
ARCHIVUM MATHEMATICUM (BRNO)

Tomus 40 (2004), 407 – 414

MULTIPLICATION MODULES AND RELATED RESULTS

SHAHABADDIN EBRAHIMI ATANI

Abstract. Let R be a commutative ring with non-zero identity. Various
properties of multiplication modules are considered. We generalize Ohm’s
properties for submodules of a finitely generated faithful multiplication R-
module (see [8], [12] and [3]).

1. Introduction

Throughout this paper all rings will be commutative with identity and all mod-
ules will be unitary. If R is a ring and N is a submodule of an R-module M ,
the ideal {r ∈ R : rM ⊆ N} will be denoted by [N : M ]. Then [0 : M ]
is the annihilator of M , Ann(M). An R-module M is called a multiplication
module if for each submodule N of M , N = IM for some ideal I of R. In
this case we can take I = [N : M ]. Clearly, M is a multiplication module if
and only if for each m ∈ M , Rm = [Rm : M ]M (see [6]). For an R-module
M , we define the ideal θ(M) =

∑

m∈M
[Rm : M ]. If M is multiplication then

M =
∑

m∈M
Rm =

∑

m∈M
[Rm : M ]M = (

∑

m∈M
[Rm : M ])M = θ(M)M .

Moreover, if N is a submodule of M , then N = [N : M ]M = [N : M ]θ(M)M =
θ(M)[N : M ]M = θ(M)N (see [1]).

An R-module M is secondary if 0 6= M and, for each r ∈ R, the R-endomorphism
of M produced by multiplication by r is either surjective or nilpotent. This implies
that nilrad(M) = P is a prime ideal of R, and M is said to be P -secondary. A
secondary ideal of R is just a secondary submodule of the R-module R. A sec-
ondary representation for an R-module M is an expression for M as a finite sum
of secondary modules (see [11]). If such a representation exists, we will say that
M is representable. So whenever an R-module M has secondary representation,
then the set of attached primes of M , which is uniquely determined, is denoted by
AttR(M).

A proper submodule N of a module M over a ring R is said to be prime
submodule (primary submodule) if for each r ∈ R the R-endomorphism of M/N
produced by multiplication by r is either injective or zero (either injective or
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nilpotent), so [0 : M/N ] = P (nilrad(M/N) = P ′) is a prime ideal of R, and N
is said to be P -prime submodule (P ′-primary submodule). So N is prime in M if
and only if whenever rm ∈ N , for some r ∈ R, m ∈ M , then m ∈ N or rM ⊆ N .
We say that M is a prime module (primary module) if zero submodule of M is
prime (primary) submodule of M . The set of all prime submodule of M is called
the spectrum of M and denoted by Spec(M).

Let M be an R-module and N be a submodule of M such that N = IM for
some ideal I of R. Then we say that I is a presentation ideal of N . It possible
that for a submodule N no such presentation exist. For example, if V is a vector
space over an arbitrary field with a proper subspace W (6= 0 and V ), then W
has not any presentation. Clearly, every submodule of M has a presentation ideal
if and only if M is a multiplication module. Let N and K be submodules of a
multiplication R-module M with N = I1M and K = I2M for some ideals I1 and
I2 of R. The product N and K denoted by NK is defined by NK = I1I2M . Let
N = I1M = I2M = N ′ and K = J1M = J2M = K ′ for some ideals I1, I2, J1

and J2 of R. It is easy to show that NK = N ′K ′, that is, NK is independent
of presentation ideals of N and K ([4]). Clearly, NK is a submodule of M and
NK ⊆ N ∩ K.

2. Secondary modules

Let R be a domain which is not a field. Then R is a multiplication R-module,
but it is not secondary and also if p is a fixed prime integer then E(Z/pZ), the
injective hull of the Z-module Z/pZ, is not multiplication, but it is representable.
Now, we shall prove the following results:

Lemma 2.1. Let R be a commutative ring, M a multiplication R-module, and N
a P -secondary R-submodule of M . Then there exists r ∈ R such that r /∈ P and

r ∈ θ(M). In particular, rM is a finitely generated R-submodule of M .

Proof. Otherwise θ(M) ⊆ P . Assume that a ∈ N . Then

Ra = θ(M)Ra ⊆ PRa = Pa ⊆ Ra,

so a = pa for some p ∈ P . There exists a positive integer m such that pmN = 0. It
follows that pma = a = 0, and hence N = 0, a contradiction. Finally, if r ∈ θ(M),
then rM is finitely generated by [1, Lemma 2.1]. 2

Theorem 2.2. Let R be a commutative ring, and let M be a representable multi-

plication R-module. Then M is finitely generated.

Proof. Let M =
∑k

i=1
Mi be a minimal secondary representation of M with

AttR(M) = {P1, P2, . . . , Pk}. By Lemma 2.1, for each i, i = 1, . . . , k, there exists
ri ∈ R such that ri /∈ Pi and ri ∈ θ(M). Then for each i, i = 1, . . . , k, we have

riM = riM1 + · · · + riMi−1 + Mi + riMi+1 + · · · + riMk .

It follows that r =
∑k

i=1
ri ∈ θ(M) and rM = M . Now the assertion follows from

Lemma 2.1. 2

The proof of the next result should be compared with [6, Corollary 2.9].
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Corollary 2.3. Let R be a commutative ring. Then every artinian multiplication

R-module is cyclic.

Proof. Since every artinian module is representable by [11, 2.4], we have from
Theorem 2.2 that M is finitely generated and hence M is cyclic by [5, Proposi-
tion 8]. 2

Lemma 2.4. Let I be an ideal of a commutative ring R. If M is a representable

R-module, then IM is a representable R-module.

Proof. Let M =
∑n

i=1
Mi be a minimal secondary representation of M with

AttR(M) = {P1, . . . , Pn}. Then we have IM =
∑n

i=1
IMi. It is enough to show

that for each i, i = 1, . . . , n, IMi is Pi-secondary. Suppose that r ∈ R. If r ∈ Pi,
then rmIMi = I(rmMi) = 0 for some m. If r /∈ Pi, then r(IMi) = I(rMi) = IMi,
as required. 2

Theorem 2.5. Let R be a commutative ring, and let M be a representable multi-

plication R-module. Then every submodule of M is representable.

Proof. This follows from Lemma 2.4. 2

Theorem 2.6. Let R be a commutative ring, and let M be a multiplication rep-

resentable R-module with AttR(M) = {P1, . . . , Pn}. Then Spec(M) = {P1M, . . . ,
PnM}.

Proof. Let M =
∑

n

i=1
Mi be a minimal secondary representation of M with

AttR(M) = {P1, . . . , Pn}. Then by [11, Theorem 2.3], we have

Ann(M) =

n
⋂

i=1

AnnMi ⊆

n
⋂

i=1

Pi ⊆ Pk

for all k (1 ≤ k ≤ n). Note that PiM 6= M for all i. Otherwise, since from
Theorem 2.2 M is a finitely generated R-module, there is an element pi ∈ Pi such
that (1 − pi)M = 0 and so 1 − pi ∈ Ann(M) ⊆ Pi. Thus 1 ∈ Pi, a contradiction.
It follows from [6, Corollary 2.11] that PiM ∈ spec(M) for all i, i = 1, . . . , n.

Let N be a prime submodule of M with [N : M ] = P , where P is a prime
ideal of R. Since from [7, Theorem 2.10] M/N is Pi-secondary for some i, we get
P = Pi. Thus N = [N : M ]M = PiM , as required. 2

Corollary 2.7. Let R be a commutative ring, and let M be a multiplication rep-

resentable R-module with AttR(M) = {P1, . . . , Pn}. Then Spec(R/Ann(M)) =
{P1/Ann(M), . . . , Pn/Ann(M)}.

Proof. Since from Theorem 2.2 M is finitely generated, we have the mapping
φ : Spec(M) −→ Spec(R/Ann(M) by PiM 7−→ Pi/Ann(M) is surjective by [9,
Theorem 2]. As M is multiplication, we have φ is one to one, as required. 2

Theorem 2.8. Let R be a commutative ring, and let M be a primary multiplica-

tion R-module. Then M is a finitely generated R-module.
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Proof. Let 0 6= a ∈ M . Then Ra = θ(M)Ra, so there exists an element r ∈ θ(M)
with ra = a, and hence (1− r)a = 0. Thus (1− r)mM = 0 for some m since M is
primary. Therefore we have (1−r)m ∈ Ann(M) ⊆ θ(M). Note that (1−r)m = 1−s
where s ∈ θ(M). Thus 1 ∈ θ(M), so θ(M) = R, as required. 2

Theorem 2.9. Let R be a commutative ring and M a finitely generated faithful

multiplication R-module. A submodule N of M is secondary if and only if there

exists a secondary ideal J of R such that N = JM .

Proof. Suppose first that N is a P -secondary submodule of M . There exists an
ideal J of R such that N = JM . Let r ∈ R. If r ∈ P then rnN = rnJM = 0 for
some n. It follows that rnJ = 0 since M is faithful. If r /∈ P then rN = N , so
JM = rJM , and hence J = rJ since M is cancellation.

Conversely, let J be a P -secondary ideal of R and s ∈ R. If s ∈ P then
smN = smJM = 0. If s /∈ R then sN = sJM = JM = N , as required. 2

Proposition 2.10. Let E be an injective module over a commutative noetherian

ring R. If M is a multiplication R-module then HomR(M, E) is representable.

Proof. This follows from [14, Theorem 1] since over R, every multiplication R-
module is noetherian. 2

Proposition 2.11. Let R be a commutative ring. Then every multiplication sec-

ondary module is a finitely generated primary R-module.

Proof. This follows from Theorem 2.2 and the fact that, every R-epimorphism
ϕ : M → M is an isomorphism. 2

3. The Ohm type properties for multiplication modules

The purpose of this section is to generalize the results of M. M. Ali (see [3]) to
the case of submodules of a finitely generated faithful multiplication module.

Throughout this section we shall assume unless otherwise stated, that M
is a finitely generated faithful multiplication R-module. Our starting point is the
following lemma.

Lemma 3.1. Let N = I1M and K = I2M be submodules of M for some ideals

I1 and I2 of R. Then [N : K]M = [I1 : I2]M .

Proof. The proof is completely straightforward. 2

Proposition 3.2. Let Ni (i ∈ Λ) be a collection of submodules of M such that
∑

i∈Λ
Ni is a multiplication module. Then for each a ∈

∑

i∈Λ
Ni we have

(

∑

i∈Λ

[

Ni :
∑

i∈Λ

Ni

]

)

M + Ann(a)M = M .
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Proof. There exist ideals Ii (i ∈ Λ) of R such that Ni = IiM (i ∈ Λ). Since
∑

i∈Λ
Ni = (

∑

i∈Λ
Ii)M , we get from [13, Theorem 10] that

∑

i∈Λ
Ii is a multipli-

cation ideal. Therefore, from Lemma 3.1 and [3, Proposition 1.1], we have
(

∑

i∈Λ

[

Ni :
∑

i∈Λ

Ni

]

)

M + Ann(a)M =
(

∑

i∈Λ

[

IiM :
∑

i∈Λ

IiM
]

)

M + Ann(a)M

=
(

∑

i∈Λ

[

Ii :
∑

i∈Λ

Ii

]

)

M + Ann(a)M

=
(

∑

i∈Λ

[

Ii :
∑

i∈Λ

Ii

]

+ Ann(a)
)

M = RM = M .

2

Proposition 3.3. Let Ni (1 ≤ i ≤ n) be a finite collection of submodules of M
such that

∑

n

i=1
Ni is a multiplication module. Then for each a ∈

∑

n

i=1
Ni we have

(

n
∑

i=1

[

n
⋂

k=1

Nk) : Ňı

]

)

M + Ann(a)M = M

where Ňı denotes the intersection of all Ni except Nı.

Proof. By a similar argument to that in the proposition 3.2, this follows from
Lemma 3.1, [6, Theorem] and [3, Proposition 1.2]. 2

Lemma 3.4. Let N and K be submodules of M such that N+K is a multiplication

module. Then for every maximal ideal P of R we have [NP : KP ]MP + [KP :
NP ]MP = MP .

Proof. Let N = I1M and K = I2M be submodules of M for some ideals I1 and
I2 of R. Clearly, I1 + I2 is multiplication, and it then follows from Lemma 3.1 and
[3, Lemma 1.3] that

[NP : KP ]MP + [KP : NP ]MP = [IP MP : JP MP ]MP + [JP MP : IP MP ]MP

= ([IP : JP ] + [JP : IP ])MP = RP MP = MP .

2

Lemma 3.5. Let N = IM and K = JM be submodules of M such that [N :
K]M + [K : N ]M = M . Then [I : J ] + [J : I ] = R.

Proof. By Lemma 3.1, we have

[N : K]M + [K : N ]M = [IM : JM ]M + [JM : IM ]M

= ([I : J ] + [J : I ])M = M = RM .

It follows that [I : J ] + [J : I ] = R since M is a cancellation module. 2

Lemma 3.6. Let N and K be submodules of M such that (N : K)M + (K :
N)M = M . Then the following statements are true:

(i) NK = (N + K)(N ∩ K).
(ii) (N ∩ K)T = NT ∩ KT for every submodule T of M .
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Proof. (i) We can write N = IM and K = JM for some ideals I and J of R.
Now, by Lemma 3.5 and [3, Lemma 1.4], we have

NK = IJM = (I + J)(I ∩ J)M = (I + J)M(I ∩ J)M

= (IM + JM)(IM ∩ JM) = (N + K)(N ∩ K) .

(ii) This proof is similar to that of case (i) and we omit it. 2

Proposition 3.7. Let N and K be submodules of M such that [N : K]M + [K :
N ]M = M . Then for each positive integer s we have (N + K)s = Ns + Ks. In

particular, the claim holds if N + K is a multiplication module.

Proof. There exist ideals I and J of R such that N = IM and K = JM . By
Lemma 3.5 and [3, Proposition 2.1], we have

(N + K)n = ((I + J)M)s = (I + J)sM = (Is + Js)M = Ns + Ks.

2

The following theorem is a generalization of Proposition 3.7.

Theorem 3.8. Let Ni (i ∈ Λ) be a collection of submodules of M such that
∑

i∈Λ
Ni is a multiplication module. Then for each positive integer n we have

(
∑

i∈Λ
Ni)

n =
∑

i∈Λ
Nn

i
.

Proof. There exist ideals Ii (i ∈ Λ) of R such that Ni = IiM (i ∈ Λ). Clearly,
∑

i∈Λ
Ii is a multiplication ideal. By [3, Theorem 2.2], we have (

∑

i∈Λ
Ni)

n =

(
∑

i∈Λ
IiM)n =

(

(
∑

i∈Λ
Ii)M

)n
= (

∑

i∈Λ
Ii)

nM = (
∑

i∈Λ
In

i
)M =

∑

i∈Λ
Nn

i
. 2

Proposition 3.9. Let N and K be submodules of M such that [N : K]M + [K :
N ]M = M . Then the following statements are true:

(i) [Ns : Ks]M + [Ks : Ns]M = M for each positive integer s.
(ii) (N ∩ K)s = Ns ∩ Ks for each positive integer s.

Proof. There exist ideals I and J of R such that N = IM and K = JM .
(i) From Lemma 3.5, Lemma 3.1 and [3, Lemma 3.5], we have

[Ns : Ks]M + [Ks : Ns]M = [IsM : JsM ]M + [JsM : IsM ]M

= ([Is : Js] + [Js : Is])M = RM = M .

(ii) From Lemma 3.5, [6, Theorem 1.6] and [3, Proposition 3.1], we have (N ∩

K)s = (IM ∩ JM)s =
(

(I ∩ J)M
)s

= (I ∩ J)sM = IsM ∩ JsM = Ns ∩ Ks. 2

Theorem 3.10. Let Ni (1 ≤ i ≤ n) be a finite collection of submodules of M such

that
∑

n

i=1
Ni is a multiplication module. Then for each positive integer s we have

(∩n

i=1Ni)
s = ∩n

i=1N
s

i
.

Proof. There exist ideals Ii (1 ≤ i ≤ n) of R such that Ni = IiM (1 ≤ i ≤
n). Clearly,

∑

n

i=1
Ii is a multiplication ideal. Therefore, from [6, Theorem 1.6]

and [3, Theorem 3.6], we get that (∩n

i=1Ni)
s = (∩n

i=1IiM)s =
(

(∩n

i=1Ii)M
)s

=
(∩n

i=1Ii)
sM = ∩n

i=1I
s

i
M = ∩n

i=1N
s

i
. 2

Lemma 3.11. Let I be an ideal of R. Then Ann(IM) = AnnI.
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Proof. The proof is completely straightforward. 2

Lemma 3.12. Let P be a maximal ideal of R. If N = IM is a multiplication

submodule of M , and if I contains no non-zero nilpotent element, then the follow-

ing statements are true:

(i) AnnN = AnnNk for each positive integer k.

(ii) Ann(Nk

P
) ⊆ Ann(a)P for each a ∈ I and each positive integer k.

Proof. (i) The ideal I is multiplication by [13, Theorem 10], and by Lemma 3.11,
AnnN = AnnI . Now, from [3, Corollary 2.4] and Lemma 3.11 we have

AnnN = AnnI = AnnIk = Ann(IkM) = AnnNk

(ii) By [3, Lemma 4.2], Ann(Ik

P
) ⊆ Ann(a)P for each a ∈ I . It follows from (i)

and [5, Lemma 2] that

AnnNk

P
= Ann((IM)P )k = Ann(IP MP )k = Ann(Ik

P
MP ) = AnnIk

P
⊆ Ann(a)P

2

Proposition 3.13. Let N = IM and K = JM be submodules of M such that

N +K is a multiplication module. If I +J contains no non-zero nilpotent element

and Nm = Km for some positive integer m, then the following statements are

true:

(i) N + Ann(a)M = K + Ann(a)M for each a ∈ I + J .

(ii) AnnN = AnnK.

Proof. (i) As Nm = Km, we get Im = Jm since M is cancellation. Suppose that
a ∈ I + J . Then by [3, Proposition 4.3], we have

N+AnnM = IM+Ann(a)M = (I+Ann(a))M = (J+Ann(a))M = K+Ann(a)M .

(ii) This follows from 3.11 and [3, Proposition 4.3]. 2

Proposition 3.14. Let N = IM and K = JM be submodules of M such that

K and N + K are multiplication modules. Then for each positive integer m and

each a ∈ Jm we have (N : K)mM + Ann(a)M = (K : N)mM + Ann(a)M .

Moreover, if J has no non-zero nilpotent elements, then for each a ∈ J we have

(N : K)mM + Ann(a)M = (K : N)mM + Ann(a)M .

Proof. This follows from Lemma 3.1 and [3, Proposition 4.4]. 2
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