ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 407 – 414

MULTIPLICATION MODULES AND RELATED RESULTS

SHAHABADDIN EBRAHIMI ATANI

ABSTRACT. Let R be a commutative ring with non-zero identity. Various properties of multiplication modules are considered. We generalize Ohm's properties for submodules of a finitely generated faithful multiplication R-module (see [8], [12] and [3]).

1. INTRODUCTION

Throughout this paper all rings will be commutative with identity and all modules will be unitary. If R is a ring and N is a submodule of an R-module M, the ideal $\{r \in R : rM \subseteq N\}$ will be denoted by [N : M]. Then [0 : M] is the annihilator of M, Ann(M). An R-module M is called a multiplication module if for each submodule N of M, N = IM for some ideal I of R. In this case we can take I = [N : M]. Clearly, M is a multiplication module if and only if for each $m \in M$, Rm = [Rm : M]M (see [6]). For an R-module M, we define the ideal $\theta(M) = \sum_{m \in M} [Rm : M]$. If M is multiplication then $M = \sum_{m \in M} Rm = \sum_{m \in M} [Rm : M]M = (\sum_{m \in M} [Rm : M])M = \theta(M)M$. Moreover, if N is a submodule of M, then $N = [N : M]M = [N : M]\theta(M)M = \theta(M)N = \theta(M)N$ (see [1]).

An *R*-module *M* is secondary if $0 \neq M$ and, for each $r \in R$, the *R*-endomorphism of *M* produced by multiplication by *r* is either surjective or nilpotent. This implies that nilrad(*M*) = *P* is a prime ideal of *R*, and *M* is said to be *P*-secondary. A secondary ideal of *R* is just a secondary submodule of the *R*-module *R*. A secondary representation for an *R*-module *M* is an expression for *M* as a finite sum of secondary modules (see [11]). If such a representation exists, we will say that *M* is representable. So whenever an *R*-module *M* has secondary representation, then the set of attached primes of *M*, which is uniquely determined, is denoted by $\operatorname{Att}_R(M)$.

A proper submodule N of a module M over a ring R is said to be prime submodule (primary submodule) if for each $r \in R$ the R-endomorphism of M/Nproduced by multiplication by r is either injective or zero (either injective or

²⁰⁰⁰ Mathematics Subject Classification: 13C05, 13C13, 13A15.

Key words and phrases: multiplication module, secondary module, Ohm's properties. Received December 2, 2002.

nilpotent), so [0: M/N] = P (nilrad(M/N) = P') is a prime ideal of R, and N is said to be P-prime submodule (P'-primary submodule). So N is prime in M if and only if whenever $rm \in N$, for some $r \in R$, $m \in M$, then $m \in N$ or $rM \subseteq N$. We say that M is a prime module (primary module) if zero submodule of M is prime (primary) submodule of M. The set of all prime submodule of M is called the spectrum of M and denoted by Spec(M).

Let M be an R-module and N be a submodule of M such that N = IM for some ideal I of R. Then we say that I is a presentation ideal of N. It possible that for a submodule N no such presentation exist. For example, if V is a vector space over an arbitrary field with a proper subspace $W \ (\neq 0 \text{ and } V)$, then Whas not any presentation. Clearly, every submodule of M has a presentation ideal if and only if M is a multiplication module. Let N and K be submodules of a multiplication R-module M with $N = I_1M$ and $K = I_2M$ for some ideals I_1 and I_2 of R. The product N and K denoted by NK is defined by $NK = I_1I_2M$. Let $N = I_1M = I_2M = N'$ and $K = J_1M = J_2M = K'$ for some ideals I_1, I_2, J_1 and J_2 of R. It is easy to show that NK = N'K', that is, NK is independent of presentation ideals of N and $K \ ([4])$. Clearly, NK is a submodule of M and $NK \subseteq N \cap K$.

2. Secondary modules

Let R be a domain which is not a field. Then R is a multiplication R-module, but it is not secondary and also if p is a fixed prime integer then E(Z/pZ), the injective hull of the Z-module Z/pZ, is not multiplication, but it is representable. Now, we shall prove the following results:

Lemma 2.1. Let R be a commutative ring, M a multiplication R-module, and N a P-secondary R-submodule of M. Then there exists $r \in R$ such that $r \notin P$ and $r \in \theta(M)$. In particular, rM is a finitely generated R-submodule of M.

Proof. Otherwise $\theta(M) \subseteq P$. Assume that $a \in N$. Then

 $Ra = \theta(M)Ra \subseteq PRa = Pa \subseteq Ra,$

so a = pa for some $p \in P$. There exists a positive integer m such that $p^m N = 0$. It follows that $p^m a = a = 0$, and hence N = 0, a contradiction. Finally, if $r \in \theta(M)$, then rM is finitely generated by [1, Lemma 2.1].

Theorem 2.2. Let R be a commutative ring, and let M be a representable multiplication R-module. Then M is finitely generated.

Proof. Let $M = \sum_{i=1}^{k} M_i$ be a minimal secondary representation of M with $\operatorname{Att}_R(M) = \{P_1, P_2, \ldots, P_k\}$. By Lemma 2.1, for each $i, i = 1, \ldots, k$, there exists $r_i \in R$ such that $r_i \notin P_i$ and $r_i \in \theta(M)$. Then for each $i, i = 1, \ldots, k$, we have

$$r_i M = r_i M_1 + \dots + r_i M_{i-1} + M_i + r_i M_{i+1} + \dots + r_i M_k$$
.

It follows that $r = \sum_{i=1}^{k} r_i \in \theta(M)$ and rM = M. Now the assertion follows from Lemma 2.1.

The proof of the next result should be compared with [6, Corollary 2.9].

Corollary 2.3. Let R be a commutative ring. Then every artinian multiplication R-module is cyclic.

Proof. Since every artinian module is representable by [11, 2.4], we have from Theorem 2.2 that M is finitely generated and hence M is cyclic by [5, Proposition 8].

Lemma 2.4. Let I be an ideal of a commutative ring R. If M is a representable R-module, then IM is a representable R-module.

Proof. Let $M = \sum_{i=1}^{n} M_i$ be a minimal secondary representation of M with $\operatorname{Att}_R(M) = \{P_1, \ldots, P_n\}$. Then we have $IM = \sum_{i=1}^{n} IM_i$. It is enough to show that for each $i, i = 1, \ldots, n$, IM_i is P_i -secondary. Suppose that $r \in R$. If $r \in P_i$, then $r^m IM_i = I(r^m M_i) = 0$ for some m. If $r \notin P_i$, then $r(IM_i) = I(rM_i) = IM_i$, as required.

Theorem 2.5. Let R be a commutative ring, and let M be a representable multiplication R-module. Then every submodule of M is representable.

Proof. This follows from Lemma 2.4.

Theorem 2.6. Let R be a commutative ring, and let M be a multiplication representable R-module with $\operatorname{Att}_R(M) = \{P_1, \ldots, P_n\}$. Then $\operatorname{Spec}(M) = \{P_1M, \ldots, P_nM\}$.

Proof. Let $M = \sum_{i=1}^{n} M_i$ be a minimal secondary representation of M with $\operatorname{Att}_R(M) = \{P_1, \ldots, P_n\}$. Then by [11, Theorem 2.3], we have

$$\operatorname{Ann}(M) = \bigcap_{i=1}^{n} \operatorname{Ann}M_{i} \subseteq \bigcap_{i=1}^{n} P_{i} \subseteq P_{k}$$

for all k $(1 \leq k \leq n)$. Note that $P_iM \neq M$ for all i. Otherwise, since from Theorem 2.2 M is a finitely generated R-module, there is an element $p_i \in P_i$ such that $(1 - p_i)M = 0$ and so $1 - p_i \in Ann(M) \subseteq P_i$. Thus $1 \in P_i$, a contradiction. It follows from [6, Corollary 2.11] that $P_iM \in \operatorname{spec}(M)$ for all $i, i = 1, \ldots, n$.

Let N be a prime submodule of M with [N : M] = P, where P is a prime ideal of R. Since from [7, Theorem 2.10] M/N is P_i -secondary for some i, we get $P = P_i$. Thus $N = [N : M]M = P_iM$, as required.

Corollary 2.7. Let R be a commutative ring, and let M be a multiplication representable R-module with $\operatorname{Att}_R(M) = \{P_1, \ldots, P_n\}$. Then $\operatorname{Spec}(R/\operatorname{Ann}(M)) = \{P_1/\operatorname{Ann}(M), \ldots, P_n/\operatorname{Ann}(M)\}$.

Proof. Since from Theorem 2.2 M is finitely generated, we have the mapping ϕ : Spec $(M) \longrightarrow$ Spec(R/Ann(M) by $P_iM \longmapsto P_i/\text{Ann}(M)$ is surjective by [9, Theorem 2]. As M is multiplication, we have ϕ is one to one, as required. \Box

Theorem 2.8. Let R be a commutative ring, and let M be a primary multiplication R-module. Then M is a finitely generated R-module. **Proof.** Let $0 \neq a \in M$. Then $Ra = \theta(M)Ra$, so there exists an element $r \in \theta(M)$ with ra = a, and hence (1 - r)a = 0. Thus $(1 - r)^m M = 0$ for some m since M is primary. Therefore we have $(1 - r)^m \in \operatorname{Ann}(M) \subseteq \theta(M)$. Note that $(1 - r)^m = 1 - s$ where $s \in \theta(M)$. Thus $1 \in \theta(M)$, so $\theta(M) = R$, as required. \Box

Theorem 2.9. Let R be a commutative ring and M a finitely generated faithful multiplication R-module. A submodule N of M is secondary if and only if there exists a secondary ideal J of R such that N = JM.

Proof. Suppose first that N is a P-secondary submodule of M. There exists an ideal J of R such that N = JM. Let $r \in R$. If $r \in P$ then $r^n N = r^n JM = 0$ for some n. It follows that $r^n J = 0$ since M is faithful. If $r \notin P$ then rN = N, so JM = rJM, and hence J = rJ since M is cancellation.

Conversely, let J be a P-secondary ideal of R and $s \in R$. If $s \in P$ then $s^m N = s^m J M = 0$. If $s \notin R$ then sN = sJM = JM = N, as required. \Box

Proposition 2.10. Let E be an injective module over a commutative noetherian ring R. If M is a multiplication R-module then $\operatorname{Hom}_R(M, E)$ is representable.

Proof. This follows from [14, Theorem 1] since over R, every multiplication R-module is noetherian.

Proposition 2.11. Let R be a commutative ring. Then every multiplication secondary module is a finitely generated primary R-module.

Proof. This follows from Theorem 2.2 and the fact that, every *R*-epimorphism $\varphi: M \to M$ is an isomorphism. \Box

3. The Ohm type properties for multiplication modules

The purpose of this section is to generalize the results of M. M. Ali (see [3]) to the case of submodules of a finitely generated faithful multiplication module.

Throughout this section we shall assume unless otherwise stated, that M is a finitely generated faithful multiplication R-module. Our starting point is the following lemma.

Lemma 3.1. Let $N = I_1M$ and $K = I_2M$ be submodules of M for some ideals I_1 and I_2 of R. Then $[N:K]M = [I_1:I_2]M$.

Proof. The proof is completely straightforward.

Proposition 3.2. Let N_i $(i \in \Lambda)$ be a collection of submodules of M such that $\sum_{i \in \Lambda} N_i$ is a multiplication module. Then for each $a \in \sum_{i \in \Lambda} N_i$ we have

$$\left(\sum_{i\in\Lambda} \left[N_i:\sum_{i\in\Lambda}N_i\right]\right)M + \operatorname{Ann}(a)M = M.$$

Proof. There exist ideals I_i $(i \in \Lambda)$ of R such that $N_i = I_i M$ $(i \in \Lambda)$. Since $\sum_{i \in \Lambda} N_i = (\sum_{i \in \Lambda} I_i) M$, we get from [13, Theorem 10] that $\sum_{i \in \Lambda} I_i$ is a multiplication ideal. Therefore, from Lemma 3.1 and [3, Proposition 1.1], we have

$$\left(\sum_{i\in\Lambda} \left[N_i:\sum_{i\in\Lambda} N_i\right]\right)M + \operatorname{Ann}(a)M = \left(\sum_{i\in\Lambda} \left[I_iM:\sum_{i\in\Lambda} I_iM\right]\right)M + \operatorname{Ann}(a)M$$
$$= \left(\sum_{i\in\Lambda} \left[I_i:\sum_{i\in\Lambda} I_i\right]\right)M + \operatorname{Ann}(a)M$$
$$= \left(\sum_{i\in\Lambda} \left[I_i:\sum_{i\in\Lambda} I_i\right] + \operatorname{Ann}(a)\right)M = RM = M.$$

Proposition 3.3. Let N_i $(1 \le i \le n)$ be a finite collection of submodules of M such that $\sum_{i=1}^{n} N_i$ is a multiplication module. Then for each $a \in \sum_{i=1}^{n} N_i$ we have

$$\left(\sum_{i=1}^{n} \left[\bigcap_{k=1}^{n} N_{k}\right) : \check{N}_{i}\right]\right) M + \operatorname{Ann}(a) M = M$$

where \check{N}_i denotes the intersection of all N_i except N_i .

Proof. By a similar argument to that in the proposition 3.2, this follows from Lemma 3.1, [6, Theorem] and [3, Proposition 1.2]. \Box

Lemma 3.4. Let N and K be submodules of M such that N+K is a multiplication module. Then for every maximal ideal P of R we have $[N_P : K_P]M_P + [K_P : N_P]M_P = M_P$.

Proof. Let $N = I_1 M$ and $K = I_2 M$ be submodules of M for some ideals I_1 and I_2 of R. Clearly, $I_1 + I_2$ is multiplication, and it then follows from Lemma 3.1 and [3, Lemma 1.3] that

$$[N_P : K_P]M_P + [K_P : N_P]M_P = [I_PM_P : J_PM_P]M_P + [J_PM_P : I_PM_P]M_P$$
$$= ([I_P : J_P] + [J_P : I_P])M_P = R_PM_P = M_P.$$

Lemma 3.5. Let N = IM and K = JM be submodules of M such that [N : K]M + [K : N]M = M. Then [I : J] + [J : I] = R.

Proof. By Lemma 3.1, we have

$$\begin{split} [N:K]M + [K:N]M &= [IM:JM]M + [JM:IM]M \\ &= ([I:J] + [J:I])M = M = RM \,. \end{split}$$

It follows that [I:J] + [J:I] = R since M is a cancellation module.

Lemma 3.6. Let N and K be submodules of M such that (N : K)M + (K : N)M = M. Then the following statements are true:

(i) $NK = (N+K)(N \cap K)$.

(ii) $(N \cap K)T = NT \cap KT$ for every submodule T of M.

Proof. (i) We can write N = IM and K = JM for some ideals I and J of R. Now, by Lemma 3.5 and [3, Lemma 1.4], we have

$$NK = IJM = (I+J)(I \cap J)M = (I+J)M(I \cap J)M$$
$$= (IM+JM)(IM \cap JM) = (N+K)(N \cap K).$$

(ii) This proof is similar to that of case (i) and we omit it.

Proposition 3.7. Let N and K be submodules of M such that [N : K]M + [K : N]M = M. Then for each positive integer s we have $(N + K)^s = N^s + K^s$. In particular, the claim holds if N + K is a multiplication module.

Proof. There exist ideals I and J of R such that N = IM and K = JM. By Lemma 3.5 and [3, Proposition 2.1], we have

$$(N+K)^n = ((I+J)M)^s = (I+J)^s M = (I^s + J^s)M = N^s + K^s.$$

The following theorem is a generalization of Proposition 3.7.

Theorem 3.8. Let N_i $(i \in \Lambda)$ be a collection of submodules of M such that $\sum_{i \in \Lambda} N_i$ is a multiplication module. Then for each positive integer n we have $(\sum_{i \in \Lambda} N_i)^n = \sum_{i \in \Lambda} N_i^n$.

Proof. There exist ideals I_i $(i \in \Lambda)$ of R such that $N_i = I_i M$ $(i \in \Lambda)$. Clearly, $\sum_{i \in \Lambda} I_i$ is a multiplication ideal. By [3, Theorem 2.2], we have $(\sum_{i \in \Lambda} N_i)^n = (\sum_{i \in \Lambda} I_i M)^n = ((\sum_{i \in \Lambda} I_i)M)^n = (\sum_{i \in \Lambda} I_i)^n M = (\sum_{i \in \Lambda} I_i^n)M = \sum_{i \in \Lambda} N_i^n$. \Box

Proposition 3.9. Let N and K be submodules of M such that [N:K]M + [K:N]M = M. Then the following statements are true:

(i) $[N^s: K^s]M + [K^s: N^s]M = M$ for each positive integer s.

(ii) $(N \cap K)^s = N^s \cap K^s$ for each positive integer s.

Proof. There exist ideals I and J of R such that N = IM and K = JM. (i) From Lemma 3.5, Lemma 3.1 and [3, Lemma 3.5], we have

 $[N^{s}:K^{s}]M + [K^{s}:N^{s}]M = [I^{s}M:J^{s}M]M + [J^{s}M:I^{s}M]M$ $= ([I^{s}:J^{s}] + [J^{s}:I^{s}])M = RM = M.$

(ii) From Lemma 3.5, [6, Theorem 1.6] and [3, Proposition 3.1], we have $(N \cap K)^s = (IM \cap JM)^s = ((I \cap J)M)^s = (I \cap J)^s M = I^s M \cap J^s M = N^s \cap K^s$. \Box

Theorem 3.10. Let N_i $(1 \le i \le n)$ be a finite collection of submodules of M such that $\sum_{i=1}^{n} N_i$ is a multiplication module. Then for each positive integer s we have $(\bigcap_{i=1}^{n} N_i)^s = \bigcap_{i=1}^{n} N_i^s$.

Proof. There exist ideals I_i $(1 \le i \le n)$ of R such that $N_i = I_i M$ $(1 \le i \le n)$. Clearly, $\sum_{i=1}^{n} I_i$ is a multiplication ideal. Therefore, from [6, Theorem 1.6] and [3, Theorem 3.6], we get that $(\bigcap_{i=1}^{n} N_i)^s = (\bigcap_{i=1}^{n} I_i M)^s = ((\bigcap_{i=1}^{n} I_i)M)^s = (\bigcap_{i=1}^{n} I_i)^s M = \bigcap_{i=1}^{n} I_i^s M = \bigcap_{i=1}^{n} N_i^s$.

Lemma 3.11. Let I be an ideal of R. Then Ann(IM) = AnnI.

Proof. The proof is completely straightforward.

Lemma 3.12. Let P be a maximal ideal of R. If N = IM is a multiplication submodule of M, and if I contains no non-zero nilpotent element, then the following statements are true:

(i) $\operatorname{Ann} N = \operatorname{Ann} N^k$ for each positive integer k.

(ii) $\operatorname{Ann}(N_P^k) \subseteq \operatorname{Ann}(a)_P$ for each $a \in I$ and each positive integer k.

Proof. (i) The ideal I is multiplication by [13, Theorem 10], and by Lemma 3.11, AnnN = AnnI. Now, from [3, Corollary 2.4] and Lemma 3.11 we have

 $\operatorname{Ann} N = \operatorname{Ann} I = \operatorname{Ann} I^k = \operatorname{Ann} (I^k M) = \operatorname{Ann} N^k$

(ii) By [3, Lemma 4.2], $\operatorname{Ann}(I_P^k) \subseteq \operatorname{Ann}(a)_P$ for each $a \in I$. It follows from (i) and [5, Lemma 2] that

$$\operatorname{Ann} N_P^k = \operatorname{Ann}((IM)_P)^k = \operatorname{Ann}(I_PM_P)^k = \operatorname{Ann}(I_P^kM_P) = \operatorname{Ann} I_P^k \subseteq \operatorname{Ann}(a)_P$$

Proposition 3.13. Let N = IM and K = JM be submodules of M such that N + K is a multiplication module. If I + J contains no non-zero nilpotent element and $N^m = K^m$ for some positive integer m, then the following statements are true:

(i) $N + \operatorname{Ann}(a)M = K + \operatorname{Ann}(a)M$ for each $a \in I + J$.

(ii) $\operatorname{Ann} N = \operatorname{Ann} K$.

Proof. (i) As $N^m = K^m$, we get $I^m = J^m$ since M is cancellation. Suppose that $a \in I + J$. Then by [3, Proposition 4.3], we have

 $N + \operatorname{Ann} M = IM + \operatorname{Ann}(a)M = (I + \operatorname{Ann}(a))M = (J + \operatorname{Ann}(a))M = K + \operatorname{Ann}(a)M.$

(ii) This follows from 3.11 and [3, Proposition 4.3].

Proposition 3.14. Let N = IM and K = JM be submodules of M such that K and N + K are multiplication modules. Then for each positive integer m and each $a \in J^m$ we have $(N : K)^m M + \operatorname{Ann}(a)M = (K : N)^m M + \operatorname{Ann}(a)M$. Moreover, if J has no non-zero nilpotent elements, then for each $a \in J$ we have $(N : K)^m M + \operatorname{Ann}(a)M = (K : N)^m M + \operatorname{Ann}(a)M$.

Proof. This follows from Lemma 3.1 and [3, Proposition 4.4].

References

- Ali, M. M., The Ohm type properties for multiplication ideals, Beiträge Algebra Geom. 37 (2) (1996), 399–414.
- [2] Anderson D. D. and Al-Shaniafi, Y., Multiplication modules and the ideal $\theta(M)$, Comm. Algebra **30** (7) (2002), 3383–3390.
- [3] Anderson, D. D., Some remarks on multiplication ideals, II, Comm. Algebra 28 (2000), 2577–2583.
- [4] Ameri, R., On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27 (2003), 1715–1724.

S. EBRAHIMI ATANI

- [5] Barnard, A, Multiplication modules, J. Algebra 71 (1981), 174–178.
- [6] El-Bast Z. A. and Smith, P. F., Multiplication modules, Comm. Algebra 16 (1988), 755-779.
- [7] Ebrahimi Atani, S., Submodules of secondary modules, Int. J. Math. Math. Sci. 31 (6) (2002), 321–327.
- [8] Gilmer, R. and Grams, A., The equality $(A \cap B)^n = A^n \cap B^n$ for ideals, Canad. J. Math. **24** (1972), 792–798.
- [9] Low, G. H. and Smith, P. F., Multiplication modules and ideals, Comm. Algebra 18 (1990), 4353–4375.
- [10] Lu, C-P, Spectra of modules, Comm. Algebra 23 (10) (1995), 3741–3752.
- [11] Macdonald, I. G., Secondary representation of modules over commutative rings, Symposia Matematica 11 (Istituto Nazionale di alta Matematica, Roma, (1973), 23–43.
- [12] Naoum, A. G., The Ohm type properties for finitely generated multiplication ideals, Period. Math. Hungar. 18 (1987), 287–293.
- [13] Smith, P. F., Some remarks on multiplication module, Arch. Math. 50 (1988), 223–235.
- [14] Schenzel, S., Asymptotic attached prime ideals to injective modules, Comm. Algebra 20 (2) (1992), 583–590.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GUILAN P.O. BOX 1914 RASHT, IRAN *E-mail*: ebrahimi@guilan.ac.ir