \circ g_{n_k}(x'_k) = \omega_{n_k}(f(x_k)) = \omega_{n_k}(z_k) = y_k \in \operatorname{Im}\mathcal{S}(f) .$$

Thus $(y_k)_k \subset \operatorname{Im}\mathcal{S}(f) = \mathcal{S}(f)([0,1])$, the set $\mathcal{S}(f)([0,1])$ being compact.
Thus $y = \lim_k y_k \in \operatorname{Im}\mathcal{S}(f).$

Since $h = \mathcal{S}(h)$ by using (3), it follows

$$\operatorname{Im} h = \operatorname{Im} \mathcal{S}(h) = \overline{\bigcup_{n \ge 1} \omega_n(\operatorname{Im} h)} = \mathcal{S}(\operatorname{Im} h)$$

and we conclude that A = Imh is the attractor of CIFS $(\omega_n)_{n \ge 1}$.

Example

We consider CIFS von-Koch-infinite given as follows (see [4]).

Let $X = [0,1] \times [0,1] \subset \mathbb{R}^2$ and we consider the contraction maps which are defined as follows: for every $n \in \mathbb{N}^*$, there exists an uniquely $p \in \{0, 1, \ldots\}$, $k \in \{1, 2, 3, 4\}$ such that n = 4p + k. Then

$$\omega_n(x,y) := \begin{cases} \frac{1}{2^{p+1}} (\frac{1}{3}x + 2^{p+1} - 2, \frac{1}{3}y), & \text{if } k = 1; \\ \frac{1}{2^{p+1}} (\frac{1}{6}x - \frac{\sqrt{3}}{6}y + 2^{p+1} - \frac{5}{3}, \frac{\sqrt{3}}{6}x + \frac{1}{6}y), & \text{if } k = 2; \\ \frac{1}{2^{p+1}} (\frac{1}{6}x + \frac{\sqrt{3}}{6}y + 2^{p+1} - \frac{3}{2}, -\frac{\sqrt{3}}{6}x + \frac{1}{6}y + \frac{\sqrt{3}}{6}), & \text{if } k = 3; \\ \frac{1}{2^{p+1}} (\frac{1}{3}x + 2^{p+1} - \frac{4}{3}, \frac{1}{3}y), & \text{if } k = 4. \end{cases}$$

The attractor of that CIFS is the content of Fig. 1. Now we shall show that CIFS von-Koch-infinite verifies the conditions a), b), c). Thus

a) Clearly $r_n \xrightarrow{n} 0$ (since $n \to \infty \Leftrightarrow p \to \infty$);

b) It is, also, immediate that

$$\forall x, y \in [0, 1], \quad \omega_n(x, y) \xrightarrow{n} (1, 0)$$

thus
$$b = (1, 0);$$

c) $\omega_1(x, y) = (\frac{1}{6}x, \frac{1}{6}y),$ hence $e_1 = a = (0, 0).$

We will prove that $\omega_n(b) = \omega_{n+1}(a), \forall n \ge 1$. If $p \ge 0$ and $k \in \{1, 2, 3\}$, it can prove, most difficulty, that

$$\omega_{4p+k}(1,0) = \omega_{4p+k+1}(0,0) \,.$$

Next, if $p \ge 0$ and k = 4, we have

$$\omega_{4p+4}(1,0) = \frac{1}{2^{p+1}} \left(\frac{1}{3} + 2^{p+1} - \frac{4}{3}, 0\right) = \frac{1}{2^{p+2}} \left(2^{p+2} - 2, 0\right) = \omega_{4(p+1)+1}(0,0).$$

292

Fig. 1. The attractor von-Koch-infinite

References

- [1] Barnsley, M.F., Fractals everywhere, Academic Press, Harcourt Brace Janovitch, 1988.
- [2] Falconer, K. J., The Geometry of Fractal Sets, Cambridge University Press, 85, 1985.
- [3] Hutchinson, J., Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
- [4] Secelean, N. A., Countable Iterated Function Systems, Far East J. Dyn. Syst., Pushpa Publishing House, vol. 3(2) (2001), 149–167.

DEPARTMENT OF MATHEMATICS "LUCIAN BLAGA" UNIVERSITY OF SIBIU ROMANIA *E-mail*: secelean@mail.ulbsibiu.ro