
ARCHIVUM MATHEMATICUM (BRNO)

Tomus 40 (2004), 287 – 293

PARAMETERIZED CURVE AS ATTRACTORS OF SOME

COUNTABLE ITERATED FUNCTION SYSTEMS

NICOLAE-ADRIAN SECELEAN

Abstract. In this paper we will demonstrate that, in some conditions, the
attractor of a countable iterated function system is a parameterized curve.
This fact results by generalizing a construction of J. E. Hutchinson [3].

1. Preliminary facts

We will present some notions and results used in the sequel (more complete and
rigorous treatments may be found in [2], [1]).

1.1. Hausdorff metric. Let (X, d) be a complete metric space and K(X) be the
class of all compact non-empty subsets of X .

If we define a function δ : K(X) ×K(X) −→ R+,

δ(A, B) = max{d(A, B), d(B, A)} ,

where

d(A, B) = sup
x∈A

( inf
y∈B

d(x, y)) , for all A, B ∈ K(X) ,

we obtain a metric, namely the Hausdorff metric.
The set K(X) is a complete metric space with respect to this metric δ.

1.2. Parameterized curve in the case of iterated function systems. In this
section, we will present the iterated functions system (abbreviated IFS) and the
Hutchinson’s construction of a continuous function f defined to [0, 1] such that
Im(f) (the image of f) is the attractor of some IFS (for details see [3]).

Let (X, d) be a complete metric space. A set of contractions (ωn)N
n=1 , N ≥ 1, is

called an iterated function system (IFS), according to M. Barnsley. Such a system
of maps induces a set function S : K(X) −→ K(X),

S(E) =
N
⋃

n=1

ωn(E)
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which is a contraction on K(X) with contraction ratio r ≤ max
1≤n≤N

rn, rn being

the contraction ratio of ωn, n = 1, . . . , N . According to the Banach contraction
principle, there is a unique set A ∈ K(X) which is invariant with respect to S,
that is

A = S(A) =

N
⋃

n=1

ωn(A) .

The set A ∈ K(X) is called the attractor of IFS (ωn)N
n=1 .

Suppose that (ωn)N
n=1 has the property that

a = e1 is the fixed point of ω1 ,

b = eN is the fixed point of ωN ,

ωi(b) = ωi+1 if 1 ≤ i ≤ N − 1 .

Fix 0 = t1 < t2 < · · · < tN+1 = 1. Define gi : [ti, ti+1] → [0, 1] for 1 ≤ i ≤ N by

gi(x) =
x − ti

ti+1 − ti
.

Let

F = {f : [0, 1] −→ X : f is continuous, and obeys f(0) = a, f(1) = b} .

Define S(f) for f ∈ F by

S(f)(x) = ωi ◦ f ◦ gi(x) for x ∈ [ti, ti+1], 1 ≤ i ≤ N .

Theorem 1. Under the above hypotheses, there is a unique f ∈ F such that

S(f) = f . Furthermore Im(f) = A.

1.3. Countable iterated function systems. In this section, we will present the
compact set invariant with respect to a sequence of contraction maps (for details
see [4]).

Suppose that (X, d) is a compact metric space.
A sequence of contractions (ωn)n≥1 on X whose contraction ratios are, respec-

tively, rn, rn > 0, such that sup
n

rn < 1 is called a countable iterated function

system, for simplicity CIFS.
Let (ωn)n≥1 be a CIFS.
We define the set function S : K(X) −→ K(X) by

S(E) =
⋃

n≥1

ωn(E) ,

where the bar means the closure of the corresponding set. Then, S is a contraction
map on (K(X), δ) with contraction ratio r ≤ sup

n
rn. According to the Banach

contraction principle, it follows that there exists a unique non-empty compact set
A ⊂ X which is invariant for the family (ωn)n≥1 , that is

A = S(A) =
⋃

n≥1

ωn(A) .

The set A is called the attractor of CIFS (ωn)n≥1 .
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2. Parameterized curve

Let (X, d) be a compact and connected metric space and (ωn)n≥1 be a sequence
of contraction maps on X whose contraction ratios are, respectively, rn, rn > 0,
such that sup

n
rn < 1 having the following properties:

a) rn
n−→ 0;

b) (en)n is a convergent sequence, we denote by b = lim
n

en (en is the unique

fixed point of the contraction map ωn, n ∈ N
∗);

c) if we denote by a = e1, then ωn(b) = ωn+1(a), ∀n ≥ 1.

We note that there exists a sequence of contractions as above, this fact results
from the example which is presented in the sequel.

We shall show that, in the above conditions, there exists a continuous function
h : [0, 1] −→ X with Im(h) = A, A being the attractor of CIFS (ωn)n≥1 , where we
denote by Imh = h([0, 1]) the image of h.

We consider a sequence of real numbers (tn)n such that

0 = t1 < t2 < · · · < tn < tn+1 < · · · < 1 and lim
n

tn = 1 .

We define, for each n ≥ 1, gn : [tn, tn+1] −→ [0, 1],

gn(x) =
x − tn

tn+1 − tn
.

We denote by

F = {f : [0, 1] −→ X : f is continuous, and obeys f(0) = a, f(1) = b}
and by P the uniform metric on F , P(f1, f2) = sup

x∈[0,1]

d(f1(x), f2(x)).

It is a standard fact that (F ,P) is a complete metric space.
For every f ∈ F , we define S(f) by

S(f)(x) =

{

ωn ◦ f ◦ gn(x) , x ∈ [tn, tn+1] , n = 1, 2, . . .

b , x = 1 .

Proposition 1. The application S : F −→ F is well-defined and S is a contrac-

tion map with respect to the metric P.

Proof. First we observe that gn(tn) = 0, gn(tn+1) = 1 for all n.
Next, if x = tn+1, then

ωn ◦ f ◦ gn(x) = ωn(f(1)) = ωn(b)
c)
= ωn+1(a)

= ωn+1 ◦ f ◦ gn+1(tn+1) = ωn+1 ◦ f ◦ gn+1(x) ,

thus S(f) is uniquely defined.
I We shall show that S(f) ∈ F
We consider x0 ∈ [0, 1] and we will demonstrate that S(f) is continuous in x0.
If x0 ∈ (tn, tn+1), the assertion is obvious since S(f) is a composition of three

continuous functions.
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If x0 = tn, n ≥ 2, then

lim
x↗x0

S(f)(x) = lim
x↗x0

ωn−1 ◦ f ◦ gn−1(x) = ωn−1(f(1)) = ωn−1(b)
c)
= ωn(a) ,

lim
x↘x0

S(f)(x) = S(f)(x0) = ωn ◦ f ◦ gn(tn) = ωn(f(0)) = ωn(a) .

We suppose that x0 = 1.
Let (xk)k ⊂ [0, 1], xk ↗ 1. For each k ∈ N

∗, there exists nk ∈ N
∗ such that

xk ∈ [tnk
, tnk+1].

Let ε > 0. Then there exists kε ∈ N, such that, for all k ≥ kε, we have

rnk
· diam(X) <

ε

2

(

by a)
)

;(1)

and

d(enk
, b) <

ε

2
,(2)

where diam(X) = sup
x,y∈X

d(x, y) is the diameter of the set X .

Thus, for all k ≥ kε, one has

d(S(f)(xk), b) = d(ωnk
◦ f ◦ gnk

(xk), b)

≤ d(ωnk
◦ f ◦ gnk

(xk), ωnk
(enk

)) + d(ωnk
(enk

), b)

≤ rnk
d(f(gnk

(xk)), enk
) + d(enk

, b)

≤ rnk
diam(X) + d(enk

, b) <
ε

2
+

ε

2
= ε .

It follows that S(f)(xk) −→ b = S(f)(1), hence S(f) is continuous.
It is clearly that S(f)(0) = a, S(f)(1) = b. Thus S(f) ∈ F .

II S is a contraction map with respect to P:

Choose f1, f2 ∈ F and x ∈ [0, 1].
If x = 1, then, it is evident that d(S(f1)(x),S(f2)(x)) = d(b, b) = 0.
Assume that x ∈ [tn, tn+1], n ∈ N

∗. Then

d(S(f1)(x),S(f2)(x)) = d(ωn ◦ f1 ◦ gn(x), ωn ◦ f2 ◦ gn(x))

≤ rnd(f1(gn(x)), f2(gn(x))) ≤ rnP(f1, f2) .

Thus P(S(f1),S(f2)) ≤ rP(f1, f2), where r = sup
n

rn < 1
(

by a)
)

.

Theorem 2. In the above context, there is a unique function h ∈ F such that

S(h) = h. Further Im(h) = A.

Proof. The existence and uniqueness result by the contraction principle.
The second assertion follows by equality

ImS(f) =
⋃

n≥1

ωn(Imf) , ∀ f ∈ F .(3)

We will demonstrate that equality by using the double inclusion.
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“⊂”
Choose y ∈ ImS(f). Then there exists x ∈ [0, 1] such that S(f)(x) = y.

A. If x = 1, then S(f)(x) = S(f)(1) = b = y.
For each b ∈ Imf , we have the relations:

ωn(b) ∈
∞
⋃

n=1

ωn(Imf) , ∀n ∈ N ;

d(ωn(b), en) = d(ωn(b), ωn(en)) ≤ rnd(b, en) .

Hence

d(ωn(b), b) ≤ d(ωn(b), en) + d(en, b) ≤ (rn + 1)d(b, en)
n−→ 0

(

by using b)
)

.

It follows that ωn(b) −→ b ∈
⋃

n≥1

ωn(Imf). Thus

y ∈
⋃

n≥1

ωn(Imf) .

B. If x ∈ [0, 1), then there exists n ≥ 1 such that x ∈ [tn, tn+1], hence
ωn ◦ f ◦ gn(x) = y. It follows that

y = ωn(f(gn(x))) ∈ ωn(Imf)

which implies y ∈
⋃

n≥1

ωn(Imf).

“⊃”

Choose y ∈ S(Imf) =
⋃

n≥1

ωn(Imf).

Then there exists (yk)k ⊂
∞
⋃

n=1

ωn(Imf), yk −→ y.

For every fixed k ∈ N
∗, one has:

∃nk ∈ N
∗ such that yk ∈ ωnk

(Imf) hence zk ∈ Imf with yk = ωnk
(zk) .

Thus there exists xk ∈ [0, 1] such that

f(xk) = zk .

If xk = 1, it follows that

zk = f(xk) = b = S(f)(xk) ∈ ImS(f) .

Assume that xk ∈ [0, 1). Then there is x′
k ∈ [tnk

, tnk+1] such that

gnk
(x′

k) = xk .

We deduce that

ωnk
◦ f ◦ gnk

(x′
k) = ωnk

(f(xk)) = ωnk
(zk) = yk ∈ ImS(f) .

Thus (yk)k ⊂ ImS(f) = S(f)([0, 1]), the set S(f)([0, 1]) being compact.
Thus y = lim

k
yk ∈ ImS(f).
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Since h = S(h) by using (3), it follows

Imh = ImS(h) =
⋃

n≥1

ωn(Imh) = S(Imh)

and we conclude that A = Imh is the attractor of CIFS (ωn)n≥1 .

Example

We consider CIFS von-Koch-infinite given as follows (see [4]).
Let X = [0, 1] × [0, 1] ⊂ R

2 and we consider the contraction maps which are
defined as follows: for every n ∈ N

∗, there exists an uniquely p ∈ {0, 1, . . .},
k ∈ {1, 2, 3, 4} such that n = 4p + k. Then

ωn(x, y) :=















































1

2p+1
(
1

3
x + 2p+1 − 2,

1

3
y), if k = 1;

1

2p+1
(
1

6
x −

√
3

6
y + 2p+1 − 5

3
,

√
3

6
x +

1

6
y), if k = 2;

1

2p+1
(
1

6
x +

√
3

6
y + 2p+1 − 3

2
,−

√
3

6
x +

1

6
y +

√
3

6
), if k = 3;

1

2p+1
(
1

3
x + 2p+1 − 4

3
,
1

3
y), if k = 4.

The attractor of that CIFS is the content of Fig. 1.
Now we shall show that CIFS von-Koch-infinite verifies the conditions a), b),

c). Thus

a) Clearly rn
n−→ 0 (since n → ∞ ⇔ p → ∞);

b) It is, also, immediate that

∀x, y ∈ [0, 1] , ωn(x, y)
n−→ (1, 0)

thus b = (1, 0);

c) ω1(x, y) = (
1

6
x,

1

6
y), hence e1 = a = (0, 0).

We will prove that ωn(b) = ωn+1(a), ∀n ≥ 1.
If p ≥ 0 and k ∈ {1, 2, 3}, it can prove, most difficulty, that

ω4p+k(1, 0) = ω4p+k+1(0, 0) .

Next, if p ≥ 0 and k = 4, we have

ω4p+4(1, 0) =
1

2p+1
(
1

3
+ 2p+1 − 4

3
, 0) =

1

2p+2
(2p+2 − 2, 0) = ω4(p+1)+1(0, 0) .



PARAMETERIZED CURVE AS ATTRACTOR 293

Fig. 1. The attractor von-Koch-infinite
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