```
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 40 (2004), 407-414
```


MULTIPLICATION MODULES AND RELATED RESULTS

SHAHABADDIN EBRAHIMI ATANI

Abstract

Let R be a commutative ring with non-zero identity. Various properties of multiplication modules are considered. We generalize Ohm's properties for submodules of a finitely generated faithful multiplication R module (see [8], [12] and [3]).

1. Introduction

Throughout this paper all rings will be commutative with identity and all modules will be unitary. If R is a ring and N is a submodule of an R-module M, the ideal $\{r \in R: r M \subseteq N\}$ will be denoted by $[N: M]$. Then $[0: M]$ is the annihilator of $M, \operatorname{Ann}(M)$. An R-module M is called a multiplication module if for each submodule N of $M, N=I M$ for some ideal I of R. In this case we can take $I=[N: M]$. Clearly, M is a multiplication module if and only if for each $m \in M, R m=[R m: M] M$ (see [6]). For an R-module M, we define the ideal $\theta(M)=\sum_{m \in M}[R m: M]$. If M is multiplication then $M=\sum_{m \in M} R m=\sum_{m \in M}[R m: M] M=\left(\sum_{m \in M}[R m: M]\right) M=\theta(M) M$. Moreover, if N is a submodule of M, then $N=[N: M] M=[N: M] \theta(M) M=$ $\theta(M)[N: M] M=\theta(M) N($ see $[1])$.

An R-module M is secondary if $0 \neq M$ and, for each $r \in R$, the R-endomorphism of M produced by multiplication by r is either surjective or nilpotent. This implies that $\operatorname{nilrad}(M)=P$ is a prime ideal of R, and M is said to be P-secondary. A secondary ideal of R is just a secondary submodule of the R-module R. A secondary representation for an R-module M is an expression for M as a finite sum of secondary modules (see [11]). If such a representation exists, we will say that M is representable. So whenever an R-module M has secondary representation, then the set of attached primes of M, which is uniquely determined, is denoted by $\operatorname{Att}_{R}(M)$.

A proper submodule N of a module M over a $\operatorname{ring} R$ is said to be prime submodule (primary submodule) if for each $r \in R$ the R-endomorphism of M / N produced by multiplication by r is either injective or zero (either injective or

[^0]nilpotent), so $[0: M / N]=P\left(\operatorname{nilrad}(M / N)=P^{\prime}\right)$ is a prime ideal of R, and N is said to be P-prime submodule (P^{\prime}-primary submodule). So N is prime in M if and only if whenever $r m \in N$, for some $r \in R, m \in M$, then $m \in N$ or $r M \subseteq N$. We say that M is a prime module (primary module) if zero submodule of M is prime (primary) submodule of M. The set of all prime submodule of M is called the spectrum of M and denoted by $\operatorname{Spec}(M)$.

Let M be an R-module and N be a submodule of M such that $N=I M$ for some ideal I of R. Then we say that I is a presentation ideal of N. It possible that for a submodule N no such presentation exist. For example, if V is a vector space over an arbitrary field with a proper subspace $W(\neq 0$ and $V)$, then W has not any presentation. Clearly, every submodule of M has a presentation ideal if and only if M is a multiplication module. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Let $N=I_{1} M=I_{2} M=N^{\prime}$ and $K=J_{1} M=J_{2} M=K^{\prime}$ for some ideals I_{1}, I_{2}, J_{1} and J_{2} of R. It is easy to show that $N K=N^{\prime} K^{\prime}$, that is, $N K$ is independent of presentation ideals of N and $K([4])$. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$.

2. SECONDARY MODULES

Let R be a domain which is not a field. Then R is a multiplication R-module, but it is not secondary and also if p is a fixed prime integer then $E(Z / p Z)$, the injective hull of the Z-module $Z / p Z$, is not multiplication, but it is representable. Now, we shall prove the following results:
Lemma 2.1. Let R be a commutative ring, M a multiplication R-module, and N a P-secondary R-submodule of M. Then there exists $r \in R$ such that $r \notin P$ and $r \in \theta(M)$. In particular, $r M$ is a finitely generated R-submodule of M.

Proof. Otherwise $\theta(M) \subseteq P$. Assume that $a \in N$. Then

$$
R a=\theta(M) R a \subseteq P R a=P a \subseteq R a
$$

so $a=p a$ for some $p \in P$. There exists a positive integer m such that $p^{m} N=0$. It follows that $p^{m} a=a=0$, and hence $N=0$, a contradiction. Finally, if $r \in \theta(M)$, then $r M$ is finitely generated by [1, Lemma 2.1].
Theorem 2.2. Let R be a commutative ring, and let M be a representable multiplication R-module. Then M is finitely generated.

Proof. Let $M=\sum_{i=1}^{k} M_{i}$ be a minimal secondary representation of M with $\operatorname{Att}_{R}(M)=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$. By Lemma 2.1, for each $i, i=1, \ldots, k$, there exists $r_{i} \in R$ such that $r_{i} \notin P_{i}$ and $r_{i} \in \theta(M)$. Then for each $i, i=1, \ldots, k$, we have

$$
r_{i} M=r_{i} M_{1}+\cdots+r_{i} M_{i-1}+M_{i}+r_{i} M_{i+1}+\cdots+r_{i} M_{k}
$$

It follows that $r=\sum_{i=1}^{k} r_{i} \in \theta(M)$ and $r M=M$. Now the assertion follows from Lemma 2.1.

The proof of the next result should be compared with [6, Corollary 2.9].

Corollary 2.3. Let R be a commutative ring. Then every artinian multiplication R-module is cyclic.

Proof. Since every artinian module is representable by [11, 2.4], we have from Theorem 2.2 that M is finitely generated and hence M is cyclic by [5, Proposition 8].

Lemma 2.4. Let I be an ideal of a commutative ring R. If M is a representable R-module, then IM is a representable R-module.

Proof. Let $M=\sum_{i=1}^{n} M_{i}$ be a minimal secondary representation of M with $\operatorname{Att}_{R}(M)=\left\{P_{1}, \ldots, P_{n}\right\}$. Then we have $I M=\sum_{i=1}^{n} I M_{i}$. It is enough to show that for each $i, i=1, \ldots, n, I M_{i}$ is P_{i}-secondary. Suppose that $r \in R$. If $r \in P_{i}$, then $r^{m} I M_{i}=I\left(r^{m} M_{i}\right)=0$ for some m. If $r \notin P_{i}$, then $r\left(I M_{i}\right)=I\left(r M_{i}\right)=I M_{i}$, as required.

Theorem 2.5. Let R be a commutative ring, and let M be a representable multiplication R-module. Then every submodule of M is representable.

Proof. This follows from Lemma 2.4.
Theorem 2.6. Let R be a commutative ring, and let M be a multiplication representable R-module with $\operatorname{Att}_{R}(M)=\left\{P_{1}, \ldots, P_{n}\right\}$. Then $\operatorname{Spec}(M)=\left\{P_{1} M, \ldots\right.$, $\left.P_{n} M\right\}$.

Proof. Let $M=\sum_{i=1}^{n} M_{i}$ be a minimal secondary representation of M with $\operatorname{Att}_{R}(M)=\left\{P_{1}, \ldots, P_{n}\right\}$. Then by [11, Theorem 2.3], we have

$$
\operatorname{Ann}(M)=\bigcap_{i=1}^{n} \operatorname{Ann} M_{i} \subseteq \bigcap_{i=1}^{n} P_{i} \subseteq P_{k}
$$

for all $k(1 \leq k \leq n)$. Note that $P_{i} M \neq M$ for all i. Otherwise, since from Theorem $2.2 M$ is a finitely generated R-module, there is an element $p_{i} \in P_{i}$ such that $\left(1-p_{i}\right) M=0$ and so $1-p_{i} \in \operatorname{Ann}(M) \subseteq P_{i}$. Thus $1 \in P_{i}$, a contradiction. It follows from [6, Corollary 2.11] that $P_{i} M \in \operatorname{spec}(M)$ for all $i, i=1, \ldots, n$.

Let N be a prime submodule of M with $[N: M]=P$, where P is a prime ideal of R. Since from [7, Theorem 2.10] M / N is P_{i}-secondary for some i, we get $P=P_{i}$. Thus $N=[N: M] M=P_{i} M$, as required.

Corollary 2.7. Let R be a commutative ring, and let M be a multiplication representable R-module with $\operatorname{Att}_{R}(M)=\left\{P_{1}, \ldots, P_{n}\right\}$. Then $\operatorname{Spec}(R / \operatorname{Ann}(M))=$ $\left\{P_{1} / \operatorname{Ann}(M), \ldots, P_{n} / \operatorname{Ann}(M)\right\}$.

Proof. Since from Theorem $2.2 M$ is finitely generated, we have the mapping $\phi: \operatorname{Spec}(M) \longrightarrow \operatorname{Spec}\left(R / \operatorname{Ann}(M)\right.$ by $P_{i} M \longmapsto P_{i} / \operatorname{Ann}(M)$ is surjective by $[9$, Theorem 2]. As M is multiplication, we have ϕ is one to one, as required.

Theorem 2.8. Let R be a commutative ring, and let M be a primary multiplication R-module. Then M is a finitely generated R-module.

Proof. Let $0 \neq a \in M$. Then $R a=\theta(M) R a$, so there exists an element $r \in \theta(M)$ with $r a=a$, and hence $(1-r) a=0$. Thus $(1-r)^{m} M=0$ for some m since M is primary. Therefore we have $(1-r)^{m} \in \operatorname{Ann}(M) \subseteq \theta(M)$. Note that $(1-r)^{m}=1-s$ where $s \in \theta(M)$. Thus $1 \in \theta(M)$, so $\theta(M)=R$, as required.

Theorem 2.9. Let R be a commutative ring and M a finitely generated faithful multiplication R-module. A submodule N of M is secondary if and only if there exists a secondary ideal J of R such that $N=J M$.

Proof. Suppose first that N is a P-secondary submodule of M. There exists an ideal J of R such that $N=J M$. Let $r \in R$. If $r \in P$ then $r^{n} N=r^{n} J M=0$ for some n. It follows that $r^{n} J=0$ since M is faithful. If $r \notin P$ then $r N=N$, so $J M=r J M$, and hence $J=r J$ since M is cancellation.

Conversely, let J be a P-secondary ideal of R and $s \in R$. If $s \in P$ then $s^{m} N=s^{m} J M=0$. If $s \notin R$ then $s N=s J M=J M=N$, as required.

Proposition 2.10. Let E be an injective module over a commutative noetherian ring R. If M is a multiplication R-module then $\operatorname{Hom}_{R}(M, E)$ is representable.

Proof. This follows from [14, Theorem 1] since over R, every multiplication R module is noetherian.

Proposition 2.11. Let R be a commutative ring. Then every multiplication secondary module is a finitely generated primary R-module.

Proof. This follows from Theorem 2.2 and the fact that, every R-epimorphism $\varphi: M \rightarrow M$ is an isomorphism.

3. The Ohm type properties for multiplication modules

The purpose of this section is to generalize the results of M. M. Ali (see [3]) to the case of submodules of a finitely generated faithful multiplication module.

Throughout this section we shall assume unless otherwise stated, that M is a finitely generated faithful multiplication R-module. Our starting point is the following lemma.

Lemma 3.1. Let $N=I_{1} M$ and $K=I_{2} M$ be submodules of M for some ideals I_{1} and I_{2} of R. Then $[N: K] M=\left[I_{1}: I_{2}\right] M$.

Proof. The proof is completely straightforward.
Proposition 3.2. Let $N_{i}(i \in \Lambda)$ be a collection of submodules of M such that $\sum_{i \in \Lambda} N_{i}$ is a multiplication module. Then for each $a \in \sum_{i \in \Lambda} N_{i}$ we have

$$
\left(\sum_{i \in \Lambda}\left[N_{i}: \sum_{i \in \Lambda} N_{i}\right]\right) M+\operatorname{Ann}(a) M=M .
$$

Proof. There exist ideals $I_{i}(i \in \Lambda)$ of R such that $N_{i}=I_{i} M(i \in \Lambda)$. Since $\sum_{i \in \Lambda} N_{i}=\left(\sum_{i \in \Lambda} I_{i}\right) M$, we get from [13, Theorem 10] that $\sum_{i \in \Lambda} I_{i}$ is a multiplication ideal. Therefore, from Lemma 3.1 and [3, Proposition 1.1], we have

$$
\begin{aligned}
\left(\sum_{i \in \Lambda}\left[N_{i}: \sum_{i \in \Lambda} N_{i}\right]\right) M+\operatorname{Ann}(a) M & =\left(\sum_{i \in \Lambda}\left[I_{i} M: \sum_{i \in \Lambda} I_{i} M\right]\right) M+\operatorname{Ann}(a) M \\
& =\left(\sum_{i \in \Lambda}\left[I_{i}: \sum_{i \in \Lambda} I_{i}\right]\right) M+\operatorname{Ann}(a) M \\
& =\left(\sum_{i \in \Lambda}\left[I_{i}: \sum_{i \in \Lambda} I_{i}\right]+\operatorname{Ann}(a)\right) M=R M=M .
\end{aligned}
$$

Proposition 3.3. Let $N_{i}(1 \leq i \leq n)$ be a finite collection of submodules of M such that $\sum_{i=1}^{n} N_{i}$ is a multiplication module. Then for each $a \in \sum_{i=1}^{n} N_{i}$ we have

$$
\left.\left(\sum_{i=1}^{n}\left[\bigcap_{k=1}^{n} N_{k}\right): \check{N}_{\imath}\right]\right) M+\operatorname{Ann}(a) M=M
$$

where \check{N}_{\imath} denotes the intersection of all N_{i} except N_{i}.
Proof. By a similar argument to that in the proposition 3.2, this follows from Lemma 3.1, [6, Theorem] and [3, Proposition 1.2].

Lemma 3.4. Let N and K be submodules of M such that $N+K$ is a multiplication module. Then for every maximal ideal P of R we have $\left[N_{P}: K_{P}\right] M_{P}+\left[K_{P}\right.$: $\left.N_{P}\right] M_{P}=M_{P}$.
Proof. Let $N=I_{1} M$ and $K=I_{2} M$ be submodules of M for some ideals I_{1} and I_{2} of R. Clearly, $I_{1}+I_{2}$ is multiplication, and it then follows from Lemma 3.1 and [3, Lemma 1.3] that

$$
\begin{aligned}
{\left[N_{P}: K_{P}\right] M_{P}+\left[K_{P}: N_{P}\right] M_{P} } & =\left[I_{P} M_{P}: J_{P} M_{P}\right] M_{P}+\left[J_{P} M_{P}: I_{P} M_{P}\right] M_{P} \\
& =\left(\left[I_{P}: J_{P}\right]+\left[J_{P}: I_{P}\right]\right) M_{P}=R_{P} M_{P}=M_{P}
\end{aligned}
$$

Lemma 3.5. Let $N=I M$ and $K=J M$ be submodules of M such that $[N$: $K] M+[K: N] M=M$. Then $[I: J]+[J: I]=R$.

Proof. By Lemma 3.1, we have

$$
\begin{aligned}
{[N: K] M+[K: N] M } & =[I M: J M] M+[J M: I M] M \\
& =([I: J]+[J: I]) M=M=R M
\end{aligned}
$$

It follows that $[I: J]+[J: I]=R$ since M is a cancellation module.
Lemma 3.6. Let N and K be submodules of M such that $(N: K) M+(K$: $N) M=M$. Then the following statements are true:
(i) $N K=(N+K)(N \cap K)$.
(ii) $(N \cap K) T=N T \cap K T$ for every submodule T of M.

Proof. (i) We can write $N=I M$ and $K=J M$ for some ideals I and J of R. Now, by Lemma 3.5 and [3, Lemma 1.4], we have

$$
\begin{aligned}
N K & =I J M=(I+J)(I \cap J) M=(I+J) M(I \cap J) M \\
& =(I M+J M)(I M \cap J M)=(N+K)(N \cap K) .
\end{aligned}
$$

(ii) This proof is similar to that of case (i) and we omit it.

Proposition 3.7. Let N and K be submodules of M such that $[N: K] M+[K$: $N] M=M$. Then for each positive integer s we have $(N+K)^{s}=N^{s}+K^{s}$. In particular, the claim holds if $N+K$ is a multiplication module.

Proof. There exist ideals I and J of R such that $N=I M$ and $K=J M$. By Lemma 3.5 and [3, Proposition 2.1], we have

$$
(N+K)^{n}=((I+J) M)^{s}=(I+J)^{s} M=\left(I^{s}+J^{s}\right) M=N^{s}+K^{s} .
$$

The following theorem is a generalization of Proposition 3.7.
Theorem 3.8. Let $N_{i}(i \in \Lambda)$ be a collection of submodules of M such that $\sum_{i \in \Lambda} N_{i}$ is a multiplication module. Then for each positive integer n we have $\left(\sum_{i \in \Lambda} N_{i}\right)^{n}=\sum_{i \in \Lambda} N_{i}^{n}$.

Proof. There exist ideals $I_{i}(i \in \Lambda)$ of R such that $N_{i}=I_{i} M(i \in \Lambda)$. Clearly, $\sum_{i \in \Lambda} I_{i}$ is a multiplication ideal. By [3, Theorem 2.2], we have $\left(\sum_{i \in \Lambda} N_{i}\right)^{n}=$ $\left(\sum_{i \in \Lambda} I_{i} M\right)^{n}=\left(\left(\sum_{i \in \Lambda} I_{i}\right) M\right)^{n}=\left(\sum_{i \in \Lambda} I_{i}\right)^{n} M=\left(\sum_{i \in \Lambda} I_{i}^{n}\right) M=\sum_{i \in \Lambda} N_{i}^{n}$.
Proposition 3.9. Let N and K be submodules of M such that $[N: K] M+[K$: $N] M=M$. Then the following statements are true:
(i) $\left[N^{s}: K^{s}\right] M+\left[K^{s}: N^{s}\right] M=M$ for each positive integer s.
(ii) $(N \cap K)^{s}=N^{s} \cap K^{s}$ for each positive integer s.

Proof. There exist ideals I and J of R such that $N=I M$ and $K=J M$.
(i) From Lemma 3.5, Lemma 3.1 and [3, Lemma 3.5], we have

$$
\begin{aligned}
{\left[N^{s}: K^{s}\right] M+\left[K^{s}: N^{s}\right] M } & =\left[I^{s} M: J^{s} M\right] M+\left[J^{s} M: I^{s} M\right] M \\
& =\left(\left[I^{s}: J^{s}\right]+\left[J^{s}: I^{s}\right]\right) M=R M=M
\end{aligned}
$$

(ii) From Lemma 3.5, [6, Theorem 1.6] and [3, Proposition 3.1], we have $(N \cap$ $K)^{s}=(I M \cap J M)^{s}=((I \cap J) M)^{s}=(I \cap J)^{s} M=I^{s} M \cap J^{s} M=N^{s} \cap K^{s}$.

Theorem 3.10. Let $N_{i}(1 \leq i \leq n)$ be a finite collection of submodules of M such that $\sum_{i=1}^{n} N_{i}$ is a multiplication module. Then for each positive integer s we have $\left(\cap_{i=1}^{n} N_{i}\right)^{s}=\cap_{i=1}^{n} N_{i}^{s}$.
Proof. There exist ideals $I_{i}(1 \leq i \leq n)$ of R such that $N_{i}=I_{i} M(1 \leq i \leq$ n). Clearly, $\sum_{i=1}^{n} I_{i}$ is a multiplication ideal. Therefore, from [6, Theorem 1.6] and [3, Theorem 3.6], we get that $\left(\cap_{i=1}^{n} N_{i}\right)^{s}=\left(\cap_{i=1}^{n} I_{i} M\right)^{s}=\left(\left(\cap_{i=1}^{n} I_{i}\right) M\right)^{s}=$ $\left(\cap_{i=1}^{n} I_{i}\right)^{s} M=\cap_{i=1}^{n} I_{i}^{s} M=\cap_{i=1}^{n} N_{i}^{s}$.
Lemma 3.11. Let I be an ideal of R. Then $\operatorname{Ann}(I M)=\operatorname{Ann} I$.

Proof. The proof is completely straightforward.
Lemma 3.12. Let P be a maximal ideal of R. If $N=I M$ is a multiplication submodule of M, and if I contains no non-zero nilpotent element, then the following statements are true:
(i) $\operatorname{Ann} N=\operatorname{Ann} N^{k}$ for each positive integer k.
(ii) $\operatorname{Ann}\left(N_{P}^{k}\right) \subseteq \operatorname{Ann}(a)_{P}$ for each $a \in I$ and each positive integer k.

Proof. (i) The ideal I is multiplication by [13, Theorem 10], and by Lemma 3.11, Ann $N=\operatorname{Ann} I$. Now, from [3, Corollary 2.4] and Lemma 3.11 we have

$$
\operatorname{Ann} N=\operatorname{Ann} I=\operatorname{Ann} I^{k}=\operatorname{Ann}\left(I^{k} M\right)=\operatorname{Ann} N^{k}
$$

(ii) By [3, Lemma 4.2], $\operatorname{Ann}\left(I_{P}^{k}\right) \subseteq \operatorname{Ann}(a)_{P}$ for each $a \in I$. It follows from (i) and [5, Lemma 2] that

$$
\operatorname{Ann} N_{P}^{k}=\operatorname{Ann}\left((I M)_{P}\right)^{k}=\operatorname{Ann}\left(I_{P} M_{P}\right)^{k}=\operatorname{Ann}\left(I_{P}^{k} M_{P}\right)=\operatorname{Ann} I_{P}^{k} \subseteq \operatorname{Ann}(a)_{P}
$$

Proposition 3.13. Let $N=I M$ and $K=J M$ be submodules of M such that $N+K$ is a multiplication module. If $I+J$ contains no non-zero nilpotent element and $N^{m}=K^{m}$ for some positive integer m, then the following statements are true:
(i) $N+\operatorname{Ann}(a) M=K+\operatorname{Ann}(a) M$ for each $a \in I+J$.
(ii) $\operatorname{Ann} N=\operatorname{Ann} K$.

Proof. (i) As $N^{m}=K^{m}$, we get $I^{m}=J^{m}$ since M is cancellation. Suppose that $a \in I+J$. Then by [3, Proposition 4.3], we have
$N+\operatorname{Ann} M=I M+\operatorname{Ann}(a) M=(I+\operatorname{Ann}(a)) M=(J+\operatorname{Ann}(a)) M=K+\operatorname{Ann}(a) M$.
(ii) This follows from 3.11 and [3, Proposition 4.3].

Proposition 3.14. Let $N=I M$ and $K=J M$ be submodules of M such that K and $N+K$ are multiplication modules. Then for each positive integer m and each $a \in J^{m}$ we have $(N: K)^{m} M+\operatorname{Ann}(a) M=(K: N)^{m} M+\operatorname{Ann}(a) M$. Moreover, if J has no non-zero nilpotent elements, then for each $a \in J$ we have $(N: K)^{m} M+\operatorname{Ann}(a) M=(K: N)^{m} M+\operatorname{Ann}(a) M$.

Proof. This follows from Lemma 3.1 and [3, Proposition 4.4].

References

[1] Ali, M. M., The Ohm type properties for multiplication ideals, Beiträge Algebra Geom. 37 (2) (1996), 399-414.
[2] Anderson D. D. and Al-Shaniafi, Y., Multiplication modules and the ideal $\theta(M)$, Comm. Algebra 30 (7) (2002), 3383-3390.
[3] Anderson, D. D., Some remarks on multiplication ideals, II, Comm. Algebra 28 (2000), 2577-2583.
[4] Ameri, R., On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27 (2003), 1715-1724.
[5] Barnard, A, Multiplication modules, J. Algebra 71 (1981), 174-178.
[6] El-Bast Z. A. and Smith, P. F., Multiplication modules, Comm. Algebra 16 (1988), 755-779.
[7] Ebrahimi Atani, S., Submodules of secondary modules, Int. J. Math. Math. Sci. 31 (6) (2002), 321-327.
[8] Gilmer, R. and Grams, A., The equality $(A \cap B)^{n}=A^{n} \cap B^{n}$ for ideals, Canad. J. Math. 24 (1972), 792-798.
[9] Low, G. H. and Smith, P. F., Multiplication modules and ideals, Comm. Algebra 18 (1990), 4353-4375.
[10] Lu, C-P, Spectra of modules, Comm. Algebra 23 (10) (1995), 3741-3752.
[11] Macdonald, I. G., Secondary representation of modules over commutative rings, Symposia Matematica 11 (Istituto Nazionale di alta Matematica, Roma, (1973), 23-43.
[12] Naoum, A. G., The Ohm type properties for finitely generated multiplication ideals, Period. Math. Hungar. 18 (1987), 287-293.
[13] Smith, P. F., Some remarks on multiplication module, Arch. Math. 50 (1988), 223-235.
[14] Schenzel, S., Asymptotic attached prime ideals to injective modules, Comm. Algebra 20 (2) (1992), 583-590.

Department of Mathematics, University of Guilan
P.O. Box 1914 Rasht, Iran

E-mail: ebrahimi@guilan.ac.ir

[^0]: 2000 Mathematics Subject Classification: 13C05, 13C13, 13A15.
 Key words and phrases: multiplication module, secondary module, Ohm's properties.
 Received December 2, 2002.

