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EXPLORING INVARIANT LINEAR CODES THROUGH

GENERATORS AND CENTRALIZERS

PARTHA PRATIM DEY

Abstract. We investigate a H-invariant linear code C over the finite field
Fp where H is a group of linear transformations. We show that if H is a
noncyclic abelian group and (|H|, p) = 1, then the code C is the sum of the
centralizer codes Cc(h) where h is a nonidentity element of H. Moreover if
A is subgroup of H such that A ∼= Zq × Zq , q 6= p, then dim C is known
when the dimension of Cc(K) is known for each subgroup K 6= 1 of A. In
the last few sections we restrict our scope of investigation to a special class
of invariant codes, namely affine codes and their centralizers. New results
concerning the dimensions of these codes and their centralizers are obtained.

1. Introduction

Given a vector space V = Vn(F ) of dimension n < ∞ over the field F , with
a fixed basis specified for V , a code is a subset of V . A code is linear if it is a
subspace of V . For F we take Fp and for basis the usual one i.e., {ei | i = 1, . . . , n}
where ei has 1 in it’s ith coordinate and the remaining coordinates are zero. The
vectors in C are called codewords and a typical codeword has the following shape

x = (x1, . . . , xn), xi ∈ Fp , i = 1, . . . , n

See [2] and [3] for background informations on linear codes.

Definition 1.1. Let H be a group of linear transformations of a vector space V .
We set

CV (H) = {v ∈ V | vh = v}

for all h ∈ H . We call CV (H) the centralizer of H in V . Clearly the centralizer is
a code in V .

Definition 1.2. A code C of vector space V is H-invariant if Ch ⊆ C for all h in
H , where H is a group of linear transformations of vector space V .
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2. Dimension of CV (H)

In this section we explore the relationship between the dimensions of CV (H)
and CC(H). Towards that goal, we prove the following lemma.

Lemma 2.1. Let V = F n
p and assume C is a code of V over Fp. Let H be a group

of permutation matrices of order n which leave C invariant and (p, |V |) = 1. Set

θ =
1

|H |

∑

g∈H

g .

Then (i) θ is an idempotent, (ii) (Cθ)⊥ = Ker θ ⊕ (C⊥)θ.

Proof. (i) We compute θ2.

θ · θ =
( 1

|H |

∑

g∈H

g
)( 1

|H |

∑

g∈H

g
)

=
1

|H |2
|H |

∑

g∈H

g

=
1

|H |

∑

g∈H

g = θ ,

which shows θ is an idempotent.
(ii) Let v ∈ Ker θ ∩ (C⊥)θ. Then vθ = 0 and v = c⊥θ where c⊥ ∈ C⊥. Because

θ2 = θ, v = c⊥θ = c⊥θ2 = (c⊥θ)θ = vθ = 0. Thus Ker θ ∩ (C⊥)θ = {0}.
Let v ∈ Ker θ⊕ (C⊥)θ. Then v = k+(c⊥)θ with k ∈ Ker θ and c⊥ ∈ C⊥. Thus

for any c ∈ C, (cθ, v) = (cθ, k +(c⊥)θ) = (cθ, k)+ (cθ, (c⊥)θ) = (c, kθt)+ (cθ, c⊥θ).
Since

θt =
1

|H |

∑

g∈H

gt =
1

|H |

∑

g∈H

g−1 =
1

|H |

∑

g∈H

g = θ

and C, C⊥ are θ-invariant, we have (cθ, v) = 0 for any c, which shows v ∈ (Cθ)⊥.
We now show that (Cθ)⊥ ⊆ Ker θ ⊕ (C⊥)θ. Let v ∈ (Cθ)⊥, which implies

(v, cθ) = 0 for any c ∈ C. But 0 = (v, cθ) = (vθt, c) = (vθ, c) and so vθ ∈ C⊥.
As θ is an idempotent, vθ also belongs to (C⊥θ). Thus v = (v − vθ) + vθ, where
v− vθ ∈ Ker θ because (v− vθ)θ = vθ− vθ2 = vθ− vθ = 0. We therefore conclude
that (Cθ)⊥ = Ker θ ⊕ (C⊥)θ. 2

Next we prove the following theorem.

Theorem 2.2. Assume C is a code of V = F n
p . Let H be a group of permutation

matrices which leave C invariant. If (p, |H |) = 1, then

(i) CC(H) = Cθ,
(ii) dim CV (H) = dim CC(H) + dim CC⊥(H).

Proof. (i) Let v ∈ Cθ. Then v = cθ for some c ∈ C. Let h be an arbitrary
element from H . Then

vh = cθh = c
( 1

|H |

∑

g∈H

g
)

= c
( 1

|H |

∑

g∈H

g
)

= cθ = v ,
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which shows v ∈ CC(H). Conversely, suppose v ∈ CC(H). Then v ∈ C and vg = v
for an arbitrary g ∈ H . Thus

vθ = v
( 1

|H |

∑

g∈H

g
)

=
1

|H |

∑

g∈H

vg =
1

|H |
|H |v = v ,

which shows v ∈ Cθ.
(ii) Let θ be the idempotent of the Lemma 2.1. As (Cθ) ⊂ (V θ), we have

dim V θ = dim Cθ + dim
(

(Cθ)⊥ ∩ V θ
)

. By the lemma above, (Cθ)⊥ = Ker θ ⊕

(C⊥θ) which shows (Cθ)⊥ ∩ V θ = (Ker θ ∩ V θ) ⊕
(

(C⊥θ) ∩ V θ
)

. Assume x ∈

V θ ∩ Ker θ. Then x = vθ for some v ∈ V . Thus x = vθ = vθ2 = (vθ)θ = xθ = 0.
This shows (Cθ)⊥∩V θ = (C⊥)θ∩V θ = (C⊥)θ. Thus dim V θ = dim Cθ+dim C⊥θ.
Now we apply (i) to obtain dim CV (H) = dim CC(H) + dim CC⊥(H). 2

3. Invariant codes and their centralizers

The aim of this section is to explore the relationship between the dimensions
of the code and its centralizer codes. Towards that goal we present the following
two theorems.

Theorem 3.1. Let C be a code over Fp and let H be a group of linear transfor-

mations which leave C invariant. Suppose (|H |, p) = 1. Then

C = CC(H) ⊕ U

where

U =
{

c − cθ | c ∈ C, θ =
1

H

∑

h∈H

h
}

Moreover, U is an invariant subcode of C.

Proof. Since CC(H) ⊆ C and U ⊆ C, we have CC(H) + U ⊆ C. For any c ∈ C,
we may write c = cθ + (c − cθ) where cθ ∈ CC(H) as

cθh = c
( 1

|H |

∑

g∈H

g
)

h = c
( 1

|H |

∑

g∈H

g
)

= cθ .

Clearly c − cθ ∈ U and hence c ∈ CC(H) + U . Thus C = CC(H) + U .
We now prove that CC(H) ∩ U = {0}. Let x ∈ CC(H) ∩ H . Since x ∈ CC(H),

we have

xθ = x
( 1

|H |

∑

h∈H

h
)

=
1

|H |

∑

h∈H

xh =
1

|H |

|H|
∑

1

x = x .

On the other hand, x = c − cθ for some c ∈ C since x ∈ U . This implies
xθ = cθ − cθ2 = cθ − cθ = 0 as cθ ∈ CC(H). As xθ = x, we have x = 0. 2

Theorem 3.2. Let C be a code over Fp and let H be a noncyclic abelian group

of linear transformations which leave C invariant. Suppose (|H |, p) = 1, then

C =
∑

h∈H#

CC(h)

where H# denotes the nonidentity elements of H.
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Proof. Let h ∈ H#. Then hm = 1 for some m and p does not divide m. So h
satisfies the equation xm − 1 = 0 over Fp. Since p does not divide m, mxm−1 6= 0,
which shows that the minimal polynomial of h has distinct roots. Thus h is
diagonalizable over Fp. Since H is abelian and each element of H is diagonalizable,
the elements in H are simultaneously diagonalizable i.e., C = 〈u1〉 ⊕ · · · ⊕ 〈us〉
where {u1, . . . , us} is a basis of eigenvectors for the elements of H . We now define
a homomorphism φ from H to Aut(〈ui〉) by

φ(h)(ui) = uih .

Then H/ Ker φ can be imbedded in Aut(〈ui〉). Since Ker φ ⊆ CH(ui) and 〈ui〉 ∼=
Zp, we have H/CH(ui) imbedded in Zp−1. This shows H/CH(ui) is cyclic and
because H is not cyclic, CH(ui) 6= 1. Thus 〈ui〉 ⊆ CC(hi) for some hi ∈ H . Hence

C ⊆

s
∑

i=1

CC(hi) ⊆ C

and the proof is complete. 2

Now we are ready to prove our main result.

Theorem 3.3. Let C be the code over Fp and H be a group of linear transforma-

tions which leave C invariant. Suppose H ∼= Zq × Zq for some q, q 6= p. Then

dim C =

q+1
∑

i=1

dim CC(hi) − q dim CC(H)

where h1, . . . , hq+1 are generators of the q + 1 subgroups of order q.

Proof. Since (|H |, p) = 1, by Theorem 3.1, C = CC(H) ⊕U . We apply Theorem
3.2 to get

U =

q+1
∑

i=1

CU (hi) ,

where h1, . . . ,hq+1 generate q + 1 distinct subgroups of H of order q. We claim
that U is direct sum of the CU (hi)s. For i 6= j,

CU (hi) ∩ CU (hj) ⊆ CU (〈hi, hj〉) = CU (H) ⊆ U ∩ CC(H) = {0} .

This shows our claim is true for n = 2. Assume the claim is true for n = k i.e.,

k
∑

i=1

CU (hi) = ⊕

k
∑

i=1

CU (hi) .

Let

c ∈
(

⊕

k
∑

i=1

CUhi

)

∩ CU (hk+1) .

Then

c =
k

∑

i=1

ui
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implies

chk+1 =

k
∑

i=1

uihk+1

where ui ∈ CU (hi). Since (uihk+1)hi = (uihi)hk+1 = uihk+1, we have uihk+1 ∈
CU (hi). As c = chk+1,

c =
k

∑

i=1

uihk+1 =
k

∑

i=1

ui .

By uniqueness of expression for c, ui = uihk+1. So ui ∈ CU (hi)∩CU (hk+1) = {0},
by the first part of the proof. Thus c = 0 and

U = ⊕
k+1
∑

i=1

CU (hi) .

We now prove that CC(hi) = CC(H) ⊕ CU (hi) for i = 1, . . . , q + 1. Clearly
CC(H)⊕CU (hi) ⊆ CC(hi). Let c ∈ CC(hi). Then c = cθ + (c− cθ). Since hθ = h
for any h ∈ H , we have cθ ∈ CC(H). Moreover, as H is abelian and c ∈ CC(hi),
we get (c− cθ)hi = chi − cθhi = chi − chiθ = c− cθ which shows c− cθ ∈ CU (hi).
Thus CC(hi) = CC(H) + CU (hi). Since CU (hi) ⊆ U , the sum is direct. Thus

dim C = dim CC(H) +

q+1
∑

i=1

dim CU (hi)

= dim CC(H) +

q+1
∑

i=1

(

dim CC(hi) − dim CC(H)
)

=

q+1
∑

i=1

dim CC(hi) − q dim CC(H) .

2

4. Affine code as an invariant linear code

We begin this section with a definition.

Definition 4.1. If A = (aij) is a r × r matrix and B = (bij) is a s × s matrix,
then the Kronecker product A ⊗ B is the rs × rs matrix given by

A ⊗ B = (aijB)rs×rs.

Throughout this section π will denote a plane of order n affording a P−L transitiv-
ity G with center at C and axis L, the line at infinity. We coordinatize π by using
Hall’s method with entries from G × G where G = {g1, . . . , gn}. Let ∆a be the
row vector which lists the finite points of x = a i.e. ∆a = {(ga, g1), . . . , (ga, gn)}.
We index the first n2 columns of the incidence matrix A of π by ∆a’s, 1 ≤ a ≤ n
and the last n + 1 columns, by the infinite points (1), . . . , (n + 1). The first n2

rows are indexed by the families Fm, m = 1, . . . , n where

Fm = {lmgk | k = 1, . . . , n} ∪ (m), m = 1, . . . , n
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and lm is the line joining (g1, g1) and (m). That is, lm = {(gk, gmk)|k = 1, . . . , n}∪
(m) and gmk is some element of G. The last (n + 1) rows are indexed by the lines
through (n + 1) in the following order x = a, a = 1, . . . , n, and L, where x = a
is the line la = {(ga, gk) | k = 1, . . . , n} and L is the line at infinity. Then the
incidence matrix of π is given by

A =

[

M Bt

B C

]

where M is the incidence matrix of the n2 finite points and n2 lines that do not
contain (n + 1). B on the other hand is the incidence matrix of n2 points and
(n + 1) lines containing (n + 1). Thus

B =











ε1 ⊗ 1n

...
εn ⊗ 1n

0 . . . 0











where εi is the unit vector of F n
p whose ith coordinate is one and other coordinates

are zero.
The incidence matrix of the affine plane π−L is given by the (n2 +n)×n2 matrix

[

M
B

]

.

The affine code CA of π − L is therefore a subspace of V = F n2

p generated by the

(n2+n) nonzero row vectors of M and B over Fp. Let {vmi | 1 ≤ m ≤ n, 1 ≤ i ≤ n}
be the row vectors of M . Then according to our construction each vmi is the
characteristic vector of lmgi with it’s last n + 1 coordinates deleted. As vmi is
a vector with n2 coordinates, we may position its n2 coordinates into n blocks
each containing n coordinates and corresponding to some ∆a as described in the
beginning of this section. Since x = a meets lmgi in only one point, each block
of vmi has 1 in exactly one of its n coordinates and the other n − 1 coordinates
are zero. Thus if es denotes a vector of length n whose sth coordinate is 1 and
other coordinates are zero, and vmi = (b1, . . . , bn) where bi is a vector with n
coordinates, then bi = es for some s.

Let vn+11, . . . , vn+1n be the row vectors of B. Then each vn+1k is the charac-
teristic vector of x = k and hence vn+1k = (0, . . . , 1n, . . . , 0) where 1n is in the kth

coordinate and is a vector of length n with all coordinates 1, and 0 is a vector of
length n with all coordinates zero.

Lemma 4.2. I ⊗ R(g) is the permutation matrix for g ∈ G acting on the affine

code CA = 〈vmi | m = 1, . . . , n + 1; i = 1, . . . , n〉.

Proof. Let (lmgi)g = lmgj . We want to show that (vmi)I⊗R(g) = vmg . Let vmi =
(b1, . . . , bn) and vmj = (c1, . . . , cn) where each bi, ci is a vector of length n with
exactly one coordinate one and the other coordinates zero. Assume br = es where
es denotes a vector of length n whose sth coordinate is one and other coordinates



ON SOME INVARIANT CODES 23

are zero. Then br has 1 in its sth coordinate, which implies (gr, gs) ∈ lmgi. Thus
gs = gigmr. On the other hand (vmi)I ⊗ R(g) = (b1R(g), . . . , bnR(g)). Now
brR(g) = et for some t. Hence brR(g) = esR(g) = et, which shows the (s, t)-entry
of R(g) is 1 and ggs = gt. Because (lmgi)g = gj , we have ggi = gj . Hence using
gs = gigmr we obtain ggigmr = gt i.e., gjgmr = gt. But (gr, gjgmr) ∈ lmgj and
hence (grgt) ∈ lmgj , which shows vmj has 1 at its tth coordinate in the rth block
i.e., cr = et = brR(g). Since r was arbitrary, (vmi)I ⊗ R(g) = vmg .

Finally as g fixes x = a, we want to show that (vn+1a)I ⊗R(g) = vn+1a. Since
vn+1a = (0, . . . , 1n, . . . , 0), 1n in the ath coordinate,

(vn+1a)I ⊗ R(g) = (0, . . . , 1nR(g), . . . , 0) = (0, . . . , 1n, 0, . . . 0) = vn+1a .

Thus I ⊗ R(g) fixes each vn+1a. 2

For g1, g2 ∈ G,
(

I ⊗R(g1)
)(

I ⊗R(g2)
)

=
(

I ⊗R(g1)R(g2)
)

=
(

I ⊗R(g1g2)
)

. So
the correspondence g → I ⊗ R(g) is an isomorphism between G and {I ⊗ R(g) |
g ∈ G}. Hence from now on we will identify {I ⊗ R(g) | g ∈ G} with G. Because,
by Lemma 4.2, (vmi)g = vmj , it follows that both CA = 〈vmi | 1 ≤ m ≤ n+1, 1 ≤
i ≤ n〉 and C0 = 〈vmi − vmj | 1 ≤ m ≤ n + 1, 1 ≤ i, j ≤ n〉 are G-invariant

subspaces of F n2

p .

5. Dimension of the affine code

Throughout this section we will assume π to be a plane of order n such that p
divides n exactly to the first power. Let A be the incidence matrix of such a plane
and let w1, . . . , wv , where v = n2 + n + 1, be the rows of A. Then C, the code

of π is a subspace of V = F n2+n+1
p spanned by {w1, . . . , wv} over Fp. Moreover,

dim C = v+1
2

by a theorem of Hall [2]. Fix a line L of π. We consider C0 to be the
subspace of C spanned by wi −wj where wi and wj contain the same point of L.
For any integer r, we let 1r denote the vector of F r

p each of whose r coordinates
is 1.

Lemma 5.1. Let C0 be the code described above. Then

dim C0 =
n(n − 1)

2
.

Proof. We may arrange the points of π so that the last (n+1) coordinates of the
row vectors of A correspond to a line L, called the line at infinity. The first n2+n =
n(n+1) rows of A may be partitioned into (n+1) families {Fm | m = 1, . . . , n+1}.
Each Fm is the set of n lines of π−L which contain the mth point of L. The last row
of A is the characteristic vector of L. We denote the vectors of Fm by wm1, . . . , wmn

so that by definition C0 = 〈wmi − wmj | 1 ≤ i, j ≤ n, m = 1, . . . , n + 1〉. The
vectors which span C0 have the last n+1 coordinates zero. Hence C0 is a subspace
of C consisting of vectors with the last n + 1 coordinates zero. Now consider
U = 〈w11, . . . , wn+11〉 where wm1 ∈ Fm is a row of A containing the mth infinite
point and no other infinite point. Clearly dim U = n + 1, as the vectors which
span U are independent in the last n + 1 coordinates.
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Now C0 + U = C0 ⊕U , as the only vector of U with the last n + 1 coordinates
zero is 0. Clearly C0 ⊕ U ⊆ C. Now wmi = wm1 − (wm1 − wmi) ∈ U ⊕ C0. Also,

(1n2 , 0) = (1, . . . , 1, 0, . . . , 0) =

n
∑

k=1

wmk

is an element of U ⊕ C0.
Without loss of generality, we may assume that each of {wm1 | 1 ≤ m ≤ n + 1}

contains the same point, say P and therefore has the first coordinate equal to
one. Hence w11 + w21 + · · · + wn+11 = (n + 1, 1, . . . , 1) = 1v ∈ U ⊕ C0. Thus
1v − (1n2 , 0) = wv ∈ U ⊕ C0 where wv is the row of A corresponding to L. This
proves that U ⊕C0 contains all the generators of C. Thus U ⊕C0 = C and hence

dim C0 = dim C − dim U = v+1
2

− (n + 1) = n2+n+1+1
2

− (n + 1) = n2−n
2

. 2

We now consider umi to be the vector obtained from wmi by deleting the last
n + 1 coordinates. Then clearly {umi | i = 1, . . . , n; m = 1, . . . , n + 1} is the set of
n2 +n rows of an incidence matrix of the affine plane, obtained from π by deleting

L and its n + 1 points. The affine code CA is clearly the linear subspace of F n2

p

spanned by the {umi | i = 1, . . . , n; m = 1, . . . , n + 1}. We shall now find the
dimension of of the affine code CA over Fp and we will show that CA is in fact C⊥

0

in F n2

p . Here we must bear in mind that the last n + 1 coordinates of C0 are zero,

so we can identify umi with wmi and think of C0 as a subcode of F n2

p .

Theorem 5.2. C⊥
0 is the affine code associated with π−L. Moreover, dim C⊥

0 =
n2+n

2
if p divides n exactly to the first power.

Proof. Let W = 〈u11, . . . , un+11〉. Since (umi, uki − ukj) = 0 (mod p), we have
C0 ⊆ C⊥

0 and W ⊆ C⊥
0 . Now let x ∈ W ∩ C0 so that x = a1u11 + · · · +

an+1un+11, ai ∈ Fp. Because W ⊆ C⊥
0 , (x, umi) = 0 for each m. On the other

hand,

(x, umi) =

n+1
∑

i=1

ai(ui1, um1) =
∑

i6=m

ai = 0 .

Thus

a1 = . . . an+1 =

n+1
∑

i=1

ai .

Let ai = λ. Then x = λu11 + · · · + λun+11 = λ1n2 and dim (W ∩ C0) = 1. Thus

dim (C0 + W ) = dim C0 + dim W − dim (C0 ∩W ) = n2−n
2

+ n + 1− 1 = n2+n
2

. On

the other hand both C0 and W are subcodes of C⊥
0 and dim C⊥

0 = n2 − dim C0 =

n2 − n2−n
2

= n2+n
2

. Hence C⊥
0 = C0 + W . Since C0 + W = 〈umi | m = 1, . . . , n +

1; i = 1, . . . , n〉, C⊥
0 is the affine code of π − L. 2

Corollary 5.3. C0 is a subcode of the affine code CA = C⊥
0 of codimension n.
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6. Dimension of CCA
(H)

This final section begins with a lemma.

Lemma 6.1. G fixes each element of CA/C0.

Proof. C0 is a subcode of CA by Corollary . Hence CA/C0 is well defined. Let
g ∈ G. For a generator vmi of CA, (vmi + C0)g = (vmi)g + C0 = vmj + C0, as g is
an elation and C0 is G-invariant. But vmi −vmj ∈ C0, hence vmi +C0 = vmj +C0.
Thus (vmi + C0)g = vmi + C0. 2

Next we quote a theorem which will be used later to prove an upcoming lemma.

Theorem 6.2. Let G be a group of automorphisms of an abelian p-group V and

assume p does not divide |G|. Suppose V1 is a G-invariant direct factor of V .

Then V = V1 × V2 where V2 is also G-invariant.

Lemma 6.3. Let H be a subgroup of G and (|H |, p) = 1. Then

CA = C0 + M

where both C0 and M are H-invariant and dim M = n. Moreover

CCA
(H) = CC0

(H) ⊕ CM (H) = CC0
(H) ⊕ M .

Proof. Note that CA = C0 ⊕ M , is a direct consequence of Corollary 6 and
Theorem 6.2. We prove the next equality of the lemma.

Let v ∈ CC0
(H) ∩ CM (H). Then v ∈ C0 ∩ M = {0}, hence v = 0. Thus

CC0
(H) + CM (H) = CC0

(H) ⊕ CM (H). We now show that CC0
(H) ⊕ CM (H) =

CCA
(H). Let y ∈ CC0

(H) and z ∈ CM (H). Then y + z ∈ C0 + M = CA and
(y+z)h = yh+zh = y+z for any h in H , which shows CC0

(H)⊕CM (H) ⊆ CCA
(H).

Conversely assume v ∈ CCA
(H). Then v ∈ CA = C0 + M , which shows v = y + z

for some y and z where y ∈ C0 and z ∈ M . Since v ∈ CC0
(H), vh = v for any

h ∈ H . Thus (y + z)h = y + z implies yh + zh = y + z. Since yh, y ∈ C0 and
zh, z ∈ M, C0 ∩ M = {0} implies yh = h and zh = z. Thus y ∈ CC0

(H) and
z ∈ CM (H), which shows CCA

(H) ⊆ CC0
(H) + CM (H).

Next we prove that CM (H) = M . Let h ∈ H . By Lemma 6.1, h fixes each
element of CA/C0. Thus (m + C0)h = m + C0 for any m ∈ M . Hence mh + C0 =
m+C0 and mh−m ∈ C0. On the other hand, M is h-invariant. So mh−m ∈ M .
Because M ∩ C0 = {0}, we get mh = m which implies M = CM (H). 2

Combining Lemmas 6.1 and 6.3, we now obtain the following theorem which
gives the relationship between dim CC0

(H) and dim CCA
(H).

Theorem 6.4. Let π be a plane of order n such that

(i) p divides n exactly to the first power,and

(ii) the plane affords a P − L transitivity G.

Let CA denote the affine code for π − L over Zp. If H is a subgroup for G such

that (|H |, p) = 1, then

dim CCA
(H) = dim CC0

(H) + n .
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Next we prove a theorem which states the relationship of the dimensions of

CV (H) and CCA
(H), where V = F n2

p .

Theorem 6.5. Let π and H satisfy the hypotheses of Theorem 6.4. Then

dim CV (H) = 2 dim CCA
(H) − n = 2 dim CC0

(H) + n .

Proof. By Theorem 2.2, we have dim CV (H) = dim CC0
(H) + dim C⊥

C0
(H). The-

orem 6.4 implies dim C⊥
C0

(H) = dim CC0
(H) + n. Combining these equalities we

obtain 6.5. 2

Corollary 6.6. If π and H are as in Theorem 6.4 or Theorem 6.5, then

dim CCA
(H) = n

2
(1 + n

|H| ), where CA is the affine code of π.

Proof. Since CV (H) is spanned by the orbits of H on the n2 affine points of the

plane π and G acts semiregularly on those affine points, we have n2

|H| point orbits.

Thus dim CV (H) = n2

|H| . On the other hand, Theorem 6.5 implies dim CV (H) =

2 dimCCA
(H) − n, which shows dim CCA

(H) = n
2

+ n2

2|H| = n
2
(1 + n

|H| ). 2
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