PARAMETERIZED CURVE AS ATTRACTORS OF SOME COUNTABLE ITERATED FUNCTION SYSTEMS

NICOLAE-ADRIAN SECELEAN

Abstract

In this paper we will demonstrate that, in some conditions, the attractor of a countable iterated function system is a parameterized curve. This fact results by generalizing a construction of J. E. Hutchinson [3].

1. Preliminary facts

We will present some notions and results used in the sequel (more complete and rigorous treatments may be found in [2], [1]).
1.1. Hausdorff metric. Let $(X, \mathrm{~d})$ be a complete metric space and $\mathcal{K}(X)$ be the class of all compact non-empty subsets of X.

If we define a function $\delta: \mathcal{K}(X) \times \mathcal{K}(X) \longrightarrow \mathbb{R}_{+}$,

$$
\delta(A, B)=\max \{\mathrm{d}(A, B), \mathrm{d}(B, A)\}
$$

where

$$
\mathrm{d}(A, B)=\sup _{x \in A}\left(\inf _{y \in B} \mathrm{~d}(x, y)\right), \quad \text { for all } \quad A, B \in \mathcal{K}(X)
$$

we obtain a metric, namely the Hausdorff metric.
The set $\mathcal{K}(X)$ is a complete metric space with respect to this metric δ.
1.2. Parameterized curve in the case of iterated function systems. In this section, we will present the iterated functions system (abbreviated IFS) and the Hutchinson's construction of a continuous function f defined to $[0,1]$ such that $\operatorname{Im}(f)$ (the image of f) is the attractor of some IFS (for details see [3]).

Let $(X, \mathrm{~d})$ be a complete metric space. A set of contractions $\left(\omega_{n}\right)_{n=1}^{N}, N \geq 1$, is called an iterated function system (IFS), according to M. Barnsley. Such a system of maps induces a set function $\mathcal{S}: \mathcal{K}(X) \longrightarrow \mathcal{K}(X)$,

$$
\mathcal{S}(E)=\bigcup_{n=1}^{N} \omega_{n}(E)
$$

[^0]which is a contraction on $\mathcal{K}(X)$ with contraction ratio $r \leq \max _{1 \leq n \leq N} r_{n}, r_{n}$ being the contraction ratio of $\omega_{n}, n=1, \ldots, N$. According to the Banach contraction principle, there is a unique set $A \in \mathcal{K}(X)$ which is invariant with respect to \mathcal{S}, that is
$$
A=\mathcal{S}(A)=\bigcup_{n=1}^{N} \omega_{n}(A)
$$

The set $A \in \mathcal{K}(X)$ is called the attractor of IFS $\left(\omega_{n}\right)_{n=1}^{N}$.
Suppose that $\left(\omega_{n}\right)_{n=1}^{N}$ has the property that

$$
\begin{aligned}
a & =e_{1} \quad \text { is the fixed point of } \omega_{1}, \\
b & =e_{N} \quad \text { is the fixed point of } \omega_{N}, \\
\omega_{i}(b) & =\omega_{i+1} \quad \text { if } \quad 1 \leq i \leq N-1
\end{aligned}
$$

Fix $0=t_{1}<t_{2}<\cdots<t_{N+1}=1$. Define $g_{i}:\left[t_{i}, t_{i+1}\right] \rightarrow[0,1]$ for $1 \leq i \leq N$ by

$$
g_{i}(x)=\frac{x-t_{i}}{t_{i+1}-t_{i}} .
$$

Let

$$
\mathcal{F}=\{f:[0,1] \longrightarrow X: f \text { is continuous, and obeys } f(0)=a, f(1)=b\}
$$

Define $\mathcal{S}(f)$ for $f \in \mathcal{F}$ by

$$
\mathcal{S}(f)(x)=\omega_{i} \circ f \circ g_{i}(x) \quad \text { for } \quad x \in\left[t_{i}, t_{i+1}\right], \quad 1 \leq i \leq N .
$$

Theorem 1. Under the above hypotheses, there is a unique $f \in \mathcal{F}$ such that $\mathcal{S}(f)=f$. Furthermore $\operatorname{Im}(f)=A$.
1.3. Countable iterated function systems. In this section, we will present the compact set invariant with respect to a sequence of contraction maps (for details see [4]).

Suppose that $(X, \mathrm{~d})$ is a compact metric space.
A sequence of contractions $\left(\omega_{n}\right)_{n \geq 1}$ on X whose contraction ratios are, respectively, $r_{n}, r_{n}>0$, such that $\sup r_{n}<1$ is called a countable iterated function system, for simplicity CIFS.

Let $\left(\omega_{n}\right)_{n \geq 1}$ be a CIFS.
We define the set function $\mathcal{S}: \mathcal{K}(X) \longrightarrow \mathcal{K}(X)$ by

$$
\mathcal{S}(E)=\overline{\bigcup_{n \geq 1} \omega_{n}(E)}
$$

where the bar means the closure of the corresponding set. Then, \mathcal{S} is a contraction map on $(\mathcal{K}(X), \delta)$ with contraction ratio $r \leq \sup r_{n}$. According to the Banach contraction principle, it follows that there exists a unique non-empty compact set $A \subset X$ which is invariant for the family $\left(\omega_{n}\right)_{n \geq 1}$, that is

$$
A=\mathcal{S}(A)=\overline{\bigcup_{n \geq 1} \omega_{n}(A)}
$$

The set A is called the attractor of CIFS $\left(\omega_{n}\right)_{n \geq 1}$.

2. Parameterized curve

Let $(X, \mathrm{~d})$ be a compact and connected metric space and $\left(\omega_{n}\right)_{n \geq 1}$ be a sequence of contraction maps on X whose contraction ratios are, respectively, $r_{n}, r_{n}>0$, such that $\sup r_{n}<1$ having the following properties:
a) $r_{n} \xrightarrow{n} 0$;
b) $\left(e_{n}\right)_{n}$ is a convergent sequence, we denote by $b=\lim _{n} e_{n}$ (e_{n} is the unique fixed point of the contraction map $\omega_{n}, n \in \mathbb{N}^{*}$);
c) if we denote by $a=e_{1}$, then $\omega_{n}(b)=\omega_{n+1}(a), \forall n \geq 1$.

We note that there exists a sequence of contractions as above, this fact results from the example which is presented in the sequel.

We shall show that, in the above conditions, there exists a continuous function $h:[0,1] \longrightarrow X$ with $\operatorname{Im}(h)=A, A$ being the attractor of CIFS $\left(\omega_{n}\right)_{n \geq 1}$, where we denote by $\operatorname{Im} h=h([0,1])$ the image of h.

We consider a sequence of real numbers $\left(t_{n}\right)_{n}$ such that

$$
0=t_{1}<t_{2}<\cdots<t_{n}<t_{n+1}<\cdots<1 \text { and } \lim _{n} t_{n}=1
$$

We define, for each $n \geq 1, g_{n}:\left[t_{n}, t_{n+1}\right] \longrightarrow[0,1]$,

$$
g_{n}(x)=\frac{x-t_{n}}{t_{n+1}-t_{n}} .
$$

We denote by

$$
\mathcal{F}=\{f:[0,1] \longrightarrow X: f \text { is continuous, and obeys } f(0)=a, f(1)=b\}
$$

and by \mathcal{P} the uniform metric on $\mathcal{F}, \mathcal{P}\left(f_{1}, f_{2}\right)=\sup _{x \in[0,1]} \mathrm{d}\left(f_{1}(x), f_{2}(x)\right)$.
It is a standard fact that $(\mathcal{F}, \mathcal{P})$ is a complete metric space.
For every $f \in \mathcal{F}$, we define $\mathcal{S}(f)$ by

$$
\mathcal{S}(f)(x)=\left\{\begin{array}{cl}
\omega_{n} \circ f \circ g_{n}(x), & x \in\left[t_{n}, t_{n+1}\right], \quad n=1,2, \ldots \\
b, & x=1 .
\end{array}\right.
$$

Proposition 1. The application $\mathcal{S}: \mathcal{F} \longrightarrow \mathcal{F}$ is well-defined and \mathcal{S} is a contraction map with respect to the metric \mathcal{P}.

Proof. First we observe that $g_{n}\left(t_{n}\right)=0, g_{n}\left(t_{n+1}\right)=1$ for all n.
Next, if $x=t_{n+1}$, then

$$
\begin{aligned}
\omega_{n} \circ f \circ g_{n}(x) & =\omega_{n}(f(1))=\omega_{n}(b) \stackrel{c c}{=} \omega_{n+1}(a) \\
& =\omega_{n+1} \circ f \circ g_{n+1}\left(t_{n+1}\right)=\omega_{n+1} \circ f \circ g_{n+1}(x),
\end{aligned}
$$

thus $\mathcal{S}(f)$ is uniquely defined.
I We shall show that $\mathcal{S}(f) \in \mathcal{F}$
We consider $x_{0} \in[0,1]$ and we will demonstrate that $\mathcal{S}(f)$ is continuous in x_{0}.
If $x_{0} \in\left(t_{n}, t_{n+1}\right)$, the assertion is obvious since $\mathcal{S}(f)$ is a composition of three continuous functions.

If $x_{0}=t_{n}, n \geq 2$, then

$$
\begin{aligned}
& \lim _{x \nearrow x_{0}} \mathcal{S}(f)(x)=\lim _{x \nearrow x_{0}} \omega_{n-1} \circ f \circ g_{n-1}(x)=\omega_{n-1}(f(1))=\omega_{n-1}(b) \stackrel{c)}{=} \omega_{n}(a), \\
& \lim _{x \searrow x_{0}} \mathcal{S}(f)(x)=\mathcal{S}(f)\left(x_{0}\right)=\omega_{n} \circ f \circ g_{n}\left(t_{n}\right)=\omega_{n}(f(0))=\omega_{n}(a)
\end{aligned}
$$

We suppose that $x_{0}=1$.
Let $\left(x_{k}\right)_{k} \subset[0,1], x_{k} \nearrow 1$. For each $k \in \mathbb{N}^{*}$, there exists $n_{k} \in \mathbb{N}^{*}$ such that $x_{k} \in\left[t_{n_{k}}, t_{n_{k}+1}\right]$.

Let $\varepsilon>0$. Then there exists $k_{\varepsilon} \in \mathbb{N}$, such that, for all $k \geq k_{\varepsilon}$, we have

$$
\begin{equation*}
\left.r_{n_{k}} \cdot \operatorname{diam}(X)<\frac{\varepsilon}{2} \quad(\text { by a })\right) ; \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d}\left(e_{n_{k}}, b\right)<\frac{\varepsilon}{2} \tag{2}
\end{equation*}
$$

where $\operatorname{diam}(X)=\sup _{x, y \in X} \mathrm{~d}(x, y)$ is the diameter of the set X.
Thus, for all $k \geq k_{\varepsilon}$, one has

$$
\begin{aligned}
\mathrm{d}\left(\mathcal{S}(f)\left(x_{k}\right), b\right) & =\mathrm{d}\left(\omega_{n_{k}} \circ f \circ g_{n_{k}}\left(x_{k}\right), b\right) \\
& \leq \mathrm{d}\left(\omega_{n_{k}} \circ f \circ g_{n_{k}}\left(x_{k}\right), \omega_{n_{k}}\left(e_{n_{k}}\right)\right)+\mathrm{d}\left(\omega_{n_{k}}\left(e_{n_{k}}\right), b\right) \\
& \leq r_{n_{k}} \mathrm{~d}\left(f\left(g_{n_{k}}\left(x_{k}\right)\right), e_{n_{k}}\right)+\mathrm{d}\left(e_{n_{k}}, b\right) \\
& \leq r_{n_{k}} \operatorname{diam}(X)+\mathrm{d}\left(e_{n_{k}}, b\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

It follows that $\mathcal{S}(f)\left(x_{k}\right) \longrightarrow b=\mathcal{S}(f)(1)$, hence $\mathcal{S}(f)$ is continuous.
It is clearly that $\mathcal{S}(f)(0)=a, \mathcal{S}(f)(1)=b$. Thus $\mathcal{S}(f) \in \mathcal{F}$.
II \mathcal{S} is a contraction map with respect to \mathcal{P} :
Choose $f_{1}, f_{2} \in \mathcal{F}$ and $x \in[0,1]$.
If $x=1$, then, it is evident that $\mathrm{d}\left(\mathcal{S}\left(f_{1}\right)(x), \mathcal{S}\left(f_{2}\right)(x)\right)=\mathrm{d}(b, b)=0$.
Assume that $x \in\left[t_{n}, t_{n+1}\right], n \in \mathbb{N}^{*}$. Then

$$
\begin{aligned}
\mathrm{d}\left(\mathcal{S}\left(f_{1}\right)(x), \mathcal{S}\left(f_{2}\right)(x)\right) & =\mathrm{d}\left(\omega_{n} \circ f_{1} \circ g_{n}(x), \omega_{n} \circ f_{2} \circ g_{n}(x)\right) \\
& \leq r_{n} \mathrm{~d}\left(f_{1}\left(g_{n}(x)\right), f_{2}\left(g_{n}(x)\right)\right) \leq r_{n} \mathcal{P}\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

Thus $\mathcal{P}\left(\mathcal{S}\left(f_{1}\right), \mathcal{S}\left(f_{2}\right)\right) \leq r \mathcal{P}\left(f_{1}, f_{2}\right)$, where $r=\sup _{n} r_{n}<1$ (by a)).
Theorem 2. In the above context, there is a unique function $h \in \mathcal{F}$ such that $\mathcal{S}(h)=h$. Further $\operatorname{Im}(h)=A$.

Proof. The existence and uniqueness result by the contraction principle.
The second assertion follows by equality

$$
\begin{equation*}
\operatorname{Im} \mathcal{S}(f)=\overline{\bigcup_{n \geq 1} \omega_{n}(\operatorname{Im} f)}, \quad \forall f \in \mathcal{F} . \tag{3}
\end{equation*}
$$

We will demonstrate that equality by using the double inclusion.
" \subset "
Choose $y \in \operatorname{Im} \mathcal{S}(f)$. Then there exists $x \in[0,1]$ such that $\mathcal{S}(f)(x)=y$.
A. If $x=1$, then $\mathcal{S}(f)(x)=\mathcal{S}(f)(1)=b=y$.

For each $b \in \operatorname{Im} f$, we have the relations:

$$
\begin{aligned}
\omega_{n}(b) & \in \bigcup_{n=1}^{\infty} \omega_{n}(\operatorname{Im} f), \quad \forall n \in \mathbb{N} \\
\mathrm{~d}\left(\omega_{n}(b), e_{n}\right) & =\mathrm{d}\left(\omega_{n}(b), \omega_{n}\left(e_{n}\right)\right) \leq r_{n} \mathrm{~d}\left(b, e_{n}\right) .
\end{aligned}
$$

Hence

$$
\mathrm{d}\left(\omega_{n}(b), b\right) \leq \mathrm{d}\left(\omega_{n}(b), e_{n}\right)+\mathrm{d}\left(e_{n}, b\right) \leq\left(r_{n}+1\right) \mathrm{d}\left(b, e_{n}\right) \xrightarrow{n} 0
$$

(by using b)).
It follows that $\omega_{n}(b) \longrightarrow b \in \overline{\bigcup_{n \geq 1} \omega_{n}(\operatorname{Im} f)}$. Thus

$$
y \in \overline{\bigcup_{n \geq 1} \omega_{n}(\operatorname{Im} f)}
$$

B. If $x \in[0,1)$, then there exists $n \geq 1$ such that $x \in\left[t_{n}, t_{n+1}\right]$, hence $\omega_{n} \circ f \circ g_{n}(x)=y$. It follows that

$$
y=\omega_{n}\left(f\left(g_{n}(x)\right)\right) \in \omega_{n}(\operatorname{Im} f)
$$

which implies $y \in \overline{\bigcup_{n \geq 1} \omega_{n}(\operatorname{Im} f)}$.
" $"$
Choose $y \in \mathcal{S}(\operatorname{Im} f)=\overline{\bigcup_{n \geq 1} \omega_{n}(\operatorname{Im} f)}$.
Then there exists $\left(y_{k}\right)_{k} \subset \bigcup_{n=1}^{\infty} \omega_{n}(\operatorname{Im} f), y_{k} \longrightarrow y$.
For every fixed $k \in \mathbb{N}^{*}$, one has:
$\exists n_{k} \in \mathbb{N}^{*}$ such that $y_{k} \in \omega_{n_{k}}(\operatorname{Im} f)$ hence $z_{k} \in \operatorname{Im} f$ with $y_{k}=\omega_{n_{k}}\left(z_{k}\right)$.
Thus there exists $x_{k} \in[0,1]$ such that

$$
f\left(x_{k}\right)=z_{k} .
$$

If $x_{k}=1$, it follows that

$$
z_{k}=f\left(x_{k}\right)=b=\mathcal{S}(f)\left(x_{k}\right) \in \operatorname{Im} \mathcal{S}(f)
$$

Assume that $x_{k} \in[0,1)$. Then there is $x_{k}^{\prime} \in\left[t_{n_{k}}, t_{n_{k}+1}\right]$ such that

$$
g_{n_{k}}\left(x_{k}^{\prime}\right)=x_{k} .
$$

We deduce that

$$
\omega_{n_{k}} \circ f \circ g_{n_{k}}\left(x_{k}^{\prime}\right)=\omega_{n_{k}}\left(f\left(x_{k}\right)\right)=\omega_{n_{k}}\left(z_{k}\right)=y_{k} \in \operatorname{Im} \mathcal{S}(f) .
$$

Thus $\left(y_{k}\right)_{k} \subset \operatorname{Im} \mathcal{S}(f)=\mathcal{S}(f)([0,1])$, the set $\mathcal{S}(f)([0,1])$ being compact.
Thus $y=\lim _{k} y_{k} \in \operatorname{Im} \mathcal{S}(f)$.

Since $h=\mathcal{S}(h)$ by using (3), it follows

$$
\operatorname{Im} h=\operatorname{Im} \mathcal{S}(h)=\overline{\bigcup_{n \geq 1} \omega_{n}(\operatorname{Im} h)}=\mathcal{S}(\operatorname{Im} h)
$$

and we conclude that $A=\operatorname{Im} h$ is the attractor of CIFS $\left(\omega_{n}\right)_{n \geq 1}$.

Example

We consider CIFS von-Koch-infinite given as follows (see [4]).
Let $X=[0,1] \times[0,1] \subset \mathbb{R}^{2}$ and we consider the contraction maps which are defined as follows: for every $n \in \mathbb{N}^{*}$, there exists an uniquely $p \in\{0,1, \ldots\}$, $k \in\{1,2,3,4\}$ such that $n=4 p+k$. Then

$$
\omega_{n}(x, y):= \begin{cases}\frac{1}{2^{p+1}}\left(\frac{1}{3} x+2^{p+1}-2, \frac{1}{3} y\right), & \text { if } k=1 \\ \frac{1}{2^{p+1}}\left(\frac{1}{6} x-\frac{\sqrt{3}}{6} y+2^{p+1}-\frac{5}{3}, \frac{\sqrt{3}}{6} x+\frac{1}{6} y\right), & \text { if } k=2 \\ \frac{1}{2^{p+1}}\left(\frac{1}{6} x+\frac{\sqrt{3}}{6} y+2^{p+1}-\frac{3}{2},-\frac{\sqrt{3}}{6} x+\frac{1}{6} y+\frac{\sqrt{3}}{6}\right), & \text { if } k=3 \\ \frac{1}{2^{p+1}}\left(\frac{1}{3} x+2^{p+1}-\frac{4}{3}, \frac{1}{3} y\right), & \text { if } k=4\end{cases}
$$

The attractor of that CIFS is the content of Fig. 1.
Now we shall show that CIFS von-Koch-infinite verifies the conditions a), b), c). Thus
a) Clearly $r_{n} \xrightarrow{n} 0$ (since $n \rightarrow \infty \Leftrightarrow p \rightarrow \infty$);
b) It is, also, immediate that

$$
\forall x, y \in[0,1], \quad \omega_{n}(x, y) \xrightarrow{n}(1,0)
$$

thus $b=(1,0)$;
c) $\omega_{1}(x, y)=\left(\frac{1}{6} x, \frac{1}{6} y\right)$, hence $e_{1}=a=(0,0)$.

We will prove that $\omega_{n}(b)=\omega_{n+1}(a), \forall n \geq 1$.
If $p \geq 0$ and $k \in\{1,2,3\}$, it can prove, most difficulty, that

$$
\omega_{4 p+k}(1,0)=\omega_{4 p+k+1}(0,0)
$$

Next, if $p \geq 0$ and $k=4$, we have
$\omega_{4 p+4}(1,0)=\frac{1}{2^{p+1}}\left(\frac{1}{3}+2^{p+1}-\frac{4}{3}, 0\right)=\frac{1}{2^{p+2}}\left(2^{p+2}-2,0\right)=\omega_{4(p+1)+1}(0,0)$.

Fig. 1. The attractor von-Koch-infinite

References

[1] Barnsley, M. F., Fractals everywhere, Academic Press, Harcourt Brace Janovitch, 1988.
[2] Falconer, K. J., The Geometry of Fractal Sets, Cambridge University Press, 85, 1985.
[3] Hutchinson, J., Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
[4] Secelean, N. A., Countable Iterated Fuction Systems, Far East J. Dyn. Syst., Pushpa Publishing House, vol. 3(2) (2001), 149-167.

Department of Mathematics
"Lucian Blaga" University of Sibiu
Romania
E-mail: secelean@mail.ulbsibiu.ro

[^0]: 2000 Mathematics Subject Classification: Primary 28A80, Secondary 37C70, 47H10.
 Key words and phrases: Hausdorff metric, countable iterated function system, attractor. Received September 10, 2002.

