EXPLORING INVARIANT LINEAR CODES THROUGH GENERATORS AND CENTRALIZERS

PARTHA PRATIM DEY

Abstract

We investigate a H-invariant linear code C over the finite field F_{p} where H is a group of linear transformations. We show that if H is a noncyclic abelian group and $(|H|, p)=1$, then the code C is the sum of the centralizer codes $C_{c}(h)$ where h is a nonidentity element of H. Moreover if A is subgroup of H such that $A \cong Z_{q} \times Z_{q}, q \neq p$, then $\operatorname{dim} C$ is known when the dimension of $C_{c}(K)$ is known for each subgroup $K \neq 1$ of A. In the last few sections we restrict our scope of investigation to a special class of invariant codes, namely affine codes and their centralizers. New results concerning the dimensions of these codes and their centralizers are obtained.

1. Introduction

Given a vector space $V=V_{n}(F)$ of dimension $n<\infty$ over the field F, with a fixed basis specified for V, a code is a subset of V. A code is linear if it is a subspace of V. For F we take F_{p} and for basis the usual one i.e., $\left\{e_{i} \mid i=1, \ldots, n\right\}$ where e_{i} has 1 in it's $i^{\text {th }}$ coordinate and the remaining coordinates are zero. The vectors in C are called codewords and a typical codeword has the following shape

$$
x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \in F_{p}, \quad i=1, \ldots, n
$$

See [2] and [3] for background informations on linear codes.
Definition 1.1. Let H be a group of linear transformations of a vector space V. We set

$$
C_{V}(H)=\{v \in V \mid v h=v\}
$$

for all $h \in H$. We call $C_{V}(H)$ the centralizer of H in V. Clearly the centralizer is a code in V.

Definition 1.2. A code C of vector space V is H-invariant if $C h \subseteq C$ for all h in H, where H is a group of linear transformations of vector space V.

[^0]
2. Dimension of $C_{V}(H)$

In this section we explore the relationship between the dimensions of $C_{V}(H)$ and $C_{C}(H)$. Towards that goal, we prove the following lemma.

Lemma 2.1. Let $V=F_{p}^{n}$ and assume C is a code of V over F_{p}. Let H be a group of permutation matrices of order n which leave C invariant and $(p,|V|)=1$. Set

$$
\theta=\frac{1}{|H|} \sum_{g \in H} g
$$

Then (i) θ is an idempotent, (ii) $(C \theta)^{\perp}=\operatorname{Ker} \theta \oplus\left(C^{\perp}\right) \theta$.
Proof. (i) We compute θ^{2}.

$$
\begin{aligned}
\theta \cdot \theta & =\left(\frac{1}{|H|} \sum_{g \in H} g\right)\left(\frac{1}{|H|} \sum_{g \in H} g\right)=\frac{1}{|H|^{2}}|H| \sum_{g \in H} g \\
& =\frac{1}{|H|} \sum_{g \in H} g=\theta
\end{aligned}
$$

which shows θ is an idempotent.
(ii) Let $v \in \operatorname{Ker} \theta \cap\left(C^{\perp}\right) \theta$. Then $v \theta=0$ and $v=c^{\perp} \theta$ where $c^{\perp} \in C^{\perp}$. Because $\theta^{2}=\theta, v=c^{\perp} \theta=c^{\perp} \theta^{2}=\left(c^{\perp} \theta\right) \theta=v \theta=0$. Thus Ker $\theta \cap\left(C^{\perp}\right) \theta=\{0\}$.

Let $v \in \operatorname{Ker} \theta \oplus\left(C^{\perp}\right) \theta$. Then $v=k+\left(c^{\perp}\right) \theta$ with $k \in \operatorname{Ker} \theta$ and $c^{\perp} \in C^{\perp}$. Thus for any $c \in C,(c \theta, v)=\left(c \theta, k+\left(c^{\perp}\right) \theta\right)=(c \theta, k)+\left(c \theta,\left(c^{\perp}\right) \theta\right)=\left(c, k \theta^{t}\right)+\left(c \theta, c^{\perp} \theta\right)$. Since

$$
\theta^{t}=\frac{1}{|H|} \sum_{g \in H} g^{t}=\frac{1}{|H|} \sum_{g \in H} g^{-1}=\frac{1}{|H|} \sum_{g \in H} g=\theta
$$

and C, C^{\perp} are θ-invariant, we have $(c \theta, v)=0$ for any c, which shows $v \in(C \theta)^{\perp}$.
We now show that $(C \theta)^{\perp} \subseteq \operatorname{Ker} \theta \oplus\left(C^{\perp}\right) \theta$. Let $v \in(C \theta)^{\perp}$, which implies $(v, c \theta)=0$ for any $c \in C$. But $0=(v, c \theta)=\left(v \theta^{t}, c\right)=(v \theta, c)$ and so $v \theta \in C^{\perp}$. As θ is an idempotent, $v \theta$ also belongs to $\left(C^{\perp} \theta\right)$. Thus $v=(v-v \theta)+v \theta$, where $v-v \theta \in \operatorname{Ker} \theta$ because $(v-v \theta) \theta=v \theta-v \theta^{2}=v \theta-v \theta=0$. We therefore conclude that $(C \theta)^{\perp}=\operatorname{Ker} \theta \oplus\left(C^{\perp}\right) \theta$.

Next we prove the following theorem.
Theorem 2.2. Assume C is a code of $V=F_{p}^{n}$. Let H be a group of permutation matrices which leave C invariant. If $(p,|H|)=1$, then
(i) $C_{C}(H)=C \theta$,
(ii) $\operatorname{dim} C_{V}(H)=\operatorname{dim} C_{C}(H)+\operatorname{dim} C_{C \perp}(H)$.

Proof. (i) Let $v \in C \theta$. Then $v=c \theta$ for some $c \in C$. Let h be an arbitrary element from H. Then

$$
v h=c \theta h=c\left(\frac{1}{|H|} \sum_{g \in H} g\right)=c\left(\frac{1}{|H|} \sum_{g \in H} g\right)=c \theta=v
$$

which shows $v \in C_{C}(H)$. Conversely, suppose $v \in C_{C}(H)$. Then $v \in C$ and $v g=v$ for an arbitrary $g \in H$. Thus

$$
v \theta=v\left(\frac{1}{|H|} \sum_{g \in H} g\right)=\frac{1}{|H|} \sum_{g \in H} v g=\frac{1}{|H|}|H| v=v
$$

which shows $v \in C \theta$.
(ii) Let θ be the idempotent of the Lemma 2.1. As $(C \theta) \subset(V \theta)$, we have $\operatorname{dim} V \theta=\operatorname{dim} C \theta+\operatorname{dim}\left((C \theta)^{\perp} \cap V \theta\right)$. By the lemma above, $(C \theta)^{\perp}=\operatorname{Ker} \theta \oplus$ $\left(C^{\perp} \theta\right)$ which shows $(C \theta)^{\perp} \cap V \theta=(\operatorname{Ker} \theta \cap V \theta) \oplus\left(\left(C^{\perp} \theta\right) \cap V \theta\right)$. Assume $x \in$ $V \theta \cap \operatorname{Ker} \theta$. Then $x=v \theta$ for some $v \in V$. Thus $x=v \theta=v \theta^{2}=(v \theta) \theta=x \theta=0$. This shows $(C \theta)^{\perp} \cap V \theta=\left(C^{\perp}\right) \theta \cap V \theta=\left(C^{\perp}\right) \theta$. Thus $\operatorname{dim} V \theta=\operatorname{dim} C \theta+\operatorname{dim} C^{\perp} \theta$. Now we apply (i) to obtain $\operatorname{dim} C_{V}(H)=\operatorname{dim} C_{C}(H)+\operatorname{dim} C_{C^{\perp}}(H)$.

3. Invariant codes and their centralizers

The aim of this section is to explore the relationship between the dimensions of the code and its centralizer codes. Towards that goal we present the following two theorems.

Theorem 3.1. Let C be a code over F_{p} and let H be a group of linear transformations which leave C invariant. Suppose $(|H|, p)=1$. Then

$$
C=C_{C}(H) \oplus U
$$

where

$$
U=\left\{c-c \theta \mid c \in C, \theta=\frac{1}{H} \sum_{h \in H} h\right\}
$$

Moreover, U is an invariant subcode of C.
Proof. Since $C_{C}(H) \subseteq C$ and $U \subseteq C$, we have $C_{C}(H)+U \subseteq C$. For any $c \in C$, we may write $c=c \theta+(c-c \theta)$ where $c \theta \in C_{C}(H)$ as

$$
c \theta h=c\left(\frac{1}{|H|} \sum_{g \in H} g\right) h=c\left(\frac{1}{|H|} \sum_{g \in H} g\right)=c \theta .
$$

Clearly $c-c \theta \in U$ and hence $c \in C_{C}(H)+U$. Thus $C=C_{C}(H)+U$.
We now prove that $C_{C}(H) \cap U=\{0\}$. Let $x \in C_{C}(H) \cap H$. Since $x \in C_{C}(H)$, we have

$$
x \theta=x\left(\frac{1}{|H|} \sum_{h \in H} h\right)=\frac{1}{|H|} \sum_{h \in H} x h=\frac{1}{|H|} \sum_{1}^{|H|} x=x .
$$

On the other hand, $x=c-c \theta$ for some $c \in C$ since $x \in U$. This implies $x \theta=c \theta-c \theta^{2}=c \theta-c \theta=0$ as $c \theta \in C_{C}(H)$. As $x \theta=x$, we have $x=0$.

Theorem 3.2. Let C be a code over F_{p} and let H be a noncyclic abelian group of linear transformations which leave C invariant. Suppose $(|H|, p)=1$, then

$$
C=\sum_{h \in H^{\#}} C_{C}(h)
$$

where $H^{\#}$ denotes the nonidentity elements of H.

Proof. Let $h \in H^{\#}$. Then $h^{m}=1$ for some m and p does not divide m. So h satisfies the equation $x^{m}-1=0$ over F_{p}. Since p does not divide $m, m x^{m-1} \neq 0$, which shows that the minimal polynomial of h has distinct roots. Thus h is diagonalizable over F_{p}. Since H is abelian and each element of H is diagonalizable, the elements in H are simultaneously diagonalizable i.e., $C=\left\langle u_{1}\right\rangle \oplus \cdots \oplus\left\langle u_{s}\right\rangle$ where $\left\{u_{1}, \ldots, u_{s}\right\}$ is a basis of eigenvectors for the elements of H. We now define a homomorphism ϕ from H to $\operatorname{Aut}\left(\left\langle u_{i}\right\rangle\right)$ by

$$
\phi(h)\left(u_{i}\right)=u_{i} h .
$$

Then $H / \operatorname{Ker} \phi$ can be imbedded in $\operatorname{Aut}\left(\left\langle u_{i}\right\rangle\right)$. Since Ker $\phi \subseteq C_{H}\left(u_{i}\right)$ and $\left\langle u_{i}\right\rangle \cong$ Z_{p}, we have $H / C_{H}\left(u_{i}\right)$ imbedded in Z_{p-1}. This shows $H / C_{H}\left(u_{i}\right)$ is cyclic and because H is not cyclic, $C_{H}\left(u_{i}\right) \neq 1$. Thus $\left\langle u_{i}\right\rangle \subseteq C_{C}\left(h_{i}\right)$ for some $h_{i} \in H$. Hence

$$
C \subseteq \sum_{i=1}^{s} C_{C}\left(h_{i}\right) \subseteq C
$$

and the proof is complete.
Now we are ready to prove our main result.
Theorem 3.3. Let C be the code over F_{p} and H be a group of linear transformations which leave C invariant. Suppose $H \cong Z_{q} \times Z_{q}$ for some $q, q \neq p$. Then

$$
\operatorname{dim} C=\sum_{i=1}^{q+1} \operatorname{dim} C_{C}\left(h_{i}\right)-q \operatorname{dim} C_{C}(H)
$$

where h_{1}, \ldots, h_{q+1} are generators of the $q+1$ subgroups of order q.
Proof. Since $(|H|, p)=1$, by Theorem 3.1, $C=C_{C}(H) \oplus U$. We apply Theorem 3.2 to get

$$
U=\sum_{i=1}^{q+1} C_{U}\left(h_{i}\right)
$$

where h_{1}, \ldots, h_{q+1} generate $q+1$ distinct subgroups of H of order q. We claim that U is direct sum of the $C_{U}\left(h_{i}\right) \mathrm{s}$. For $i \neq j$,

$$
C_{U}\left(h_{i}\right) \cap C_{U}\left(h_{j}\right) \subseteq C_{U}\left(\left\langle h_{i}, h_{j}\right\rangle\right)=C_{U}(H) \subseteq U \cap C_{C}(H)=\{0\}
$$

This shows our claim is true for $n=2$. Assume the claim is true for $n=k$ i.e.,

$$
\sum_{i=1}^{k} C_{U}\left(h_{i}\right)=\oplus \sum_{i=1}^{k} C_{U}\left(h_{i}\right)
$$

Let

$$
c \in\left(\oplus \sum_{i=1}^{k} C_{U} h_{i}\right) \cap C_{U}\left(h_{k+1}\right) .
$$

Then

$$
c=\sum_{i=1}^{k} u_{i}
$$

implies

$$
c h_{k+1}=\sum_{i=1}^{k} u_{i} h_{k+1}
$$

where $u_{i} \in C_{U}\left(h_{i}\right)$. Since $\left(u_{i} h_{k+1}\right) h_{i}=\left(u_{i} h_{i}\right) h_{k+1}=u_{i} h_{k+1}$, we have $u_{i} h_{k+1} \in$ $C_{U}\left(h_{i}\right)$. As $c=c h_{k+1}$,

$$
c=\sum_{i=1}^{k} u_{i} h_{k+1}=\sum_{i=1}^{k} u_{i} .
$$

By uniqueness of expression for $c, u_{i}=u_{i} h_{k+1}$. So $u_{i} \in C_{U}\left(h_{i}\right) \cap C_{U}\left(h_{k+1}\right)=\{0\}$, by the first part of the proof. Thus $c=0$ and

$$
U=\oplus \sum_{i=1}^{k+1} C_{U}\left(h_{i}\right)
$$

We now prove that $C_{C}\left(h_{i}\right)=C_{C}(H) \oplus C_{U}\left(h_{i}\right)$ for $i=1, \ldots, q+1$. Clearly $C_{C}(H) \oplus C_{U}\left(h_{i}\right) \subseteq C_{C}\left(h_{i}\right)$. Let $c \in C_{C}\left(h_{i}\right)$. Then $c=c \theta+(c-c \theta)$. Since $h \theta=h$ for any $h \in H$, we have $c \theta \in C_{C}(H)$. Moreover, as H is abelian and $c \in C_{C}\left(h_{i}\right)$, we get $(c-c \theta) h_{i}=c h_{i}-c \theta h_{i}=c h_{i}-c h_{i} \theta=c-c \theta$ which shows $c-c \theta \in C_{U}\left(h_{i}\right)$. Thus $C_{C}\left(h_{i}\right)=C_{C}(H)+C_{U}\left(h_{i}\right)$. Since $C_{U}\left(h_{i}\right) \subseteq U$, the sum is direct. Thus

$$
\begin{aligned}
\operatorname{dim} C & =\operatorname{dim} C_{C}(H)+\sum_{i=1}^{q+1} \operatorname{dim} C_{U}\left(h_{i}\right) \\
& =\operatorname{dim} C_{C}(H)+\sum_{i=1}^{q+1}\left(\operatorname{dim} C_{C}\left(h_{i}\right)-\operatorname{dim} C_{C}(H)\right) \\
& =\sum_{i=1}^{q+1} \operatorname{dim} C_{C}\left(h_{i}\right)-q \operatorname{dim} C_{C}(H) .
\end{aligned}
$$

4. Affine code as an invariant linear code

We begin this section with a definition.
Definition 4.1. If $A=\left(a_{i j}\right)$ is a $r \times r$ matrix and $B=\left(b_{i j}\right)$ is a $s \times s$ matrix, then the Kronecker product $A \otimes B$ is the $r s \times r s$ matrix given by

$$
A \otimes B=\left(a_{i j} B\right)_{r s \times r s}
$$

Throughout this section π will denote a plane of order n affording a $P-L$ transitivity G with center at C and axis L, the line at infinity. We coordinatize π by using Hall's method with entries from $G \times G$ where $G=\left\{g_{1}, \ldots, g_{n}\right\}$. Let Δ_{a} be the row vector which lists the finite points of $x=a$ i.e. $\Delta_{a}=\left\{\left(g_{a}, g_{1}\right), \ldots,\left(g_{a}, g_{n}\right)\right\}$. We index the first n^{2} columns of the incidence matrix A of π by Δ_{a} 's, $1 \leq a \leq n$ and the last $n+1$ columns, by the infinite points $(1), \ldots,(n+1)$. The first n^{2} rows are indexed by the families $F_{m}, m=1, \ldots, n$ where

$$
F_{m}=\left\{l_{m} g_{k} \mid k=1, \ldots, n\right\} \cup(m), m=1, \ldots, n
$$

and l_{m} is the line joining $\left(g_{1}, g_{1}\right)$ and (m). That is, $l_{m}=\left\{\left(g_{k}, g_{m k}\right) \mid k=1, \ldots, n\right\} \cup$ (m) and $g_{m k}$ is some element of G. The last $(n+1)$ rows are indexed by the lines through $(n+1)$ in the following order $x=a, a=1, \ldots, n$, and L, where $x=a$ is the line $l_{a}=\left\{\left(g_{a}, g_{k}\right) \mid k=1, \ldots, n\right\}$ and L is the line at infinity. Then the incidence matrix of π is given by

$$
A=\left[\begin{array}{ll}
M & B^{t} \\
B & C
\end{array}\right]
$$

where M is the incidence matrix of the n^{2} finite points and n^{2} lines that do not contain $(n+1)$. B on the other hand is the incidence matrix of n^{2} points and $(n+1)$ lines containing $(n+1)$. Thus

$$
B=\left[\begin{array}{c}
\varepsilon_{1} \otimes 1_{n} \\
\vdots \\
\varepsilon_{n} \otimes 1_{n} \\
0 \ldots 0
\end{array}\right]
$$

where ε_{i} is the unit vector of F_{p}^{n} whose $i^{t h}$ coordinate is one and other coordinates are zero.
The incidence matrix of the affine plane $\pi-L$ is given by the $\left(n^{2}+n\right) \times n^{2}$ matrix

$$
\left[\begin{array}{l}
M \\
B
\end{array}\right]
$$

The affine code C_{A} of $\pi-L$ is therefore a subspace of $V=F_{p}^{n^{2}}$ generated by the $\left(n^{2}+n\right)$ nonzero row vectors of M and B over F_{p}. Let $\left\{v_{m i} \mid 1 \leq m \leq n, 1 \leq i \leq n\right\}$ be the row vectors of M. Then according to our construction each $v_{m i}$ is the characteristic vector of $l_{m} g_{i}$ with it's last $n+1$ coordinates deleted. As $v_{m i}$ is a vector with n^{2} coordinates, we may position its n^{2} coordinates into n blocks each containing n coordinates and corresponding to some Δ_{a} as described in the beginning of this section. Since $x=a$ meets $l_{m} g_{i}$ in only one point, each block of $v_{m i}$ has 1 in exactly one of its n coordinates and the other $n-1$ coordinates are zero. Thus if e_{s} denotes a vector of length n whose $s^{t h}$ coordinate is 1 and other coordinates are zero, and $v_{m i}=\left(b_{1}, \ldots, b_{n}\right)$ where b_{i} is a vector with n coordinates, then $b_{i}=e_{s}$ for some s.

Let $v_{n+11}, \ldots, v_{n+1 n}$ be the row vectors of B. Then each $v_{n+1 k}$ is the characteristic vector of $x=k$ and hence $v_{n+1 k}=\left(0, \ldots, 1_{n}, \ldots, 0\right)$ where 1_{n} is in the $k^{t h}$ coordinate and is a vector of length n with all coordinates 1 , and 0 is a vector of length n with all coordinates zero.

Lemma 4.2. $I \otimes R(g)$ is the permutation matrix for $g \in G$ acting on the affine code $C_{A}=\left\langle v_{m i} \mid m=1, \ldots, n+1 ; i=1, \ldots, n\right\rangle$.
Proof. Let $\left(l_{m} g_{i}\right) g=l_{m} g_{j}$. We want to show that $\left(v_{m i}\right) I \otimes R(g)=v_{m g}$. Let $v_{m i}=$ $\left(b_{1}, \ldots, b_{n}\right)$ and $v_{m j}=\left(c_{1}, \ldots, c_{n}\right)$ where each b_{i}, c_{i} is a vector of length n with exactly one coordinate one and the other coordinates zero. Assume $b_{r}=e_{s}$ where e_{s} denotes a vector of length n whose $s^{t h}$ coordinate is one and other coordinates
are zero. Then b_{r} has 1 in its $s^{t h}$ coordinate, which implies $\left(g_{r}, g_{s}\right) \in l_{m} g_{i}$. Thus $g_{s}=g_{i} g_{m r}$. On the other hand $\left(v_{m i}\right) I \otimes R(g)=\left(b_{1} R(g), \ldots, b_{n} R(g)\right)$. Now $b_{r} R(g)=e_{t}$ for some t. Hence $b_{r} R(g)=e_{s} R(g)=e_{t}$, which shows the (s, t)-entry of $R(g)$ is 1 and $g g_{s}=g_{t}$. Because $\left(l_{m} g_{i}\right) g=g_{j}$, we have $g g_{i}=g_{j}$. Hence using $g_{s}=g_{i} g_{m r}$ we obtain $g g_{i} g_{m r}=g_{t}$ i.e., $g_{j} g_{m r}=g_{t}$. But $\left(g_{r}, g_{j} g_{m r}\right) \in l_{m} g_{j}$ and hence $\left(g_{r} g_{t}\right) \in l_{m} g_{j}$, which shows $v_{m j}$ has 1 at its $t^{t h}$ coordinate in the $r^{t h}$ block i.e., $c_{r}=e_{t}=b_{r} R(g)$. Since r was arbitrary, $\left(v_{m i}\right) I \otimes R(g)=v_{m g}$.

Finally as g fixes $x=a$, we want to show that $\left(v_{n+1 a}\right) I \otimes R(g)=v_{n+1 a}$. Since $v_{n+1 a}=\left(0, \ldots, 1_{n}, \ldots, 0\right), 1_{n}$ in the $a^{t h}$ coordinate,

$$
\left(v_{n+1 a}\right) I \otimes R(g)=\left(0, \ldots, 1_{n} R(g), \ldots, 0\right)=\left(0, \ldots, 1_{n}, 0, \ldots 0\right)=v_{n+1 a}
$$

Thus $I \otimes R(g)$ fixes each $v_{n+1 a}$.
For $g_{1}, g_{2} \in G,\left(I \otimes R\left(g_{1}\right)\right)\left(I \otimes R\left(g_{2}\right)\right)=\left(I \otimes R\left(g_{1}\right) R\left(g_{2}\right)\right)=\left(I \otimes R\left(g_{1} g_{2}\right)\right)$. So the correspondence $g \rightarrow I \otimes R(g)$ is an isomorphism between G and $\{I \otimes R(g) \mid$ $g \in G\}$. Hence from now on we will identify $\{I \otimes R(g) \mid g \in G\}$ with G. Because, by Lemma 4.2, $\left(v_{m i}\right) g=v_{m j}$, it follows that both $C_{A}=\left\langle v_{m i}\right| 1 \leq m \leq n+1,1 \leq$ $i \leq n\rangle$ and $C_{0}=\left\langle v_{m i}-v_{m j} \mid 1 \leq m \leq n+1,1 \leq i, j \leq n\right\rangle$ are G-invariant subspaces of $F_{p}^{n^{2}}$.

5. Dimension of the affine code

Throughout this section we will assume π to be a plane of order n such that p divides n exactly to the first power. Let A be the incidence matrix of such a plane and let w_{1}, \ldots, w_{v}, where $v=n^{2}+n+1$, be the rows of A. Then C, the code of π is a subspace of $V=F_{p}^{n^{2}+n+1}$ spanned by $\left\{w_{1}, \ldots, w_{v}\right\}$ over F_{p}. Moreover, $\operatorname{dim} C=\frac{v+1}{2}$ by a theorem of Hall [2]. Fix a line L of π. We consider C_{0} to be the subspace of C spanned by $w_{i}-w_{j}$ where w_{i} and w_{j} contain the same point of L. For any integer r, we let 1_{r} denote the vector of F_{p}^{r} each of whose r coordinates is 1 .

Lemma 5.1. Let C_{0} be the code described above. Then

$$
\operatorname{dim} C_{0}=\frac{n(n-1)}{2}
$$

Proof. We may arrange the points of π so that the last $(n+1)$ coordinates of the row vectors of A correspond to a line L, called the line at infinity. The first $n^{2}+n=$ $n(n+1)$ rows of A may be partitioned into $(n+1)$ families $\left\{F_{m} \mid m=1, \ldots, n+1\right\}$. Each F_{m} is the set of n lines of $\pi-L$ which contain the $m^{t h}$ point of L. The last row of A is the characteristic vector of L. We denote the vectors of F_{m} by $w_{m 1}, \ldots, w_{m n}$ so that by definition $C_{0}=\left\langle w_{m i}-w_{m j} \mid 1 \leq i, j \leq n, m=1, \ldots, n+1\right\rangle$. The vectors which span C_{0} have the last $n+1$ coordinates zero. Hence C_{0} is a subspace of C consisting of vectors with the last $n+1$ coordinates zero. Now consider $U=\left\langle w_{11}, \ldots, w_{n+11}\right\rangle$ where $w_{m 1} \in F_{m}$ is a row of A containing the $m^{t h}$ infinite point and no other infinite point. Clearly $\operatorname{dim} U=n+1$, as the vectors which span U are independent in the last $n+1$ coordinates.

Now $C_{0}+U=C_{0} \oplus U$, as the only vector of U with the last $n+1$ coordinates zero is 0 . Clearly $C_{0} \oplus U \subseteq C$. Now $w_{m i}=w_{m 1}-\left(w_{m 1}-w_{m i}\right) \in U \oplus C_{0}$. Also,

$$
\left(1_{n^{2}}, 0\right)=(1, \ldots, 1,0, \ldots, 0)=\sum_{k=1}^{n} w_{m k}
$$

is an element of $U \oplus C_{0}$.
Without loss of generality, we may assume that each of $\left\{w_{m 1} \mid 1 \leq m \leq n+1\right\}$ contains the same point, say P and therefore has the first coordinate equal to one. Hence $w_{11}+w_{21}+\cdots+w_{n+11}=(n+1,1, \ldots, 1)=1_{v} \in U \oplus C_{0}$. Thus $1_{v}-\left(1_{n^{2}}, 0\right)=w_{v} \in U \oplus C_{0}$ where w_{v} is the row of A corresponding to L. This proves that $U \oplus C_{0}$ contains all the generators of C. Thus $U \oplus C_{0}=C$ and hence $\operatorname{dim} C_{0}=\operatorname{dim} C-\operatorname{dim} U=\frac{v+1}{2}-(n+1)=\frac{n^{2}+n+1+1}{2}-(n+1)=\frac{n^{2}-n}{2}$.

We now consider $u_{m i}$ to be the vector obtained from $w_{m i}$ by deleting the last $n+1$ coordinates. Then clearly $\left\{u_{m i} \mid i=1, \ldots, n ; m=1, \ldots, n+1\right\}$ is the set of $n^{2}+n$ rows of an incidence matrix of the affine plane, obtained from π by deleting L and its $n+1$ points. The affine code C_{A} is clearly the linear subspace of $F_{p}^{n^{2}}$ spanned by the $\left\{u_{m i} \mid i=1, \ldots, n ; m=1, \ldots, n+1\right\}$. We shall now find the dimension of of the affine code C_{A} over F_{p} and we will show that C_{A} is in fact C_{0}^{\perp} in $F_{p}^{n^{2}}$. Here we must bear in mind that the last $n+1$ coordinates of C_{0} are zero, so we can identify $u_{m i}$ with $w_{m i}$ and think of C_{0} as a subcode of $F_{p}^{n^{2}}$.

Theorem 5.2. C_{0}^{\perp} is the affine code associated with $\pi-L$. Moreover, $\operatorname{dim} C_{0}^{\perp}=$ $\frac{n^{2}+n}{2}$ if p divides n exactly to the first power.

Proof. Let $W=\left\langle u_{11}, \ldots, u_{n+11}\right\rangle$. Since $\left(u_{m i}, u_{k i}-u_{k j}\right)=0(\bmod p)$, we have $C_{0} \subseteq C_{0}^{\perp}$ and $W \subseteq C_{0}^{\perp}$. Now let $x \in W \cap C_{0}$ so that $x=a_{1} u_{11}+\cdots+$ $a_{n+1} u_{n+11}, a_{i} \in F_{p}$. Because $W \subseteq C_{0}^{\perp},\left(x, u_{m i}\right)=0$ for each m. On the other hand,

$$
\left(x, u_{m i}\right)=\sum_{i=1}^{n+1} a_{i}\left(u_{i 1}, u_{m 1}\right)=\sum_{i \neq m} a_{i}=0 .
$$

Thus

$$
a_{1}=\ldots a_{n+1}=\sum_{i=1}^{n+1} a_{i}
$$

Let $a_{i}=\lambda$. Then $x=\lambda u_{11}+\cdots+\lambda u_{n+11}=\lambda 1_{n^{2}}$ and $\operatorname{dim}\left(W \cap C_{0}\right)=1$. Thus $\operatorname{dim}\left(C_{0}+W\right)=\operatorname{dim} C_{0}+\operatorname{dim} W-\operatorname{dim}\left(C_{0} \cap W\right)=\frac{n^{2}-n}{2}+n+1-1=\frac{n^{2}+n}{2}$. On the other hand both C_{0} and W are subcodes of C_{0}^{\perp} and $\operatorname{dim} C_{0}^{\perp}=n^{2}-\operatorname{dim} C_{0}=$ $n^{2}-\frac{n^{2}-n}{2}=\frac{n^{2}+n}{2}$. Hence $C_{0}^{\perp}=C_{0}+W$. Since $C_{0}+W=\left\langle u_{m i}\right| m=1, \ldots, n+$ $1 ; i=1, \ldots, n\rangle, C_{0}^{\perp}$ is the affine code of $\pi-L$.

Corollary 5.3. C_{0} is a subcode of the affine code $C_{A}=C_{0}^{\perp}$ of codimension n.

6. Dimension of $C_{C_{A}}(H)$

This final section begins with a lemma.
Lemma 6.1. G fixes each element of C_{A} / C_{0}.
Proof. C_{0} is a subcode of C_{A} by Corollary. Hence C_{A} / C_{0} is well defined. Let $g \in G$. For a generator $v_{m i}$ of $C_{A},\left(v_{m i}+C_{0}\right) g=\left(v_{m i}\right) g+C_{0}=v_{m j}+C_{0}$, as g is an elation and C_{0} is G-invariant. But $v_{m i}-v_{m j} \in C_{0}$, hence $v_{m i}+C_{0}=v_{m j}+C_{0}$. Thus $\left(v_{m i}+C_{0}\right) g=v_{m i}+C_{0}$.

Next we quote a theorem which will be used later to prove an upcoming lemma.
Theorem 6.2. Let G be a group of automorphisms of an abelian p-group V and assume p does not divide $|G|$. Suppose V_{1} is a G-invariant direct factor of V. Then $V=V_{1} \times V_{2}$ where V_{2} is also G-invariant.

Lemma 6.3. Let H be a subgroup of G and $(|H|, p)=1$. Then

$$
C_{A}=C_{0}+M
$$

where both C_{0} and M are H-invariant and $\operatorname{dim} M=n$. Moreover

$$
C_{C_{A}}(H)=C_{C_{0}}(H) \oplus C_{M}(H)=C_{C_{0}}(H) \oplus M
$$

Proof. Note that $C_{A}=C_{0} \oplus M$, is a direct consequence of Corollary 6 and Theorem 6.2. We prove the next equality of the lemma.

Let $v \in C_{C_{0}}(H) \cap C_{M}(H)$. Then $v \in C_{0} \cap M=\{0\}$, hence $v=0$. Thus $C_{C_{0}}(H)+C_{M}(H)=C_{C_{0}}(H) \oplus C_{M}(H)$. We now show that $C_{C_{0}}(H) \oplus C_{M}(H)=$ $C_{C_{A}}(H)$. Let $y \in C_{C_{0}}(H)$ and $z \in C_{M}(H)$. Then $y+z \in C_{0}+M=C_{A}$ and $(y+z) h=y h+z h=y+z$ for any h in H, which shows $C_{C_{0}}(H) \oplus C_{M}(H) \subseteq C_{C_{A}}(H)$. Conversely assume $v \in C_{C_{A}}(H)$. Then $v \in C_{A}=C_{0}+M$, which shows $v=y+z$ for some y and z where $y \in C_{0}$ and $z \in M$. Since $v \in C_{C_{0}}(H), v h=v$ for any $h \in H$. Thus $(y+z) h=y+z$ implies $y h+z h=y+z$. Since $y h, y \in C_{0}$ and $z h, z \in M, C_{0} \cap M=\{0\}$ implies $y h=h$ and $z h=z$. Thus $y \in C_{C_{0}}(H)$ and $z \in C_{M}(H)$, which shows $C_{C_{A}}(H) \subseteq C_{C_{0}}(H)+C_{M}(H)$.

Next we prove that $C_{M}(H)=M$. Let $h \in H$. By Lemma 6.1, h fixes each element of C_{A} / C_{0}. Thus $\left(m+C_{0}\right) h=m+C_{0}$ for any $m \in M$. Hence $m h+C_{0}=$ $m+C_{0}$ and $m h-m \in C_{0}$. On the other hand, M is h-invariant. So $m h-m \in M$. Because $M \cap C_{0}=\{0\}$, we get $m h=m$ which implies $M=C_{M}(H)$.

Combining Lemmas 6.1 and 6.3, we now obtain the following theorem which gives the relationship between $\operatorname{dim} C_{C_{0}}(H)$ and $\operatorname{dim} C_{C_{A}}(H)$.
Theorem 6.4. Let π be a plane of order n such that
(i) p divides n exactly to the first power, and
(ii) the plane affords a $P-L$ transitivity G.

Let C_{A} denote the affine code for $\pi-L$ over Z_{p}. If H is a subgroup for G such that $(|H|, p)=1$, then

$$
\operatorname{dim} C_{C_{A}}(H)=\operatorname{dim} C_{C_{0}}(H)+n
$$

Next we prove a theorem which states the relationship of the dimensions of $C_{V}(H)$ and $C_{C_{A}}(H)$, where $V=F_{p}^{n^{2}}$.
Theorem 6.5. Let π and H satisfy the hypotheses of Theorem 6.4. Then

$$
\operatorname{dim} C_{V}(H)=2 \operatorname{dim} C_{C_{A}}(H)-n=2 \operatorname{dim} C_{C_{0}}(H)+n .
$$

Proof. By Theorem 2.2, we have $\operatorname{dim} C_{V}(H)=\operatorname{dim} C_{C_{0}}(H)+\operatorname{dim} C_{C_{0}}^{\perp}(H)$. Theorem 6.4 implies $\operatorname{dim} C_{C_{0}}^{\perp}(H)=\operatorname{dim} C_{C_{0}}(H)+n$. Combining these equalities we obtain 6.5.

Corollary 6.6. If π and H are as in Theorem 6.4 or Theorem 6.5, then $\operatorname{dim} C_{C_{A}}(H)=\frac{n}{2}\left(1+\frac{n}{|H|}\right)$, where C_{A} is the affine code of π.

Proof. Since $C_{V}(H)$ is spanned by the orbits of H on the n^{2} affine points of the plane π and G acts semiregularly on those affine points, we have $\frac{n^{2}}{|H|}$ point orbits. Thus $\operatorname{dim} C_{V}(H)=\frac{n^{2}}{|H|}$. On the other hand, Theorem 6.5 implies $\operatorname{dim} C_{V}(H)=$ $2 \operatorname{dim} C_{C_{A}}(H)-n$, which shows $\operatorname{dim} C_{C_{A}}(H)=\frac{n}{2}+\frac{n^{2}}{2|H|}=\frac{n}{2}\left(1+\frac{n}{|H|}\right)$.

References

[1] Hall, M., Combinatorial Theory, New York-Chichester-Brisbane-Toronto- Singapore: Interscience (1986).
[2] Hughes, D. R. and Piper, F. C., Projective Planes, Berlin-Heidelberg- New York: Springer Verlag (1973).

Department of Computer Science and Engineering
North South University, Dhaka, Bangladesh
E-mail: ppd@northsouth.edu

[^0]: 2000 Mathematics Subject Classification: 05E20.
 Key words and phrases: invariant code, centralizer, affine plane.
 Received March 30, 2003, revised January 2004.

