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ANTIFLOWS, ORIENTED AND STRONG ORIENTED

COLORINGS OF GRAPHS

ROBERT ŠÁMAL

Abstract. We present an overview of the theory of nowhere zero flows, in
particular the duality of flows and colorings, and the extension to antiflows
and strong oriented colorings. As the main result, we find the asymptotic
relation between oriented and strong oriented chromatic number.

A preliminary version of this paper appears as [10]. The paper is organized as
follows.

1. Introduction — contains necessary definitions
2. Overview of the theory of nowhere zero flows
3. Upper bound — we find an upper bound on ~χs by improving the estimates

of the order of a group which contains a Sidon set of a given size.
4. Tightness of the upper bound — we use the probabilistic method to find

graphs with a large ~χs, ~χ being fixed.

1. Introduction

The vertex set of a graph (or oriented graph) G is denoted by V (G), its edge
set by E(G). What we call here a graph is in fact a multigraph, i.e. there can be
several edges between two vertices, loops are also allowed. By edge uv (or (u, v)
in the oriented case) we then mean some of the edges connecting u to v.

First we present the notion of coloring, which is of crucial importance in graph
theory and also its various modifications. By coloring of an (unoriented) graph G
we mean a mapping c : V (G) → S which satisfies

• for no edge uv of G there is c(u) = c(v)

Here S is an arbitrary set (of “colors”), for convenience we will often consider S to
be an abelian group. However, in this definition the only important property of S
is its size; the smallest size of a set S for which there is some coloring is called the
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chromatic number of G, denoted by χ(G). If G has no coloring (which happens if
it has a loop, an edge (u, u)), we let χ(G) = ∞.

Next we present a modification of coloring which is natural when considering
oriented graphs, i.e. graphs where edges are ordered pairs. An oriented coloring

of an oriented graph G is a mapping c : V (G) → S such that

• for no edge (u, v) of G there is c(u) = c(v); and
• for no edges (u, v), (x, y) of G there is c(u) = c(y) and c(v) = c(x).

The oriented chromatic number of G (denoted by ~χ(G)) is the minimal |S| for
which the oriented coloring exists. If G has no oriented coloring (which happens if
it has a loop or an oriented 2-cycle, i.e. edges (u, v) and (v, u)), we let ~χ(G) = ∞.

There is another approach to define coloring of oriented graphs. Let S be an
abelian group. By a strong oriented coloring of an oriented graph G we mean a
mapping c : V (G) → S such that

• for no edge (u, v) of G there is c(u) = c(v); and
• for no edges (u, v), (x, y) of G there is c(v) − c(u) = c(x) − c(y).

The strong oriented chromatic number of G (denoted by ~χs(G)) is the minimal
size of a group S, for which there is a strong oriented coloring with values in S or,
again, it is ∞ if there is no strong oriented coloring. This notion was first defined
in [5] (where it is called just strong coloring).

To show better the relationship between these three variants of coloring, we
present alternative definitions by means of homomorphism. Let G, H be two
(oriented) graphs. We say that a mapping f : V (G) → V (H) is a homomorphism

iff for every edge uv of G, graph H contains an edge f(u)f(v); in the case of
oriented graphs, the orientations has to be preserved as well. It is easy to see that
coloring of a graph G by k colors is the same as a homomorphism from G to Kk

(complete graph with k vertices). Similarly, oriented coloring of G by k colors
is equivalent to a homomorphism from G to some tournament with k vertices,
i.e. to some orientation of Kk. Finally, strong oriented coloring of G by k colors
is equivalent to a homomorphism from G to some oriented Cayley graph with k
vertices; where Cayley graph is defined as follows: Let M be an abelian group
and B its subset such that B ∩ −B is empty. Then the oriented Cayley graph

Cay(M, B) has M as its vertex set, and (m, m′) is its edge iff m′ − m ∈ B.
The other important notion of this paper is a flow on a graph. As we will

see in the next section, flows and colorings are deeply interconnected by duality
of plane graphs. Let S be an abelian group, G an oriented graph. We say that
φ : E(G) → S is a flow iff for every vertex v of G

∑

u;(u,v)∈E(G)

φ
(

(u, v)
)

=
∑

u;(v,u)∈E(G)

φ
(

(v, u)
)

(we sum over all edges going into v on the left hand side, over all edges going
out of v on the right hand side) i.e. it satisfies a condition similar to Kirchhoff’s
current law from elementary physics. If φ satisfies an additional condition

• for no edge e ∈ E(G) we have φ(e) = 0;

we call φ a nowhere zero flow. If φ satisfies also the third condition
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• for no edges e, f ∈ E(G) we have φ(e) = −φ(f),

we call φ an antiflow. The smallest size of a group S for which there is a nowhere
zero flow on G is called a NZF number of G and denoted by NZF(G). The smallest
size of a group S for which there is a antiflow on G is called an antiflow number

of G and denoted by AF(G). If G admits no nowhere zero flow (no antiflow) we
define NZF(G) = ∞ (AF(G) = ∞).

An edge e of G is called a bridge iff a removal of e increases the number of
components of G. Edges e, f of (an oriented graph) G form its oriented 2-cut iff
there is a partition of V (G) into two sets A, and B such that e, f are the only
edges connecting a vertex of A to a vertex of B and both are oriented from A
to B.

If we have an oriented plane graph G, we define its (oriented) dual to be G∗ =
(V ∗, E∗): V ∗ is the set of faces of G, and E∗ = {e∗ | e ∈ E(G)}, where e∗ denotes
an edge connecting the face to the left of e to the face to the right of e.

As an auxiliary notion we will need yet another variant of coloring, the acyclic

coloring. It is an assignment of colors to the vertices, for which each cycle of the
graph contains vertices of at least three colors. The minimal number of colors
needed for an acyclic coloring of a graph G is called the acyclic chromatic number

of G and denoted by a(G).
We construct strong oriented coloring using the following notion, which comes

from combinatorial number theory. Let S be a group and M be its subset. We
say that M is a Sidon subset of S, iff the differences m − n (for m, n ∈ M and
m 6= n) are pairwise different. (Note that equivalent definition is to ask all of the
sums m + n to be different.) For example the set {0, 1, 4, 14, 16} is a Sidon subset
of Z21 (by Zn we denote the additive group of integers modulo n). By a theorem
from [7], if m is a power of a prime, then there is a Sidon subset of Zm2+m+1

with m + 1 elements. By sk we will denote the size of the smallest group, which
contains a Sidon subset with k elements.

2. Overview of the theory of nowhere zero flows

In this section we present various results about colorings and flows. We also
point out which results we are going to improve in this paper. The interested
reader may find more about the topic and also the proofs of the stated results
in [2] or in [3].

Perhaps the most important (although rather simple) theorem about flows
claims that nowhere zero flow is a dual notion to coloring. Let again S be an
abelian group. For a mapping c : V (G) → S it is natural to define the mapping
∂c : E(G) → S by ∂c((u, v)) = c(v) − c(u) and the mapping (∂c)∗ : E(G∗) → S
by (∂c)∗(e∗) = ∂c(e). Then it holds that

c is a coloring iff (∂c)∗ is a nowhere zero flow.
By the same token we have the duality for antiflows:

c is a strong oriented coloring iff (∂c)∗ is an antiflow.
Now it easily follows that

χ(G) = NZF(G∗) , ~χs(G) = AF(G∗) .
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Next let’s consider the question of when does a graph admit a nowhere zero flow
(antiflow). Clearly if G has a bridge e, then every flow acquires value 0 at e. Hence
a graph with a bridge does not admit a nowhere zero flow, neither an antiflow.
Similarly, if G has an oriented 2-cut, then the edges of the 2-cut receive opposite
values. Hence graphs with an oriented 2-cut have no antiflow. Quite surprisingly,
these are the only obstacles, hence every graph without a bridge has a nowhere
zero flow, and every graph without a bridge and an oriented 2-cut has an antiflow
in some group. (The proof of the first statement is standard, the latter one is
shown in [5].) Note that for planar graphs these statements are equivalent to the
(rather obvious) facts, that a graph has a coloring, whenever it has no loop, and
has an oriented coloring, whenever it has no loop and no oriented 2-cycle.

Obviously every antiflow is also a nowhere zero flow, every strong oriented
coloring is an oriented coloring, and every oriented coloring is a coloring. Hence
we have the following easy inequalities for every oriented graph G

NZF(G) ≤ AF(G) , χ(G) ≤ ~χ(G) ≤ ~χs(G) .

The two variants of oriented coloring are, however, more closely connected. In [9]
it is shown (see Theorem 2) that

~χs(G) ≤ 4~χ(G)2 .

We will improve this result in the next section. In the last section we will find the
precise relationship between these two numbers as Theorem 5.

By the Four color theorem and the duality of coloring and nowhere zero flow we
get that every planar graph G has NZF(G) ≤ 4. For non-planar graphs we have no
duality and, indeed, the situation is rather more complicated. On contrary to the
chromatic number, the NZF number is bounded, Seymour proved that for every
bridgeless graph G we have NZF(G) ≤ 6. The famous Tutte 5-flow conjecture
claims that this can be improved to NZF(G) ≤ 5.

In the case of the antiflow, the situation is even less understood. For general
graphs, we have the estimate by [1]: for every graph G with no bridge and no 2-cut
AF(G) ≤ 1 259 712. In [9] it is shown that the antiflow number of planar graphs is
bounded by 672. This bound is obtained as a corollary of a more general bound

~χs(G) ≤ sa(G)2
a(G) .

In the next section we are going to improve the bound for sk, thus getting a better
estimate for ~χs by means of a. (Unfortunately this yields no better estimate for
planar graphs.)

3. The upper bound

In [9] it is shown (using a theorem of Singer and the Bertrand’s postulate):

Lemma 1. For every k ≥ 1,

k(k − 1) + 1 ≤ sk ≤ 4k2 .

If k − 1 is a power of a prime, then the lower bound is tight.
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In this paper we improve this lemma by using a strengthening of the Bertrand’s
postulate, given by the following theorem (the first part of it is a well known
consequence of the Prime number theorem, the second one appears in [6]).

Theorem 1. (i) For every ε > 0 exists a k0 such that for every integer k > k0

there is a prime p such that

k < p < (1 + ε)k .

(ii) For every integer k ≥ 647 there is a prime p such that

k < p < 14/13k .

The improved lemma is as follows.

Lemma 2. (i) sk = (1 + o(1)) · k2

(ii) For every k ≥ 1,

sk ≤ 64/49 · k2 .
= 1.31 · k2 .

Proof. (i) Fix an ε > 0. We use Theorem 1 to find a k0. For any k > k0 we use
the prime p between k and (1 + ε)k to get the following estimate

sk ≤ sp+1 = (p + 1)p + 1

(see Lemma 1), further

(p + 1)p + 1 ≤ (p + 1)2 ≤ ((1 + ε)k + 1)2 ≤ (1 + ε +
1

k0
)2 · k2 .

As this can be done for any ε > 0 and we can choose larger k0 if needed, the result
follows.

(ii) In the proof we use the same idea, but in this case we have to treat the
numbers below 647 in a special way. We will use an increasing sequence of inte-
gers qi, such that each qi − 1 is a power of a prime (i.e. it is pt for some prime p
and some positive integer t), q1 = 3 and for every i we have

qi+1 ≤ 8/7 · (qi + 1) .

Before constructing the sequence let us use it to prove the statement of our
lemma. Let k ≥ 1. The cases k < 4 are handled separately ({0} is a Sidon subset
of Z1, hence s1 = 1, {0, 1} is a Sidon subset of Z2, hence s2 ≤ 3, {0, 1, 3} is a
Sidon subset of Z7, hence s3 ≤ 7). So suppose k ≥ 4. Let qj be the last of the qi’s
less then k. Then

qj < k ≤ qj+1 ≤ 8/7 · (qj + 1) ≤ 8/7 · k .

We denote q = qj+1 and use Lemma 1 to find the exact value of sq . So we obtain

sk ≤ sq = q(q − 1) + 1 ≤ q2 ≤ (8/7)2 · k2

which was to be proven.
It remains to find the qi’s. The first elements (for i = 1, . . . , 38) are given

explicitly, it is straightforward to verify, that the following numbers (there is 38
of them) have the desired property 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 24, 28, 33, 38,
44, 50, 54, 62, 72, 82, 90, 104, 114, 129, 140, 158, 180, 200, 228, 258, 294, 332,
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380, 434, 492, 558, 632, 648, (note that the largest “gap” is between the numbers
8 and 6). For the next members of the sequence we just take “primes plus one”,
that is we let (for i ≥ 38) qi = pi+c + 1, where pn denotes the n-th prime number
and c is such a constant that for i = 38 the two definitions coincide. By Theorem 1
for m = qi + 1 = pi+c + 2 in place of k we have that there is a prime p such that

m = pi+c + 2 < p < 14/13 · m ,

hence

qi+1 ≤ p + 1 < 14/13 · m + 1 = m(14/13 + 1/m) ≤ 8/7 · (qi + 1) .

In [9] the following two estimates of strong oriented chromatic number by means
of sk are given.

Theorem 2. Let G be an oriented graph with ~χ(G) ≤ k. Then G has a strong

oriented coloring in a group with sk elements (this coloring uses just k elements

of the group), hence

~χs(G) ≤ sk ≤ 4k2 .

Theorem 3. Let G be an oriented graph with a(G) ≤ k. Then G has a strong

coloring in a group with sk · 2k elements, hence

~χs(G) ≤ sk · 2k ≤ 4k2 · 2k .

The mentioned coloring uses just k · 2k−1 elements of the group.

Using Lemma 2 to estimate sk we have the following corollaries:

Corollary 1. Let G be an oriented graph with ~χ(G) ≤ k. Then

~χs(G) ≤ (1 + o(1)) · k2

and particularly for every k

~χs(G) ≤ 64/49 · k2 .

Corollary 2. Let G be an oriented graph with a(G) ≤ k. Then

~χs(G) ≤ (1 + o(1)) · k2 · 2k

and particularly for every k

~χs(G) ≤ 64/49 · k2 · 2k .

4. Tightness of the upper bound

In this section we will prove that the first part of Corollary 1 gives the correct
asymptotic behaviour of ~χs in terms of ~χ. To do so we use a simple probabilistic
argument to find tournaments with large ~χs. Note that the proof also shows that
for a random tournament ~χs

.
= ~χ2 asymptotically almost surely.

Theorem 4. Let k, n be sufficiently large integers such that n < k2 − 5k log k.

Then there is a tournament Tk with k vertices such that ~χs(Tk) > n. Consequently,

we have

~χs(Tk) ≥ (1 − o(1)) · ~χ(Tk)2 .
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As an immediate corollary we get our main theorem, which strenghtens Corol-
lary 1.

Theorem 5. Let G be an oriented graph with ~χ(G) ≤ k. Then

~χs(G) ≤ (1 + o(1)) · k2

and this bound is tight.

For the proof of Theorem 4, we need a few results from group theory (see,
e.g. [4]).

Theorem 6. Let M be an abelian group of order m, let the prime factorization

of m be
∏t

i=1 pαi

i . Let

M(p) = {a ∈ M ; for some positive integer n we have pna = 0} .

Then

• M(pi) is a nontrivial group for each i = 1, . . . , t.

• M is isomorphic to the product
∏t

i=1 M(pi).

• M(pi) is isomorphic to a product of cyclic groups
∏ti

j=1 Z
p

βi,j
i

, such that

αi =
∑t

j=1 βi,j .

Proof of Theorem 4. Fix k, n as stated. We choose a random tournament T
on k vertices: for each of the edges we randomly independently choose one of
the two orientations, each with probability 1/2. We will prove that with positive
probability T has no homomorphism to a Cayley graph with at most n vertices
thus showing that there is a tournament, name it Tk, for which the same holds,
therefore ~χs(Tk) > n.

Let Cay(M, B) be an oriented Cayley graph with m vertices (m ≤ n), without
loss of generality we may suppose it is a maximal oriented Cayley graph. That is,
let M be an abelian group with at most n elements and B be its subset such that
for any a ∈ M either a+a = 0 and a is not in B or a+a 6= 0 and exactly one of a,
−a is an element of B. Further let f : V (T ) → M be an injective mapping. If for
some u, v ∈ V (T ), f(u) and f(v) are not connected by an edge of Cay(M, B) in
either direction, then surely f is not a homomorphism. Otherwise, the probability

that f is a homomorphism is 2−(k
2
) as each edge has probability 1/2 to be in

the “right” direction. The number of possible mappings f is k!
(

|M |
k

)

< nk. The

number of possible sets B is at most 2m/2 ≤ 2n/2 (it is exactly 2(m−z)/2, where z
is the number of a ∈ M such that a + a = 0).

Finally, the number of abelian groups with at most n elements is at most n2:
let m ≤ n be an integer with prime factorization

∏t
i=1 pαi

i . Let am be the number
of abelian groups of order m. By Theorem 6

am =

t
∏

i=1

(

number of groups
∏ti

j=1 Z
p

βi,j
i

of order pαi

i

)

=

t
∏

i=1

(

number of tuples of integers (βi,j)
ti

j=1 s.t.
∑ti

j=1 βi,j = αi

)



342 R. ŠÁMAL

If we distinguish the tuples of βi,j ’s which differ only in the order, the i-th factor
in the last expression is equal to 2αi−1 (this well-known fact may be proven by
a bijection to the subsets of {1, . . . , αi − 1}, which maps (βj) to {

∑s
j=1 βi,j ; 1 ≤

s < ti}). As we do not distinguish such tuples, this factor is possibly smaller,

but certainly less than 2αi ≤ pαi

i . Hence am ≤
∏t

i=1 pαi

i = m. So the number of
abelian groups of order at most n is the sum of integers up to n, which is bounded
by n2.

Hence the probability that T has a homomorphism to a Cayley graph of size at
most n is bounded by

2−(k

2
)nk2n/2n2 .

This expression is o(1), as the following routine calculation shows. Take logarithm
with base 2. We get

−
k2

2
+

k

2
+ k log n +

n

2
+ 2 logn < −

k2

2
+

k

2
+ k log k2 +

k2

2
−

5k log k

2
+ 2 log k2

≤ −
1

2
k log k + O(k) ,

which tends to −∞. Hence for k large enough the probability is less then 1, and
we are done. 2

Remark: With notation from the previous proof let A(n) =
∑

m≤n am, i.e. An is
the number of nonisomorphic abelian groups with at most n elements. Our crude
estimate A(n) ≤ n2 is sufficient here. Let us, however, mention the result of [8]
that

A(n) = c1n + c2n
1/2 + c3n

1/3 + O(n105/407(ln n)2) .
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