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FIXED POINT THEOREMS FOR NONEXPANSIVE MAPPINGS

IN MODULAR SPACES

POOM KUMAM

Abstract. In this paper, we extend several concepts from geometry of Ba-
nach spaces to modular spaces. With a careful generalization, we can cover
all corresponding results in the former setting. Main result we prove says that
if ρ is a convex, ρ-complete modular space satisfying the Fatou property and
ρr-uniformly convex for all r > 0, C a convex, ρ-closed, ρ-bounded subset of
Xρ, T : C → C a ρ-nonexpansive mapping, then T has a fixed point.

1. Introduction

The theory of modular spaces was initiated by Nakano [15] in 1950 in connection
with the theory of order spaces and redefined and generalized by Musielak and
Orlicz [14] in 1959. It is well known that one of the standard proof of Banach’s
fixed point theorem is based on Cantor’s theorem in complete metric spaces [5, 6].
To this end, using some convenient constants in the contraction assumption, we
present a generalization of Banach’s fixed point theorem in some classes of modular
spaces.

In this paper, we extend many concepts and results in normed spaces to modular
spaces.

2. Preliminaries

We start by reviewing some basic facts about modular spaces as formulated by
Musielak and Orlicz [14]. For more details the reader is refered to [7, 9, 10] and
[13].

Definition 2.1 (cf. [7]). Let X be an arbitrary vector space.

(a) A function ρ : X → [0,∞] is called a modular on X if for arbitrary x, y in
X ,

(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scalar α with | α |= 1, and
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(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1 and α, β ≥ 0.
(b) If (iii) is replaced by (iii)’ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β = 1 and

α, β ≥ 0, e say that ρ is a convex modular .
(c) A modular ρ defines a corresponding modular space, i.e. the vector space Xρ

given by

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0} .

Xρ is a linear subspace of X .

In general the modular ρ is not subadditive and therefore does not behave as a
norm or a distance. But one can associate to a modular an F -norm (see [13]).

The modular space Xρ can be equipped with an F -norm (see [13]) defined by

‖x‖ρ = inf
{

α > 0; ρ
(x

α

)

≤ α
}

.

Namely, if ρ is convex, then the functional ‖|x‖|ρ = inf
{

α > 0; ρ
(

x
α

)

≤ 1
}

is a
norm in Xρ which is equivalent to the F -norm ‖.‖ρ .

Definition 2.2 (cf. [7, 8]). Let Xρ be a modular space.

(a) A sequence (xn) ⊂ Xρ is said to be ρ-convergent to x ∈ Xρ and write

xn
ρ
→ x, if ρ(xn − x) → 0 as n → ∞.

(b) A sequence (xn) is called ρ-Cauchy whenever ρ(xn−xm) → 0 as n, m → ∞.

(c) The modular ρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

(d) A subset B ⊂ Xρ is called ρ-closed if for any sequence (xn) ⊂ B ρ-
convergent to x ∈ Xρ, we have x ∈ B.

(e) A ρ-closed subset B ⊂ Xρ is called ρ-compact if any sequence (xn) ⊂ B has
a ρ-convergent subsequence.

(f) ρ is said to satisfy the ∆2-condition if ρ(2xn) → 0 whenever ρ(xn) → 0 as
n → ∞.

(g) We say that ρ has the Fatou property if ρ(x) ≤ lim infn ρ(xn) whenever

xn
ρ
→ x.

(h) A subset B ⊂ Xρ is said to be ρ-bounded if

diam ρ(B) < ∞ ,

where diam ρ(B) = sup{ρ(x − y); x, y ∈ B} is called the ρ-diameter of B.

(i) Define the ρ-distance between x ∈ Xρ and B ⊂ Xρ as

dis ρ(x, B) = inf{ρ(x − y); y ∈ B} .

(j) Define the ρ-Ball, Bρ(x, r), centered at x ∈ Xρ with radius r as

Bρ(x, r) = {y ∈ Xρ; ρ(x − y) ≤ r} .

Let (X, ‖.‖) be a normed space. Then ρ(x) = ‖x‖ is a convex modular on X .
One can check that ρ-balls are ρ-closed if and only if ρ has the Fatou property
(cf. [8]).
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Example 2.3.

(1) The Orlicz modular is defined for every measurable real function f by the
formula

ρ(f) =

∫

R

ϕ(|f(t)|) dm(t) ,

where m denotes the Lebesgue measure in R and ϕ : R → [0,∞) is continuous.
We also assume that ϕ(u) = 0 iff u = 0 and ϕ(t) → ∞ as n → ∞. The modular
space induced by the Orlicz modular ρϕ is called the Orlicz space Lϕ.
(2) The Musielak-Orlicz modular spaces (see. [17]). Let

ρ(f) =

∫

Ω

ϕ(ω, f(ω))dµ(ω) ,

where µ is a σ-finite measure on Ω, and ϕ : Ω × R → [0,∞) satisfy the following:
(i) ϕ(ω, u) is a continuous even function of u which is nondecreasing for u > 0,
such that ϕ(ω, 0) = 0, ϕ(ω, u) > 0 for u 6= 0, and ϕ(ω, u) → ∞ as n → ∞.
(ii) ϕ(ω, u) is a measurable function of ω for each u ∈ R.

The corresponding modular space is called the Musielak-Orlicz spaces, and is
denoted by Lϕ.

Definition 2.4 (cf. [8]). A modular space Xρ is said to have ρ-normal structure
if for any nonempty ρ-bounded ρ-closed convex subset C of Xρ not reduced to a
one point, there exists a point x ∈ C such that

rρ(x, C) := sup{ρ(x − y); y ∈ C} < diam ρ(C) .

A modular space Xρ is said to have ρ-uniformly normal structure if there exists
a constant c ∈ (0, 1) such that for any subset C as above, there exists x ∈ C such
that

rρ(x, C) < c diam ρ(C) .

Clearly ρ-uniformly normal structure is ρ-normal structure.
Let Xρ be a modular space and let C be a nonempty ρ-bounded and ρ-closed

convex subset C of Xρ. We will say that C has the fixed point property (fpp) if every
ρ-nonexpansive selfmap defined on C (i.e.,T : C → C, ρ(T (x) − T (y)) ≤ ρ(x − y)
for every x, y ∈ C) has a fixed point, that is, there eists x ∈ C such that T (x) = x.
Also, a modular space Xρ is said to have the fixed point property (fpp) if every
nonempty ρ-bounded ρ-closed convex subset of Xρ has the fixed point property.

In Banach spaces, when we think about reflexivity automatically the dual space
is present in our taught. But in modular spaces, it is very hard to conceive the dual
space. To circumvent the problem, we use some characterization of reflexivity.

Theorem 2.5 (Smulian 1939, cf. [12]). A normed space X is reflexive if and only
if

⋂

n Cn 6= ∅ whenever (Cn) is a sequence of nonempty, closed bounded and convex
subsets of X such that Cn ⊇ Cn+1 for each n ∈ N.

Definition 2.6 (cf. [8]). Let Xρ be a modular space. We will say that Xρ or ρ

satisfies the property (R) if every decreasing sequence of nonempty ρ-closed and
ρ-bounded convex subsets of Xρ, has a nonempty intersection.

The following theorem is known.
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Theorem 2.7 (cf. [8]). Let Xρ be a ρ-complete modular space. Assume that ρ

is convex and satisfies the Fatou property. Moreover, assume that Xρ has the ρ-
normal structure and has the property (R) and C is any ρ-closed ρ-bounded convex
nonempty subset of Xρ. Then any ρ-nonexpansive mapping T : C → C has a fixed
point in C.

3. Results

We start this chapter with generalizations as well as their corresponding results
of uniform convexity and normal structure coefficients in modular spaces.

Definition 3.1. For r > 0, a modular space Xρ is said to be ρr-uniformly convex
if for each ε > 0, there exists δ > 0 such that for any x, y ∈ Xρ, the conditions
ρ(x) ≤ r, ρ(y) ≤ r and ρ(x − y) ≥ rε imply

ρ
(x + y

2

)

≤ (1 − δ)r .

Definition 3.2. Let Xρ be a Modular space. For any ε ≥ 0 and r > 0, the
modulus of ρr-uniform convexity of Xρ is defined by

δρ(r, ε) = inf

{

1 −
1

r
ρ
(x + y

2

)

: ρ(x) ≤ r, ρ(y) ≤ r, ρ(x − y) ≥ rε

}

.

Definition 3.3. The normal structure coefficient of Xρ is the number

N(Xρ) = inf
{diam ρ(C)

Rρ(C)
: C ⊂ Xρ C is ρ-closed convex,

ρ-bounded and diam ρ(C) > 0
}

,

where Rρ(C) := inf{rρ(x, C) : x ∈ C} which is called the ρ-Chebyshev radius of
C (cf. [7]).

Remark 3.4.

(1) It is not hard to show that Rρ(C) 6= 0. Indeed, suppose Rρ(C) = 0 and let,
x0, y0 ∈ C be such that x0 6= y0. Since Rρ(C) = infy∈C rρ(x, C) = 0, so
there exists a sequence (xn) in C such that limn→∞ rρ(xn, C) = 0. Thus

ρ
(x0 − y0

2

)

= ρ

(

(x0 − xn) + (xn − y0)

2

)

≤ ρ(x0 − xn) + ρ(xn − y0) → 0

as n → ∞. Therefore x0 = y0, a contradiction.
(2) For any x ∈ C we have Rρ(C) ≤ rρ(x, C) ≤ diam ρ(C).
(3) It is obvious form the definition that Xρ has ρ-uniform normal structure if

and only if N(Xρ) > 1 (see [11]).

Lemma 3.5. Let r > 0. A modular space Xρ is ρr-uniformly convex if and only
if δρ(r, ε) > 0 for all ε > 0.

Proof. Let ε > 0. If Xρ is ρr-uniformly convex, then there exists δ > 0 such
that for any x, y ∈ Xρ with ρ(x) ≤ r, ρ(y) ≤ r, and ρ(x − y) ≥ rε. we have

ρ
(

x+y
2

)

≤ (1 − δ)r. Thus, for these x and y, δ ≤ 1 − 1

r
ρ
(

x+y
2

)

. Hence δρ(r, ε) ≥
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δ > 0. Conversely, suppose δρ(r, ε) ≥ δ > 0 for some ε > 0 and δ > 0. Take any
x, y ∈ Xρ such that ρ(x) ≤ r, ρ(y) ≤ r and ρ(x − y) ≥ rε. By definition of δρ, we

get δρ(r, ε) ≤ 1− 1

r
ρ
(

x+y
2

)

. Hence

1

r
ρ
(x + y

2

)

≤ 1 − δ(r, ε) ≤ 1 − δ .

Therefore Xρ is ρr-uniformly convex.

Lemma 3.6. The modulus δρ(r, .) of uniform convexity of Xρ is increasing on
[0,∞).

Proof. Let r > 0 and ε1 > ε2 ≥ 0. Let x, y ∈ Xρ be such that ρ(x) ≤ r and
ρ(y) ≤ r. If ρ(x − y) ≥ ε1r, then ρ(x − y) ≥ ε2r. This show that

{

1 −
1

r
ρ
(x + y

2

)

: ρ(x) ≤ r, ρ(y) ≤ r, ρ(x − y) ≥ rε1

}

⊆

{

1 −
1

r
ρ
(x + y

2

)

: ρ(x) ≤ r, ρ(y) ≤ r, ρ(x − y) ≥ rε2

}

.

This implies that δρ(r, ε1) ≥ δρ(r, ε2).

Theorem 3.7. If the modulus δρ of convexity of a modular space Xρ satisfies
δρ(d, ε) > 0 for all d, ε > 0, then Xρ has ρ-normal structure.

Proof. Let C be a nonempty ρ-bounded ρ-closed convex subset of Xρ with
diam ρ(C) = d > 0. Let ε ∈ (0, 1) there exist x, y ∈ C such that

ρ(x − y) ≥ dε .

Let z = x+y
2

and w ∈ C. Thus, z ∈ C, ρ(w − x) ≤ d, ρ(w − y) ≤ d and
ρ((w − x) − (w − y)) = ρ(x − y) ≥ dε.
Consequently,

ρ

(

w −
(x + y

2

)

)

= ρ

(

(w − x) + (w − y)

2

)

≤ (1 − δρ(d, ε))d .

Hence

sup
w∈C

ρ(w − z) ≤
(

1 − δρ(d, ε)
)

d .

Since δρ(d, ε) > 0, we get

sup
w∈C

ρ(w − z) < d = diam ρ(C) .

Since this is true for any C, this proves that Xρ has ρ-normal structure.
Lemma 3.5 and Theorem 3.7 give us immediately

Corollary 3.8. For a modular space Xρ, if Xρ is ρr-uniformly convex for all
r > 0, then Xρ has ρ-normally structure.

Corollary 3.9 (cf. [4]). Closed bounded convex subsets of uniformly convex Ba-
nach spaces have normal structure.
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Theorem 3.10. Let Xρ be a ρ-complete modular space. If ρ is convex and satisfies
the Fatou property and Xρ is ρr-uniformly convex for all r > 0, then Xρ has the
property (R).

Proof. Let (Cn) be a decreasing sequence of ρ-bounded, ρ-closed nonempty convex
subsets of Xρ, z ∈ Xρ which does not belong to C1 and

r = lim
n→∞

dis ρ(z, Cn) .

Define Dn = Cn ∩ Bρ(z, r) and let dn be the diameter of Dn. By the Fatou
property of ρ, (Dn) is a decreasing sequence of nonempty ρ-bounded, ρ-closed
convex subsets of Xρ because Bρ(z, r) is then a ρ-closed set (see [8]).

Let rn be a sequence of positive number that decreases to zero and dn − rn > 0
for all n. There exist x, y ∈ Dn such that ρ(x − y) ≥ dn − rn. Thus, by the

definition of δρ(r,
dn−rn

r
), we have

ρ(z −
x + y

2
) = ρ

(

(z − x) + (z − y)

2

)

≤

(

1 − δρ

(

r,
dn − rn

r

))

r .

Hence

1

r
dis ρ(z, Cn) ≤

1

r
ρ

(

z −
x + y

2

)

≤ 1 − δρ

(

r,
dn − rn

r

)

.(∗)

Put d = limn→∞ dn and an = dn − 1

n
, and consider two cases.

Case 1 ( an ≥ d, for all n large enough). By δρ being increasing and (∗), we have
for all n large enough,

1

r
dis ρ(z, Cn) ≤ 1 − δρ

(

r,
an

r

)

≤ 1 − δρ

(

r,
d

r

)

.

Letting n → ∞, we get

1 ≤ 1 − δρ

(

r,
d

r

)

,

which implies that δρ(r,
d
r
) = 0. By ρr-uniform convexity of Xρ and Lemma 3.1.6

we have δρ(r, ε) > 0 for all ε > 0, whence d = 0.

Case 2 (0 < an < d, for infinitely many n). There exists a subsequence (an′) such
that an′ ↗ d, whence the limit limn′→∞ δρ(r,

a
n
′

r
) exists and by (∗), we have

1 ≤ 1 − lim
n′→∞

δρ

(

r,
an′

r

)

.

Consequently, limn′→∞ δρ(r,
a

n
′

r
) = 0. Since an′ ↗ d and δρ(r, ε) > 0 for all ε > 0,

we have d = limn→∞ dn = 0 as well. Thus, there exists a ρ-Cauchy sequence
(xn), where xn ∈ Dn for each n. Since Xρ is ρ-complete, (xn)ρ-converges to some
x0 ∈ Xρ. Using the ρ-closeness of Dn, we deduce that x0 ∈ Dn for all n ≥ 1.
This implies that ∩n∈NDn 6= ∅ and so ∩n∈NCn 6= ∅ as well. The proof is therefore
complete.
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Corollary 3.11 (cf. [4]). Let Xρ be a ρ-complete modular space with ρ convex
and satisfying the Fatou property. If Xρ is ρr-uniformly convex for all r > 0, then
Xρ has the fixed point property.

Proof. By Corollary 3.8 and Theorem 3.10, Xρ has ρ-normal structure and prop-
erty (R). Consequently, Theorem 2.7 can be applied to conclude that Xρ has the
fixed point property.

Corollary 3.12 (cf. [4]). If C is a nonempty closed bounded convex subset of a
uniformly convex Banach space, then every nonexpansive mapping T : C → C has
a fixed point in C.

Theorem 3.13. Let Xρ be a modular space with modulus of convexity δρ(1, ε) 6= 1
for some ε ∈ (0, 1). If we assume that ρ(αx) = αρ(x) for all α > 0, then

N(Xρ) ≥
1

1 − δρ(1, ε)
.

Proof. Let C be a ρ-closed, ρ-bounded convex subset of Xρ with diam ρ(C) =
d > 0. Since ε ∈ (0, 1), there exist x, y ∈ C such that

ρ(x − y) ≥ dε .

Let z = x+y
2

∈ C and w ∈ C. Then ρ(w−x
d

) = 1

d
ρ(w − x) ≤ 1, ρ(w−y

d
) =

1

d
ρ(w − y) ≤ 1, and

ρ

(

(w − x

d

)

−
(w − y

d

)

)

=
1

d
ρ(x − y) ≥ ε .

By the definition of δρ(1, ε), we obtain

1

d
ρ
(

w −
x + y

2

)

=
1

d
ρ

(

(w − x) + (w − y)

2

)

≤ 1 − δρ(1, ε) .

Hence it follows that

Rρ(C) ≤ sup
w∈K

ρ(z − w) ≤ d
(

1 − δρ(1, ε)
)

.

Consequently,
diam ρ(C)

Rρ(C)
≥

1

1 − δρ(1, ε)
.

Therefore

N(Xρ) ≥
1

1 − δρ(1, ε)
.

Remark 3.14. If we assume that in Colloray3.8 ρ(αx) = αρ(x) for all α > 0,
then Xρ will have ρ-uniformly normal structure.

Corollary 3.15. If Xρ is a modular space with the modulus of convexity δρ(1, ε) ∈
(0, 1) for some ε ∈ (0, 1), then Xρ has ρ-uniformly normal structure.
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Proof. By Theorem 3.13 we have N(Xρ) > 1. Thus, by Remarks 3.4 (3), Xρ has
ρ-uniformly normal structure.

Corollary 3.16. If X is a Banach space space with modulus of convexity δX(ε) ∈
(0, 1) for some ε ∈ (0, 1) and we put ρ(x) = ‖x‖, then we get that X has uniformly
normal structure.

Corollary 3.16 strongly improves [1] which states that any uniformly convex
Banach space has uniformly normal structure.

Note that a Banach space X is uniformly convex if and only if its modulus of
convexity satisfies δX(ε) > 0 for all ε > 0 (see [5]).
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