NON-EXISTENCE OF NATURAL OPERATORS TRANSFORMING CONNECTIONS ON $Y \rightarrow M$ INTO CONNECTIONS ON $FY \rightarrow Y$

W. M. MIKULSKI

ABSTRACT. Under some weak assumptions on a bundle functor $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ we prove that there is no $\mathcal{FM}_{m,n}$ -natural operator transforming connections on $Y \to M$ into connections on $FY \to Y$.

INTRODUCTION

Let $\mathcal{M}f$ be the category of manifolds and their maps. Let $\mathcal{M}f_n$ be the category of *n*-dimensional manifolds and their local diffeomorphisms. Let \mathcal{FM} be the category of fibered manifolds and their fibered maps. Let $\mathcal{FM}_{m,n}$ be the category of fibered manifolds with *m*-dimensional bases and *n*-dimensional fibers and their local fibered diffeomorphisms.

We recall that a (general) connection on a fibered manifold $p: Y \to M$ is a smooth section $\Gamma: Y \to J^1 Y$ of the first prolongation of Y, which can be also interpreted as the lifting map $\Gamma: Y \times_M TM \to TY$, see [1].

There are known the following facts, see e.g. [1]:

Fact 1. There is no first order $\mathcal{FM}_{m,n}$ -natural operator transforming connections on $Y \to M$ into connections on the vertical bundle $VY \to Y$.

Fact 2. There is no first order $\mathcal{FM}_{m,n}$ -natural operator transforming connections on $Y \to M$ into connections on the tangent bundle $TY \to Y$.

Fact 3. There is no first order $\mathcal{FM}_{m,n}$ -natural operator transforming connections on $Y \to M$ into connections on $J^1Y \to Y$.

The purpose of this short note is the following general result:

Theorem 1. Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor such that the corresponding natural bundle $\tilde{F} : \mathcal{M}f_n \to \mathcal{FM}$, $\tilde{F}N = F(\mathbf{R}^m \times N)$, $\tilde{F}\varphi = F(\mathrm{id}_{\mathbf{R}^m} \times \varphi)$,

²⁰⁰⁰ Mathematics Subject Classification: 58A32, 58A05, 58A20.

Key words and phrases: bundle functors, natural bundles, natural operators, connections. Received February 4, 2003.

 $N \in \text{Obj}(\mathcal{M}f_n), \varphi \in \text{Morph}(\mathcal{M}f_n)$ is not of order 0. Then there is no $\mathcal{FM}_{m,n}$ --natural operator transforming connections on $Y \to M$ into connections on $FY \to Y$.

That the assumption on F is essential is remarked. Applications of Theorem 1 are given. A generalization of Theorem 1 is proved.

All manifolds are assumed to be finite dimensional and of class \mathcal{C}^{∞} . All maps between manifolds are assumed to be of class \mathcal{C}^{∞} .

1. Proof of Theorem 1

Lemma 1. Let $G : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a natural bundle of order $r \geq 1$. Then any natural operator $\mathcal{V} : T_{\mathcal{M}f_n} \rightsquigarrow TG$ of vertical type is of order r-1.

Proof. Let $X_1, X_2 \in \mathcal{X}(N)$ be two vector fields with $j_x^{r-1}(X_1) = j_x^{r-1}(X_2), x \in N$. Let $w \in G_x N$. Because of the regularity of \mathcal{V} we can assume that $X_1(x) \neq 0$. There is an x-preserving local diffeomorphism $\varphi : N \to N$ such that $j_x^r \varphi = \text{id}$ and $\varphi_* X_1 = X_2$ near x, see [1]. Then $\mathcal{V}(X_2)(w) = \mathcal{V}(\varphi_* X_1)(w) = TG_x(\varphi) \circ \mathcal{V}(X_1) \circ G_x(\varphi^{-1})(w) = \mathcal{V}(X_1)(w)$ because of $G_x(\varphi) = \text{id}$ as G is of order r and $j_x^r \varphi = \text{id}$.

Proof of Theorem 1. Suppose D is such an operator. Then for any n-manifold N we have the connection

$$\Gamma_N = D(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i}) : F(\mathbf{R}^m \times N) \times_{\mathbf{R}^m \times N} T(\mathbf{R}^m \times N) \to TF(\mathbf{R}^m \times N)$$

on $F(\mathbf{R}^m \times N) \to \mathbf{R}^m \times N$, where x^1, \ldots, x^m are the usual coordinates on \mathbf{R}^m . Define a 0-order natural operator $A: T_{\mathcal{M}f_n} \rightsquigarrow T\tilde{F}$ by

$$A(X)_w = \Gamma_N(w, X(y)),$$

 $X \in \mathcal{X}(N), w \in F_{(x,y)}(\mathbf{R}^m \times N) \subset \tilde{F}N, (x,y) \in \mathbf{R}^m \times N, X(y) \in T_yN = \{0_x\} \times T_yN \subset T_{(x,y)}(\mathbf{R}^m \times N)$. Then A(X) is a projectable vector field covering X. Then

$$A = \tilde{\mathcal{F}} + \mathcal{V} \,,$$

where $\tilde{\mathcal{F}}: T_{\mathcal{M}f_n} \rightsquigarrow T\tilde{F}$ is the flow operator and $\mathcal{V}: T_{\mathcal{M}f_n} \rightsquigarrow T\tilde{F}$ is a natural operator of vertical type. Let $r \geq 1$ be the (minimal) order of \tilde{F} . Any vertical type natural operator $\mathcal{V}: T_{\mathcal{M}f_n} \rightsquigarrow T\tilde{F}$ is of order r-1 and $\tilde{\mathcal{F}}$ is of (minimal) order r. Then A is not of order r-1. Contradiction.

2. Essentiality of the assumption of Theorem 1

Example 1. Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be the trivial bundle functor with fiber **R**. For any $\mathcal{FM}_{m,n}$ -object Y we have the trivial connection D on $FY = Y \times \mathbf{R} \to Y$. D is an (absolute) natural operator transforming connections on $Y \to M$ into connections on $FY \to Y$.

3. Applications of Theorem 1

Corollary 1. Let $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a non-trivial bundle functor with the point property, e.g. the tangent functor T, the r-tangent functor T^r , the Weil functor T^A corresponding to an r-order Weil algebra A, the vector r-tangent functor $T^{(r)} = (J^r(., \mathbf{R})_0)^*$ for $r \ge 1$, e.t.c. Write $F : \mathcal{F}\mathcal{M}_{m,n} \to \mathcal{F}\mathcal{M}$ for the composition of F with the forgetfull functor $\mathcal{F}\mathcal{M}_{m,n} \to \mathcal{M}f$. Then there is no $\mathcal{F}\mathcal{M}_{m,n}$ -natural operator transforming connections on $Y \to M$ into connections on $FY \to Y$. In particular, for F = T we reobtain Fact 2 without any assumption on the order of operators.

Corollary 2. Let $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a bundle functor of non-zero order, e.g. the tangent functor T, the r-tangent functor, the Weil functor T^A corresponding to a Weil algebra A, the vector r-tangent functor $T^{(r)} = (J^r(., \mathbf{R})_0)^*$, the r-cotangent functor $T^{r*} = J^r(., \mathbf{R})_0$, e.t.c. Let $V^F : \mathcal{F}\mathcal{M}_{m,n} \to \mathcal{F}\mathcal{M}$ be the vertical modification on F, $V^FY = \bigcup_{x \in M} F(Y_x)$, $V^F\varphi = \bigcup_{x \in M} F(\varphi_x)$. Then there is no $\mathcal{F}\mathcal{M}_{m,n}$ -natural operator transforming connections on $Y \to M$ into connections on $FY \to Y$. In particular, for F = T we have $V^F = V$ and we reobtain Fact 1 without any assumption on the order of operators.

Corollary 3. Let $F = J^r : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be the functor of r-jet prolongation, $r \geq 1$. Then there is no $\mathcal{FM}_{m,n}$ -natural operator transforming connections on $Y \to M$ into connections on $J^r Y \to Y$. In particular, for r = 1 we reobtain Fact 3 without any assumption on the order of operators.

Clearly, the list of applications of Theorem 1 is not complete.

4. A generalization of Theorem 1

Theorem 2. Let $H : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor such that there is $u_0 \in H_{(0,0)}(\mathbf{R}^m \times \mathbf{R}^n)$ with $H(\operatorname{id}_{\mathbf{R}^m} \times \varphi)(u_0) = u_0$ for any 0-preserving embedding $\varphi : \mathbf{R}^n \to \mathbf{R}^n$. Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor such that the corresponding natural bundle $\tilde{F} : \mathcal{Mf}_n \to \mathcal{FM}$, $\tilde{FN} = F(\mathbf{R}^m \times N)$, $\tilde{F}\varphi =$ $F(\operatorname{id}_{\mathbf{R}^m} \times \varphi)$, $N \in \operatorname{Obj}(\mathcal{Mf}_n)$, $\varphi \in \operatorname{Morph}(\mathcal{Mf}_n)$ is not of order 0. Then there is no $\mathcal{FM}_{m,n}$ -natural operator transforming sections of $HY \to Y$ into connections on $FY \to Y$.

Proof. Using u_0 we produce a section σ_0 of $H(\mathbf{R}^m \times N) \to \mathbf{R}^m \times N$ which is invariant with respect to $\mathcal{FM}_{m,n}$ -maps of the form $\mathrm{id}_{\mathbf{R}^m} \times \varphi$. Next we modify the proof of Theorem 1 replacing connections $\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i}$ by σ_0 .

5. Applications of Theorem 2

Corollary 4. Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor such that the corresponding natural bundle $\tilde{F} : \mathcal{M}f_n \to \mathcal{FM}$, $\tilde{F}N = F(\mathbf{R}^m \times N)$, $\tilde{F}\varphi = F(\mathrm{id}_{\mathbf{R}^m} \times \varphi)$, $N \in \mathrm{Obj}(\mathcal{M}f_n)$, $\varphi \in \mathrm{Morph}(\mathcal{M}f_n)$ is not of order 0. Then there is no $\mathcal{FM}_{m,n}$ -natural operator transforming pairs of an s-order connection on M and a connection on $Y \to M$ into connections on $FY \to Y$.

Corollary 5. Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor such that the corresponding natural bundle $\tilde{F} : \mathcal{M}f_n \to \mathcal{FM}$, $\tilde{F}N = F(\mathbf{R}^m \times N)$, $\tilde{F}\varphi = F(\mathrm{id}_{\mathbf{R}^m} \times \varphi)$, $N \in \mathrm{Obj}(\mathcal{M}f_n)$, $\varphi \in \mathrm{Morph}(\mathcal{M}f_n)$ is not of order 0. Then there is no $\mathcal{FM}_{m,n}$ -natural operator transforming a finite number of connections on $Y \to M$ into connections on $FY \to Y$.

Corollary 6. Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor such that the corresponding natural bundle $\tilde{F} : \mathcal{M}f_n \to \mathcal{FM}$, $\tilde{F}N = F(\mathbf{R}^m \times N)$, $\tilde{F}\varphi = F(\mathrm{id}_{\mathbf{R}^m} \times \varphi)$, $N \in \mathrm{Obj}(\mathcal{M}f_n)$, $\varphi \in \mathrm{Morph}(\mathcal{M}f_n)$ is not of order 0. Then there is no $\mathcal{FM}_{m,n}$ -natural operator transforming a finite number of (projectable) (1, k)-tensor fields on Y into connections on $FY \to Y$.

Corollary 7. Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor such that the corresponding natural bundle $\tilde{F} : \mathcal{M}f_n \to \mathcal{FM}$, $\tilde{F}N = F(\mathbf{R}^m \times N)$, $\tilde{F}\varphi = F(\mathrm{id}_{\mathbf{R}^m} \times \varphi)$, $N \in \mathrm{Obj}(\mathcal{M}f_n)$, $\varphi \in \mathrm{Morph}(\mathcal{M}f_n)$ is not of order 0. Then there is no $\mathcal{FM}_{m,n}$ -invariant connection on $FY \to Y$. In particular for m = 0 we obtain that if $F : \mathcal{M}f_n \to \mathcal{FM}$ is a natural bundle which is not of order 0 then there is no canonical connection on $FN \to N$.

References

 Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin 1993.

INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY REYMONTA 4, KRAKÓW, POLAND *E-mail*: mikulski@im.uj.edu.pl