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OSCILLATION OF SOLUTIONS OF NON-LINEAR NEUTRAL

DELAY DIFFERENTIAL EQUATIONS OF HIGHER ORDER

FOR p(t) = ±1p(t) = ±1p(t) = ±1

R. N. RATH, L. N. PADHY, N. MISRA

Abstract. In this paper, the oscillation criteria for solutions of the neutral
delay differential equation (NDDE)

(y(t) − p(t) y(t − τ))(n) + α Q(t) G (y(t − σ)) = f(t)

has been studied where p(t) = 1 or p(t) ≤ 0, α = ±1, Q ∈ C
`

[0,∞), R+
´

,
f ∈ C([0,∞), R), G ∈ C(R, R). This work improves and generalizes some
recent results and answer some questions that are raised in [1].

1. Introduction

In this paper sufficient conditions for oscillation and non-oscillation of solutions
of NDDE

(y (t) − p (t) y (t − τ ))
(n)

+ α Q (t) G (y (t − σ)) = f (t)(1)

have been obtained where α = ±1, τ > 0, σ ≥ 0, p ∈ C(n)([0,∞), R), Q ∈
C([0,∞), R+), f ∈ C([0,∞), R) and G ∈ C(R, R). Further the following assump-
tions are made for its use in the sequel.

(H1) G is non-decreasing and xG(x) > 0 for x 6= 0.

(H2) lim inf
|u|→∞

G(u)
u

> β > 0.

(H3) For u > 0, ν > 0, G(u) + G(ν) > δG(u + ν) and G(u)G(ν) ≥ G(uν).
(H4) G(−u) = −G(u).
(H5) There exists F ∈ C(n)([0,∞), R) such that F (n)(t) = f(t) and lim

t→∞
F (t) = 0.

(H6)
∞
∑

i=0

∞
∫

t0+iτ

(s − t0 − iτ )n−1 Q(s) ds < ∞.

(H7) f(t) ≤ 0 and
∞
∑

i=0

∞
∫

t0+iτ

(s − t0 − iτ )n−1f(s) ds > −∞.

2000 Mathematics Subject Classification: 34C10, 34 C15, 34K40.
Key words and phrases: oscillation, non-oscillation, neutral equations, asymptotic-behaviour.
Received November 19, 2002.



360 R. N. RATH, L. N. PADHY, N. MISRA

(H8)
∞
∫

τ

tn−2Q∗(t) dt = ∞, where Q∗(t) = min{Q(t), Q(t − τ)} and n ≥ 2.

Remark 1. The prototype of G satisfying (H1)–(H4) is G(u) = (β+|u|µ)|u|λsgnu
where λ > 0, µ > 0, λ + µ ≥ 1, β ≥ 1. For verification we may take the help of
the well known inequality (see [2, p. 292])

up + vp ≥

{

(u + v)p , 0 ≤ p < 1

21−p(u + v)p , p ≥ 1

During the last two decades many authors (see [1-10]) have taken active interest
to study the oscillation and non-oscillation of solutions of NDDEs and many open
problems have appeared in the literature (see [1]). Some of these have been proved
and some have been disproved with appropriate counter examples (see [10]). In
[1, p. 287], the authors have proposed the following open problems.

(10.10.2) Extend the results of section 10.4 to equations where the coefficient
function p(t) lies in different ranges.

(10.10.3) Obtain sufficient condition for the existence of a positive solution of
the NDDE

(

y(t) − p(t) y(t − τ)
)(n)

+ Q(t) y(t − σ) = 0 .(E)

This paper provides answer to both the problems (10.10.2) and (10.10.3) for the
equation (1) with α = 1, which is more general than (E). In [6], the authors have
given an example to justify their assumption

∫ ∞

τ

Q∗(t) dt = ∞(2)

which is stronger than
∫ ∞

0

Q(t) dt = ∞(3)

in order to find sufficient condition for oscillation of solutions of Eq. (1) with
α = 1 and p(t) ≡ −1. It may be noted that in [7, 9], the author has assumed
Q(t) is decreasing in addition to (3) and both these imply (2). The condition (H8)
assumed in this paper is weaker than (2). Thus this paper improves some results
of [7, 9].

It seems that oscillation of solutions of non linear NDDEs is not studied much.
In particular, the critical cases that is for the range p(t) = ±1 are still less studied.
Again with p(t) < −1, very few results on the oscillatory behaviour of solutions
of Eq. (1) are available in the literature. The present work is an attempt in this
direction to get some results for the non linear NDDE(1) in the range p(t) = 1 or
p(t) ≤ 0 and answer the above mentioned open problems.

By a solution of Eq. (1) we mean a real valued continuous function y ∈ C (n)
(

(Ty−

ρ,∞), R
)

for some Ty ≥ 0 where ρ = max{τ, σ} such that y(t) − p(t) y(t − τ) is
n-times continuously differentiable and Eq. (1) is satisfied for t ≥ Ty. A solution
of Eq. (1) is said to be oscillatory if it has arbitrarily large zeros, otherwise it is
called non-oscillatory.
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In the sequel for convenience, when a functional inequality is written with out
specifying its domain of validity, it is assumed that it holds for all sufficiently
large t.

2. Main Results

Lemma 2.1 ([5], p. 376). If f and g be two positive functions in [a, t] and

lim
t→∞

f(t)
g(t) = ` ∈ R, where ` is non zero then

∫ ∞

a
f(t) dt and

∫ ∞

a
g(t) dt converge

or diverge together. Also if f/g → 0 and
∫ ∞

a
g(t) dt converges then

∫ ∞

a
f(t) dt

converges and f/g → ∞ and
∫ ∞

a
g(t) dt diverges then

∫ ∞

a
f(t) dt diverges.

The proof is straight forward and can be found in any higher calculus book,
containing Improper Integrals.

Lemma 2.2 ([3], p. 193). Let y ∈ C(n)([0,∞), R) be of constant sign. Let y(n)(t)
be also of constant sign and 6≡ 0 in any interval [T,∞), T ≥ 0 and y(n)(t) y(t) ≤ 0.
Then there exists a number t0 ≥ 0 such that the functions y(j)(t), j = 1, 2, . . ., n−1
are of constant sign on [t0,∞) and there exists a number k ∈ {1, 3, 5, . . ., n − 1}
when n is even or k ∈ {0, 2, 4, . . ., n − 1} when n is odd such that

y(t)y(j)(t) > 0 for j = 0, 1, 2, . . ., k, t ≥ t0

(−1)n+j−1y(t)y(j)(t) > 0 for j = k + 1, k + 2, . . ., n − 1, t ≥ t0

Theorem 2.3. Suppose that n ≥ 2 and −p ≤ p(t) ≤ 0 and (H1)–(H5) and (H8)
hold. Then every solution of Eq. (1) with α = 1 oscillates or tends to zero as

t → ∞.

Proof. Let y(t) > 0 be a non-oscillatory solution of Eq. (1) for t ≥ t0 > 0. Then
setting

z(t) = y(t) − p(t)y(t − τ)(4)

and

w(t) = z(t) − F (t)(5)

we obtain from Eq. (1)

w(n)(t) = −q(t)G(y(t − σ)) ≤ 0 ,(6)

for t ≥ t0+ρ. Hence w(t), w′(t), w′′(t), . . ., w(n−1)(t) are monotonic and lim
t→∞

w(t) =

`, where −∞ ≤ ` ≤ ∞. Hence lim
t→∞

z(t) = ` by (H5). If −∞ ≤ ` < 0, then z(t) < 0

for large t, a contradiction. Hence 0 ≤ ` ≤ ∞. If ` = 0, then y(t) ≤ z(t) implies
lim

t→∞
y(t) = 0. If 0 < ` ≤ ∞, then w(t) > 0 for large t. From Lemma 2.2

it follows that there exists an integer k, 0 ≤ k ≤ n − 1 and t1 > t0 + ρ such
that n − k is odd, w(j)(t) > 0 for j = 0, 1, . . ., k and (−1)n+j−1w(j)(t) > 0 for
j = k + 1, k + 2, . . . , n − 1. Hence lim

t→∞
w(k)(t) exists and lim

t→∞
w(i)(t) = 0 for

i = k +1, k +2, . . ., n− 1 and t ≥ t3 > t2. It may be noted that 0 < ` < ∞ implies
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k = 0 but ` = ∞ implies k > 0 such that n−k is odd. Integrating (6), n−k-times
from t to ∞ we obtain, for some constant β

wk(t) = β +
1

(n − k − 1)!

∫ ∞

t

(s − t)n−k−1Q(s) G
(

y(s − σ)
)

ds .(7)

Hence from Lemma 2.1 and (7) we obtain
∫ ∞

ρ

tn−k−1Q(t) G
(

y(t − σ)
)

dt < ∞ .(8)

Since Q(t) ≥ Q∗(t + τ), it follows that
∫ ∞

ρ

tn−k−1Q∗(t + τ) G
(

y(t − σ)
)

dt < ∞ .

Consequently G(p)
∞
∫

ρ−τ

(t − τ)n−k−1Q∗(t) G
(

y(t − τ − σ)
)

dt < ∞, which implies

(by Lemma 2.1, (H1) and the fact that p(t) ≥ −p)
∫ ∞

T1

tn−k−1Q∗(t) G
(

− p(t − σ)
)

G
(

y(t − τ − σ)
)

dt < ∞ ,

where T1 ≥ ρ + τ . This with the use of (H3) yields
∫ ∞

T1

tn−k−1Q∗(t) G
(

− p(t − σ) y(t − τ − σ)
)

dt < ∞ .(9)

From (8) and the fact Q(t) ≥ Q∗(t), we obtain
∫ ∞

T1

tn−k−1Q∗(t) G
(

y(t − σ)
)

dt < ∞ .(10)

Further using (H3), (9) and (10) one may get
∫ ∞

T1

tn−k−1Q∗(t) G
(

z(t− σ)
)

dt < ∞ .(11)

If k = 0, then (H8) and (11) yield lim inf
t→∞

t G
(

z(t−σ)
)

= 0, which with application

of (H2) yields lim
t→∞

z(t) = 0, a contradiction. If k > 0 then in this case lim
t→∞

w(t) =

∞. Hence there exists M0 > 0 such that w(t) > M0t
k−1 and by (H5) we can find

0 < M1 < M0 such that

z(t) > M1t
k−1 for large t .(12)

Then further use of (12), (H2) and Lemma 2.1 gives
∫ ∞

T1

Q∗(t)tn−k−1G
(

z(t − σ)
)

dt ≥

∫ ∞

T1

Q∗(t)tn−k−1G
(

M1(t − σ)k−1
)

dt

≥ βM1

∫ ∞

T1

Q∗(t)(t − σ)n−2dt = ∞

by (H8), a contradiction to (11). When y(t) < 0 for t ≥ t0 > 0, we use (H4) and
proceed as above to get the desired result.
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Remark 2. Theorem 2.3 answers the open problem 10.10.2 of [1] since the range
of p(t) in this theorem is different from the range of p(t) in the results of section
10.4 of [1]. The ranges used in that section are 1 ≤ p(t) ≤ p, 0 ≤ p(t) ≤ p < 1 and
−1 < −p < p(t) ≤ 0.

Remark 3. Theorem 2.3 improves and generalizes Theorem 2.4 of [9], Theorem
2.5 of [7] and Theorem 2.1 of [6]. In [7, 9], Q(t) is monotonic decreasing and
satisfies (3), which implies (2). But in Theorem 2.3 (H8) is assumed, which is
weaker than (2) for n ≥ 2. Theorem 2.3 is true for both n odd and even. It holds
when G is linear or superlinear.

Corollary 2.4. If all the conditions of Theorem 2.3 are satisfied then every un-

bounded solution of Eq. (1) with α = 1 oscillates.

Theorem 2.5. Let p(t) ≡ 1 and n be odd. Suppose that (H1), (H6) and (H7) hold.

Then Eq. (1) with α = 1 has a bounded positive solution.

Proof. Since (H6) and (H7) hold therefore, we can find T > t0 such that

∞
∑

i=0

∫ ∞

T+iτ

(s − T − iτ)n−1Q(s) ds <
(n − 1)!

2G(1)
and

∣

∣

∣

∣

∣

∞
∑

i=0

∫ ∞

T+iτ

(s − T − iτ)n−1f(s) ds

∣

∣

∣

∣

∣

<
(n − 1)!

2

(13)

Define

L(t) =























G(1)

(n−1)!

∫ ∞

t

(s−t)n−1Q(s) ds −
1

(n−1)!

∫ ∞

t

(s−t)n−1f(s) ds for t ≥ T

(t − T + τ)
L(T )

τ
for T − τ ≤ t ≤ T

0 for t ≤ T − τ

Clearly L(t) is continuous and nonnegative in R.
Set

u(t) =

∞
∑

i=0

L(t − iτ) for t ≥ T .

Then u(t) is continuous in [T,∞), 0 < u(t) ≤ 1 and u(t) − u(t − τ) = L(t) for
t ≥ T + τ .

Next we define a sequence
{

vk(t)
}∞

k=0
on [t0,∞) as follows:

v0(t) = 1 , for t ≥ t0
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and

vk(t) =











































1

u(t)

[

u(t − τ)vk−1(t − τ) +
1

(n − 1)!

∫ ∞

t

(s − t)n−1Q(s) ds

× G
(

u(s − σ)vk(s − σ)
)

ds −
1

(n − 1)!

∫ ∞

t

(s − t)n−1f(s) ds
]

,

for t ≥ T + ρ

t + h

T + ρ + h
vk(T + ρ) +

(

1−
t + h

T + ρ + h

)

, t0 ≤ t ≤ T + ρ

where ρ = max{τ, σ}, k = 1, 2, . . . and h is a constant such that t0 + h > 0. For
t ≥ T + ρ,

v1(t) =
1

u(t)

[

u(t − τ)v0(t − τ)

+
1

(n − 1)!

∫ ∞

t

(s − t)n−1Q(s) G
(

u(s − σ)v0(s − σ)
)

ds

−
1

(n − 1)!

∫ ∞

t

(s − t)n−1f(s) ds
]

≤
1

u(t)

[

u(t − τ) +
1

(n − 1)!
G(1)

∫ ∞

t

(s − t)n−1Q(s) ds

−
1

(n − 1)!

∫ ∞

t

(s − t)n−1f(s) ds
]

≤
1

u(t)

[

u(t − τ) + L(t)
]

= 1 = v0(t) .

For t0 ≤ t ≤ T + ρ, we have

v1(t) =
t + h

T + ρ + h
v1(T + ρ) +

(

1 −
t + h

T + ρ + h

)

≤
t + h

T + ρ + h
v0(T + ρ) +

(

1 −
t + h

T + ρ + h

)

= 1 = v0(t) .

Hence 0 ≤ v1(t) ≤ v0(t) for t ≥ t0. By using a simple induction we can prove
0 ≤ vk(t) ≤ vk−1(t) ≤ 1 for t ≥ t0 for k = 1, 2. . .. Thus {vk(t)} has a pointwise
limit function v(t) which satisfies lim

k→∞
vk(t) = v(t) ≤ 1 for t ≥ t0. By monotone

convergence theorem we have

v(t) =



















































1

u(t)

[

u(t − τ) v(t − τ)

+
1

(n − 1)!

∫ ∞

t

(s − t)n−1Q(s) G
(

u(s − σ)v(s − σ)
)

ds

−
1

(n − 1)!

∫ ∞

t

(s − t)n−1f(s) ds
]

, for t ≥ T + ρ

t + h

T + ρ + h
v(T + ρ) +

(

1 +
t + h

T + ρ + h

)

for t0 ≤ t ≤ T + ρ
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since for t0 ≤ t < T + ρ, v(t) = t+h
T+ρ+h

v(T + ρ) +
(

1 − t+h
T+ρ+h

)

> 0. It can be

easily seen v(t) > 0 for t ≥ t0. Set y(t) = u(t) v(t) > 0 and y(t) is the required
positive bounded solution of (1) with α = 1 on [T + ρ,∞).

Remark 4. The above Theorem extends Lemma 2.1 in [4].

Remark 5. By Lemma 2.2 of [4] and Lemma 2.1 of this paper it is clear that
(H6) is equivalent to

(H9)
∞
∫

0

tnQ(t) dt < ∞ .

Corollary 2.6. Suppose that p(t) ≡ 1, n is odd and (H1), (H7) hold. Then (H9) is

the sufficient condition for Eq. (1) with α = 1 to have a positive bounded solution.

Corollary 2.7. Suppose that n is even, p(t) ≡ 1 and (H1), (H7) hold. Then (H9)
is the sufficient condition for Eq. (1) with α = −1 to have a positive bounded

solution.

The proof is similar to that of Corollary 2.6, hence omitted.

Remark 6. Corollary 2.6 answers the open problem 10.10.3 of [1].

3. Final comments

In this concluding section we give some remarks and enlist some unanswered
questions of this paper for further research. In Theorem 3.1 of [8], it is proved
that (H9) is necessary for Eq. (1) (with p(t) ≡ 1, α = 1 and n odd) to have a
bounded positive solution. Hence in view of Corollary 2.6 of this paper (H9) is
both necessary and sufficient condition for Eq. (1) (with p(t) ≡ 1, α = 1 and n
odd) to have a bounded positive solution. Thus taking f(t) ≡ 0 we can conclude

Corollary 3.1. Suppose that n is odd and (H1) hold. Then every bounded solution

of
(

y(t) − y(t − τ)
)(n)

+ Q(t)G
(

y(t − σ)
)

= 0

oscillates if and only if (H10) holds where

(H10)
∞
∫

0

tnQ(t) dt = ∞ .

Similarly in view of Corollary 2.7 we can have the following result.

Corollary 3.2. Suppose that n is even and (H1) hold. Then every bounded solu-

tion of Eq. (1) (with α = −1, p(t) ≡ 1 and f ≡ 0) oscillates if and only if (H10)
holds.

Further in Theorem 2.5, one may be tempted to drop f(t) ≤ 0 and still get the
same result. Also Theorem 2.3 provides a sufficient condition for every solution
of Eq. (1) (with p(t) ≡ −1 and α = 1) to be oscillatory or tending to zero. It
seems that there is no result so far in literature which shows some condition like
(3) is necessary for every solution of Eq. (1) (with p(t) ≡ −1 and α = 1) to be
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oscillatory or tending to zero. It looks very difficult to get the desired result if
we assume n to be even in Corollary 2.6. and odd in Corollary 2.7. Further one
may attempt Theorem 2.3 for α = −1 and prove on similar lines and under same
assumptions that every solution y(t) of (1) oscillates or tends to zero as t → ∞ or
lim sup

t→∞
|y(t)| = ∞. But this result needs improvement.
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