ARCHIVUM MATHEMATICUM (BRNO)
Tomus 40 (2004), 295 - 300

CHARACTERIZATIONS OF LAMBEK-CARLITZ TYPE

EMIL DANIEL SCHWAB

Abstract

We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The q-analog of the Lambek-Carlitz type characterization of exponential series is also established.

1. An arithmetical function f is called multiplicative if

$$
\begin{equation*}
f(m n)=f(m) f(n) \quad \text { whenever } \quad(m, n)=1 \tag{1.1}
\end{equation*}
$$

and it is called completely multiplicative if

$$
\begin{equation*}
f(m n)=f(m) f(n) \quad \text { for all } \quad m \quad \text { and } \quad n . \tag{1.2}
\end{equation*}
$$

Lambek [5] proved that the arithmetical function f is completely multiplicative if and only if it distributes over every Dirichlet product:

$$
\begin{equation*}
f\left(g *_{D} h\right)=f g *_{D} f h, \quad \text { for all arithmetical functions } g \text { and } h . \tag{1.3}
\end{equation*}
$$

$\left(g *_{D} h\right.$ is defined by: $\left.\left(g *_{D} h\right)(n)=\sum_{d \mid n} g(d) h\left(\frac{n}{d}\right)\right)$.
Problems of Carlitz [1] and Sivaramakrishnan [12] concern the equivalence between the complete multiplicativity of the function f and the way it distributes over certain particular Dirichlet products. For example, Carlitz's Problem E 2268 [1] asks us to show that f is completely multiplicative if and only if

$$
\begin{equation*}
f(n) \tau(n)=\sum_{d \mid n} f(d) f\left(\frac{n}{d}\right) \quad\left(\forall n \in \mathbb{N}^{*}\right) \tag{1.4}
\end{equation*}
$$

that is if and only if f distributes over $\zeta *_{D} \zeta=\tau$, where $\zeta(n)=1, \forall n \in \mathbb{N}^{*}$, and $\tau(n)$ is the number of positive divisors of $n \in \mathbb{N}^{*}$.
2. Möbius categories were introduced in [7] to provide a unified setting for Möbius inversion. We refer the reader to [2] and [8] for the definitions of a Möbius category and of a Möbius category of full binomial type, respectively. In the

[^0]incidence algebra $A(\mathcal{C})$ of a Möbius category \mathcal{C} the convolution of two incidence function f and g is defined by:
\[

$$
\begin{equation*}
(f * g)(\alpha)=\sum_{\alpha^{\prime} \alpha^{\prime \prime}=\alpha} f\left(\alpha^{\prime}\right) g\left(\alpha^{\prime \prime}\right) \quad \forall \alpha \in \operatorname{Mor} \mathscr{C} \tag{2.1}
\end{equation*}
$$

\]

The incidence function f is called completely multiplicative (see [11]) if for any morphism $\alpha \in \operatorname{Mor} \mathcal{C}$

$$
\begin{equation*}
f(\alpha)=f\left(\alpha^{\prime}\right) f\left(\alpha^{\prime \prime}\right) \quad \text { whenever } \quad \alpha^{\prime} \alpha^{\prime \prime}=\alpha \tag{2.2}
\end{equation*}
$$

Lambek's characterization can be generalized to the convolution of the incidence functions: $f \in A(\mathcal{C})$ is completely multiplicative if and only if

$$
\begin{equation*}
f(g * h)=f g * f h \quad \forall g, h \in A(\mathcal{C}), \tag{2.3}
\end{equation*}
$$

but if $\zeta(\alpha)=1, \forall \alpha \in \operatorname{Mor} \mathcal{C}$, and $\zeta * \zeta=\tau_{e}$, then the condition (Carlitz's characterization)

$$
\begin{equation*}
f \tau_{e}=f * f \tag{2.4}
\end{equation*}
$$

is not sufficient for $f \in A(\mathcal{C})$ to be completely multiplicative (see [11]).
3. Let \mathcal{C} be a Möbius category of full binomial type with the surjective "length function" $l: \operatorname{Mor} \mathcal{C} \rightarrow \mathbb{N}$ (see [2], [8]) and with the parameters $B(n)$ ($B(n)$ represent the total number of decompositions into indecomposable factors of length 1 of a morphism of length n). If $\alpha \in \operatorname{Mor} \mathcal{C}$ and $k \leq l(\alpha)$ then $\left.\left|\left\{\alpha^{\prime}, \alpha^{\prime \prime}\right)\right| \alpha^{\prime} \alpha^{\prime \prime}=\alpha, l\left(\alpha^{\prime}\right)=k\right\} \mid$ is denoted by $\binom{\alpha}{k}$ and for any $\alpha, \beta \in \operatorname{Mor} \mathcal{C}$ with $l(\alpha)=l(\beta)=n$, the following holds

$$
\begin{align*}
\binom{\alpha}{k} & =\binom{\beta}{k}\left(\operatorname{not}\binom{n}{k}\right) \quad \text { and } \\
\binom{n}{k}_{l} & =\frac{B(n)}{B(k) B(n-k)} \quad(\forall k \in \mathbb{N}, k \leq n) . \tag{3.1}
\end{align*}
$$

If $A(\mathcal{C})$ is the incidence algebra of \mathcal{C} (with the usual pointwise addition and scalar multiplication and the convolution defined by (2.1)) then

$$
\begin{equation*}
A_{l}(\mathcal{C})=\{f \in A(\mathcal{C}) \mid l(\alpha)=l(\beta) \Rightarrow f(\alpha)=f(\beta)\} \tag{3.2}
\end{equation*}
$$

is a subalgebra of $A(\mathcal{C})$, called the reduced incidence algebra of \mathcal{C}. For $f, g \in A_{l}(\mathcal{C})$ considered as arithmetical functions $(f(n)=f(\alpha)$ if $l(\alpha)=n)$, the convolution $f * g$ is given by

$$
\begin{equation*}
(f * g)(n)=\sum_{k=0}^{n}\binom{n}{k}_{l} f(k) g(n-k), \quad(\forall n \in \mathbb{N}) \tag{3.3}
\end{equation*}
$$

and $\mathcal{X} e: \mathbb{C} \llbracket X \rrbracket \rightarrow A_{l}(\mathcal{C})$ defined by

$$
\begin{align*}
\mathcal{X}_{e}\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)(\alpha) & =a_{l(\alpha)} B(l(\alpha)), \quad \forall \alpha \in \operatorname{Mor} \mathcal{C} \\
\left(\mathcal{X}_{e}\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)(m)\right. & \left.=a_{m} B(m), \quad \forall m \in \mathbb{N}\right) \tag{3.4.}
\end{align*}
$$

is a \mathbb{C}-algebra isomorphism.
4. In general, a completely multiplicative reduced incidence function f of \mathcal{C} (that is an element of the subalgebra $A_{l}(\mathcal{C})$), is not completely multiplicative as arithmetical function. We have:

Theorem 1. Let \mathcal{C} be a Möbius category of full binomial type. The reduced incidence function $f \in A_{l}(\mathcal{C})$, with $f\left(1_{A}\right)=1$ for an identity morphism 1_{A}, is completely multiplicative if and only if the arithmetical function $f \circ \omega$ is multiplicative, where $\omega(n)$ denotes the number of distinct prime factors of n.

Proof. Suppose that f is completely multiplicative as incidence function. Let m and n be positive integers with $(m, n)=1$ and let $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ morphisms of \mathcal{C} such that $\alpha^{\prime} \alpha^{\prime \prime}=\alpha, l\left(\alpha^{\prime}\right)=\omega(m)$ and $l\left(\alpha^{\prime \prime}\right)=\omega(n)$. Since \mathcal{C} is of binomial type, $l(\alpha)=\omega(m)+\omega(n)$ and therefore:

$$
(f \circ \omega)(m n)=f(\alpha)=f\left(\alpha^{\prime}\right) f\left(\alpha^{\prime \prime}\right)=(f \circ \omega)(m) \cdot(f \circ \omega)(n) .
$$

Conversely, suppose that the arithmetical function $f \circ \omega$ is multiplicative. Let α be a morphism of \mathcal{C} with a factorization $\alpha=\alpha^{\prime} \alpha^{\prime \prime}, l\left(\alpha^{\prime}\right)=m$ and $l\left(\alpha^{\prime \prime}\right)=n$ and let the primes p of \mathbb{N}^{*} be listed in any definite order $p_{1}, p_{2}, p_{3}, \ldots$ Then

$$
\begin{aligned}
f(\alpha) & =(f \circ \omega)\left(p_{1} \ldots p_{m} p_{m+1} \ldots p_{m+n}\right) \\
& =(f \circ \omega)\left(p_{1} \ldots p_{m}\right)(f \circ \omega)\left(p_{m+1} \ldots p_{m+n}\right)=f\left(\alpha^{\prime}\right) f\left(\alpha^{\prime \prime}\right) .
\end{aligned}
$$

5. Let us see now a Lambek-Carlitz type characterization of completely multiplicative reduced incidence functions of a Möbius category of full binomial type.

Theorem 2. Let \mathcal{C} be a Möbius category of full binomial type and f a reduced incidence function with $f(\bar{\alpha})=a \neq 0$ for a non-identity indecomposable morphism $\bar{\alpha}$. Then the following statements are equivalent:
(1) $f \in A_{l}(\mathcal{C})$ is completely multiplicative;
(2) $f(\alpha)=a^{n}$ if $l(\alpha)=n$;
(3) $f(g * h)=f g * f h$, for all $g, h \in A_{l}(\mathcal{C})$;
(4) $f \tau_{e}=f * f$, where $\tau_{e}(\alpha)=\sum_{k=0}^{l(\alpha)}\binom{l(\alpha)}{k}_{l}$.

Proof. (1) $\Leftrightarrow(2)$. Since $a \neq 0$ and since the identity morphism 1_{A} is a morphism of length 0 , we have $f\left(1_{A}\right)=1, \forall A \in \mathrm{Ob} \mathcal{C}$, and by induction on the length of α it follows both $(1) \Rightarrow(2)$ and $(2) \Rightarrow(1)$.
$(1) \Rightarrow(3)$.

$$
\begin{aligned}
{[f(g * h)](\alpha) } & =f(\alpha) \sum_{\alpha^{\prime} \alpha^{\prime \prime}=\alpha} g\left(\alpha^{\prime}\right) h\left(\alpha^{\prime \prime}\right)=\sum_{\alpha^{\prime} \alpha^{\prime \prime}=\alpha} f\left(\alpha^{\prime}\right) g\left(\alpha^{\prime}\right) f\left(\alpha^{\prime \prime}\right) h\left(\alpha^{\prime \prime}\right) \\
& =(f g * f h)(\alpha), \quad \forall \alpha \in \operatorname{Mor} \mathcal{C} .
\end{aligned}
$$

$(3) \Rightarrow(4)$.

$$
\begin{aligned}
\tau_{e}(\alpha) & \left.=\sum_{k=0}^{l(\alpha)}\binom{l(\alpha)}{k}_{l}=\mid\left(\alpha^{\prime}, \alpha^{\prime \prime}\right): \alpha^{\prime} \alpha^{\prime \prime}=\alpha\right\} \mid \\
& =\sum_{\alpha^{\prime} \alpha^{\prime \prime}=\alpha} \zeta\left(\alpha^{\prime}\right) \zeta\left(\alpha^{\prime \prime}\right)=(\zeta * \zeta)(\alpha), \quad \forall \alpha \in \operatorname{Mor} \mathcal{C},
\end{aligned}
$$

and so (4) follows by using (3) for $g=\zeta$ and $h=\zeta$.
$(4) \Rightarrow(2)$. It follows by induction on the length of α using (3.3).
6. Note that Theorem 2, via the (inverse of the) \mathbb{C}-algebra isomorphism $\mathcal{X} e$: $\mathbb{C} \llbracket X \rrbracket \rightarrow A_{l}(\mathcal{C})$ defined by (3.4), gives rise to characterizations of Lambek-Carlitz type for special classes of formal power series (see also [11, Theorem 3.3.]).

Let \mathcal{C} be a Möbius category of full binomial type and
$S(\mathcal{C})=\left\{\begin{array}{ll}\sum_{n=0}^{\infty} a_{n} X^{n} \in \mathbb{C} \llbracket X \rrbracket \mid \mathcal{X} e\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right) & \text { are completely multiplicative } \\ \text { as incidence functions }\end{array}\right\}$
We remark:
(i) If $\sum_{n=0}^{\infty} a_{n} X^{n} \in S(\mathcal{C})$ and if $\bar{\alpha}$ is a non-identity indecomposable morphism than $\mathcal{X}_{e}\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)(\bar{\alpha})=a_{1}$. Thus, for $\alpha \in \operatorname{Mor} \mathcal{C}$ with $l(\alpha)=m$ we have $\mathcal{X}_{e}\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)(\alpha)=a_{1}^{m}$ and using (3.4), $\mathcal{X}_{e}\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)(\alpha)=a_{m} B(m)$, where $B(m), m \in \mathbb{N}$, are the parameters of \mathcal{C}. It follows that $\sum_{n=0}^{\infty} a_{n} X^{n} \in$ $S(\mathcal{C})$ if and only if $a_{m}=\frac{a_{1}^{m}}{B(m)}, \forall m \in \mathbb{N}$.
(ii) If $\odot_{\mathcal{C}}$ denotes the corresponding binary operation on $\mathbb{C} \llbracket X \rrbracket$ of the usual multiplication of incidence functions (that is $\mathcal{X}_{e}\left(\sum_{n=0}^{\infty} a_{n} X^{n} \odot_{\mathcal{C}} \sum_{n=0}^{\infty} b_{n} X^{n}\right)=$ $\left.\mathcal{X}_{e}\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right) \cdot \mathcal{X}_{e}\left(\sum_{n=0}^{\infty} b_{n} X^{n}\right)\right)$ then, by (3.4), we have $\sum_{n=0}^{\infty} a_{n} X^{n} \odot_{\mathcal{C}} \sum_{n=0}^{\infty} b_{n} X^{n}=\sum_{n=0}^{\infty} B(n) a_{n} b_{n} X^{n}$.
In the following section we use these remarks to obtain the q-analog of the LambekCarlitz type characterization of exponential series.
7. In $[10]$, using an embedding of the algebra $\mathbb{C} \llbracket X \rrbracket$ into the unitary algebra of arithmetical functions, it is proved the following Lambek-Carlitz type characterization of exponential series:

Theorem 3 ([10]). Let $\sum_{n=0}^{\infty} a_{n} X^{n} \in \mathbb{C} \llbracket X \rrbracket$ such that $a_{1} \neq 0$. The following statements are equivalent:
(i) $a_{n}=\frac{a_{1}^{n}}{n!}, \quad \forall n \in \mathbb{N}$;
(ii) $\sum_{n=0}^{\infty} a_{n} X^{n} \odot\left(\sum_{n=0}^{\infty} b_{n} X^{n} \cdot \sum_{n=0}^{\infty} c_{n} X^{n}\right)=\left(\sum_{n=0}^{\infty} a_{n} X^{n} \odot \sum_{n=0}^{\infty} b_{n} X^{n}\right)$

$$
\cdot\left(\sum_{n=0}^{\infty} a_{n} X^{n} \odot \sum_{n=0}^{\infty} c_{n} X^{n}\right), \forall \sum_{n=0}^{\infty} b_{n} X^{n}, \sum_{n=0}^{\infty} c_{n} X^{n} \in \mathbb{C} \llbracket X \rrbracket
$$

(distributivity over the product of series);
(iii) $\sum_{n=0}^{\infty} 2^{n} a_{n} X^{n}=\sum_{n=0}^{\infty} a_{n} X^{n} \cdot \sum_{n=0}^{\infty} a_{n} X^{n}$,
where $\sum_{n=0}^{\infty} a_{n} X^{n} \odot \sum_{n=0}^{\infty} b_{n} X^{n}=\sum_{n=0}^{\infty} n!a_{n} b_{n} X^{n}$.
The aim of this section is to establish a q-analog of Theorem 3 .
Let K be a finite field with $|K|=q$. Then the matrix $A=\left(a_{i j}\right)_{m \times n}$ over K is called reduced matrix if:
(1) rang $A=m$,
(2) for any i the first nonzero element (called pivot) of the line i equals 1 : $a_{i h_{i}}=1, a_{i j}=0$ if $j<h_{i}$,
(3) $h_{1}<h_{2}<\cdots<h_{m}$,
(4) pivot columns contain only 0 with the exception of the pivot.

We denote the category of reduced matrices by \mathcal{R}. The objects of \mathcal{R} are the non-negative integers with 0 as initial object, the set of morphisms from n to m is the set of reduced $m \times n$ matrices over K, and the composition of morphisms is the matrix multiplication. \mathcal{R} is a Möbius category of full binomial type with $\binom{n}{k}_{l}=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$ and $B(n)=[n]_{q}!$, where $[0]_{q}!=1$ and $[n]_{q}!=$ $(1+q)\left(1+q+q^{2}\right) \ldots\left(1+q+\cdots+q^{n-1}\right)$ (see [8]). Now, from Theorem 2 and the remarks of Section 6 we obtain the following Lambek-Carlitz type characterization:

Theorem 4. Let $\sum_{n=0}^{\infty} a_{n} X^{n} \in \mathbb{C} \llbracket X \rrbracket$ such that $a_{1} \neq 0$. The following statements are equivalent:
(1) $\sum_{n=0}^{\infty} a_{n} X^{n} \in S(\mathcal{R})$;
(2) $a_{n}=\frac{a_{1}^{n}}{[n]_{q}!}, \quad \forall n \in \mathbb{N}$;
(3) $\sum_{n=0}^{\infty} a_{n} X^{n} \odot_{\mathcal{R}}\left(\sum_{n=0}^{\infty} b_{n} X^{n} \cdot \sum_{n=0}^{\infty} c_{n} X^{n}\right)=\left(\sum_{n=0}^{\infty} a_{n} X^{n} \odot_{\mathcal{R}} \sum_{n=0}^{\infty} b_{n} X^{n}\right)$

$$
\cdot\left(\sum_{n=0}^{\infty} a_{n} X^{n} \odot_{\mathcal{R}} \sum_{n=0}^{\infty} c_{n} X^{n}\right), \forall \sum_{n=0}^{\infty} b_{n} X^{n}, \sum_{n=0}^{\infty} c_{n} X^{n} \in \mathbb{C} \llbracket X \rrbracket
$$

(distributivity over the product of series);
(4) $\sum_{n=0}^{\infty} G_{n}(q) a_{n} X^{n}=\sum_{n=0}^{\infty} a_{n} X^{n} \cdot \sum_{n=0}^{\infty} a_{n} X^{n}$,
where $G_{n}(q)$ are the Galois numbers and $\sum_{n=0}^{\infty} a_{n} X^{n} \odot_{\mathcal{R}} \sum_{n=0}^{\infty} b_{n} X^{n}=\sum_{n=0}^{\infty}[n]_{q}!a_{n} b_{n} X^{n}$.
Acknowledgement. The author would like to thank the referee for very valuable suggestions.

References

[1] Carlitz,L., Problem E 2268, Amer. Math. Monthly 78 (1971), 1140.
[2] Content,M., Lemay, F., Leroux, P., Catégories de Möbius et fonctorialités: un cadre gènèral pour l'inversion de Möbius, J. Combin. Theory Ser. A 25 (1980), 169-190.
[3] Doubilet, P., Rota, G. C., Stanley, R., On the foundations of combinatorial theory (VI): the idea of generating function, Proc. of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 267-318.
[4] Goldman, J., Rota, G. C., On the foundations of combinatorial theory IV: finite-vector spaces and Eulerian generating functions, Stud. Appl. Math. 49 (1970), 239-258.
[5] Lambek, J., Arithmetical functions and distributivity, Amer. Math. Monthly 73 (1966), 969-973.
[6] Langford, E., Distributivity over the Dirichlet product and complete multiplicative arithmetical functions, Amer. Math. Monthly 80 (1973), 411-414.
[7] Leroux, P., Les catégories de Möbius, Cahiers Topologie Géom. Différentielle Catég. 16 (1975), 280-282.
[8] Leroux, P., Catégories triangulaires. Exemples, applications, et problèmes, Rapport de recherche, Université du Québec a Montréal (1980), 72p.
[9] Leroux, P., Reduced matrices and q-log-concavity properties of q-Stirling numbers, J. Combin. Theory Ser. A (1990), 64-84.
[10] Schwab, E. D., Multiplicative and additive elements in the ring of formal power series, PU.M.A. 4 (1993), 339-346.
[11] Schwab, E. D., Complete multiplicativity and complete additivity in Möbius categories, Ital. J. Pure Appl. Math. 3 (1998), 37-48.
[12] Sivaramakrishnan, R., Problem E 2196 Amer. Math. Monthly 77 (1970), 772.

Department of Mathematical Sciences
University of Texas at El Paso
El Paso, Texas, 79968-0514, USA
E-mail: sehwab@math.utep.edu

[^0]: 2000 Mathematics Subject Classification: 11A25, 18B99, 13F25.
 Key words and phrases: completely multiplicative functions, Möbius categories, exponential series.

 Received September 30, 2002.

