ARCHIVUM MATHEMATICUM (BRNO) Tomus 41 (2005), 59 – 69

GAP PROPERTIES OF HARMONIC MAPS AND SUBMANIFOLDS

QUN CHEN* AND ZHEN-RONG ZHOU †

ABSTRACT. In this article, we obtain a gap property of energy densities of harmonic maps from a closed Riemannian manifold to a Grassmannian and then, use it to Gaussian maps of some submanifolds to get a gap property of the second fundamental forms.

1. INTRODUCTION. MAIN THEOREMS

Let $f: (M^m, g) \to (N^n, h)$ be a smooth map between two Riemannian manifolds, $e(f) = \frac{1}{2} |df|^2$ be the energy density of f. f is called a harmonic map if it is a critical point of the energy functional

(1)
$$E(f) = \int_M e(f) dv_M \,.$$

It is known that (see [7]) if the Ricci curvature $\operatorname{Ric}^M \ge A > 0$ and the Riemannian sectional curvature $\operatorname{Riem}^N \le B, B > 0$, and if f is harmonic, then e(f) = 0 or $e(f) = \frac{mA}{2(m-1)B}$ whenever $e(f) \le \frac{mA}{2(m-1)B}$.

Let N be a Grassmannian, M a general closed Riemannian manifold, f a harmonic map from M to N. In this paper, we find some non-negative numbers A, B(A < B) such that if $A \le e(f) \le B$, then e(f) equals to A or B.

We denote the Laplace-Beltrami operator on (M^m, g) by Δ_M . Then $-\Delta_M$ has a discrete spectrum:

(2)
$$\operatorname{spec}(\Delta_M) = \{ 0 = \lambda_0 < \lambda_1 < \lambda_2 < \dots \to \infty \}.$$

Let

(3)
$$A(p,k) = \frac{p}{2(2p-1)} \left(\lambda_k + \lambda_{k+1} - \sqrt{\lambda_k^2 + \lambda_{k+1}^2 + \frac{4-6p}{p}} \lambda_k \lambda_{k+1} \right)$$

²⁰⁰⁰ Mathematics Subject Classification: 58E20, 53C43.

 $Key\ words\ and\ phrases:$ Grassmannian, Gaussian map, mean curvature, the second fundamental form.

^{*}Research supported by National Natural Science Fundation of China No. 19901010, Fok Ying-Tung Education Fundation, and COCDM Project.

[†]Research supported by National Natural Science Fundation of China No. 10371047. Received April 11, 2003.

and

(4)
$$B(p,k) = \frac{p}{2(2p-1)} \left(\lambda_k + \lambda_{k+1} + \sqrt{\lambda_k^2 + \lambda_{k+1}^2 + \frac{4-6p}{p}} \lambda_k \lambda_{k+1} \right).$$

Then A(p,0) = 0, $B(p,0) = \frac{p}{2p-1}\lambda_1$; $A(1,k) = \lambda_k$, $B(1,k) = \lambda_{k+1}$. Let $G_{m,p}$ be the Grassmannian consisting of linear oriented m-subspaces of the Euclidean m + p-space. One can embedding it into the Euclidean space of m-wedge vectors. We denote the image of $G_{m,p}$ under this embedding still by $G_{m,p}$. We obtain

Theorem A. Let $f: M^q \to G_{m,p}$ be harmonic. If $A(p,k) \leq 2e(f) \leq B(p,k)$ for some k, then 2e(f) = A(p,k) or 2e(f) = B(p,k). Especially, we have

(1) Let $f: M \to S^m(1)$ be harmonic. If $\lambda_k \leq 2e(f) \leq \lambda_{k+1}$ for some $k \geq 0$, then $2e(f) = \lambda_k$ or λ_{k+1} .

(2) Let $f: M \to G_{m,p}$ be harmonic. If $2e(f) \leq \frac{p}{2p-1}\lambda_1$, then $2e(f) = \frac{p}{2p-1}\lambda_1$ or 0.

As a corollary, we have

Theorem B. Let M^m be a closed submanifold of E^{m+p} with parallel mean curvature, σ the square length of the second fundamental form. If $A(p,k) \leq \sigma \leq B(p,k)$ for some $k \ge 0$, then $\sigma = A(p,k)$ or $\sigma = B(p,k)$.

Especially, we have

- (1) if p = 1 and $\lambda_k \leq \sigma \leq \lambda_{k+1}$, then $\sigma = \lambda_k$ or λ_{k+1} ; (2) if $p \geq 2$ and $\sigma \leq \frac{p}{2p-1}\lambda_1$, then $\sigma = 0$ or $\frac{p}{2p-1}\lambda_1$.

S. S. Chern et al proved that if the square length σ of the second fundamental form of a minimal submanifold of spheres satisfies $\sigma \leq \frac{mp}{2p-1}$, then $\sigma = 0$ or $\frac{mp}{2p-1}$. Our Theorem B shows that the similar gap phenomenon exists for submanifolds of the Euclidean space with parallel mean curvature. Our method is very different from theirs.

2. Preliminaries

Let M^m and N^n be two Riemannian manifolds, $f : M \to N$ be a smooth map. On M, we choose a local orthonormal field of frame around $x \in M$: $e = \{e_i, i = 1, \dots, m\}$. The dual is denoted by $\omega = \{\omega_i\}$. The corresponding fields around f(x) are $e^* = \{e^*_{\alpha}, \alpha = 1, \dots, n\}$ and $\omega^* = \{\omega^*_{\alpha}\}$. We use the convention of summation. The ranges of indices in this section are:

(5)
$$i, j, \dots = 1, 2, \dots, m; \qquad \alpha, \beta, \dots = 1, 2, \dots, n.$$

Then the Riemann metrics of M and N can be written respectively as

(6)
$$ds_M^2 = \sum \omega_i^2; \qquad ds_N^2 = \sum \omega_\alpha^{*2}.$$

Let

(7)
$$f^*\omega_{\alpha}^* = \sum a_{\alpha i}\omega_i \,.$$

- then
- $f^* ds_N^2 = \sum a_{\alpha i} a_{\alpha j} \omega_i \omega_j \,.$ (8)

Hence, the energy density of f is:

(9)
$$e(f) = \frac{1}{2} \operatorname{tr} f^* ds_N^2 = \frac{1}{2} \sum (a_{\alpha i})^2$$

The structure equations of M are:

(10)
$$d\omega_i = \sum \omega_j \wedge \omega_{ji}, \omega_{ij} + \omega_{ji} = 0,$$

(11)
$$d\omega_{ij} = \sum \omega_{ik} \wedge \omega_{kj} + \Omega_{ij}, \quad \Omega_{ij} = -\frac{1}{2} \sum R_{ijkl} \omega_k \wedge \omega_l,$$

where R_{ijkl} is the Riemannian curvature tensor of M. Take exterior differentiation in (7) and use the structure equations of M and N, we have

(12)
$$\sum Da_{\alpha i} \wedge \omega_i = 0$$

where

(13)
$$Da_{\alpha i} := \mathrm{d}a_{\alpha i} + \sum a_{\alpha j}\omega_{ji} + \sum a_{\beta i}\omega_{\beta\alpha}^* \circ f =: \sum a_{\alpha ij}\omega_j.$$

By Cartan's Lemma, we have

(14)
$$a_{\alpha ij} = a_{\alpha ji}.$$

Define

(15)
$$b(f) = \sum a_{\alpha i j} \omega_i \otimes \omega_j \otimes e_{\alpha}^* \circ f \in \Gamma(T^*M \otimes T^*M \otimes f^{-1}TN)$$

We call b(f) the second fundamental form of f, $\tau(f) := \operatorname{tr} b(f) = \sum a_{\alpha i i} e_{\alpha}^* \circ f$ the tension field of f. Then $\tau(f) = 0$ if and only if f is harmonic. If b(f) = 0, we say that f is totally geodesic. Apparently,

(16)
$$\tau(f) = 0 \iff \sum a_{\alpha i i} = 0; \quad b(f) = 0 \iff a_{\alpha i j} = 0.$$

Let P be the set of all orthonormal frame of the m + p-dimensional Euclidean space E^{m+p} with the positive orientation. On P, we introduce an equivalent relation $\sim: e = (e_1, \ldots, e_{m+p}) \sim \overline{e} = (\overline{e}_1, \ldots, \overline{e}_{m+p})$ if and only if $(\overline{e}_1, \ldots, \overline{e}_m) =$ $(e_1, \ldots, e_m) \cdot g$, if and only if $(\overline{e}_{m+1}, \ldots, \overline{e}_{m+p}) = (e_{m+1}, \ldots, e_{m+p}) \cdot h$ where $g \in$ SO(m) and $h \in SO(p)$. We denote P/\sim by $G_{m,p}$. It can be identified with $\frac{SO(m+p)}{SO(m) \times SO(p)}$, also with the space consisting of oriented m-linear subspace of E^{m+p} . We call it a Grassmannian.

Let $V = \wedge^m E^{m+p}$ be the space of *m*-degree wedge product of E^{m+p} . There is a natural inner product in V:

(17)
$$\langle e_{i_1} \wedge \dots \wedge e_{i_m}, e_{j_1} \wedge \dots \wedge e_{j_m} \rangle = \delta^{i_1 \dots i_m}_{j_1 \dots j_m},$$

with respect to which, V forms a $K = C_{m+p}^m$ -dimensional Euclidean space, where $(e_1, \ldots, e_{m+p}) \in P$ and $i_k, j_k \in \{1, \ldots, m+p\}, k = 1, \ldots, m$.

We define a map
$$i: G_{m,p} \to V$$
 by:

(18)
$$X \mapsto e_1 \wedge \dots \wedge e_m$$

for any $X = [e_1, \ldots, e_{m+p}] \in G_{m,p}$, the equivalent class of $(e_1, \ldots, e_{m+p}) \in P$ with respect to the relation \sim . Then *i* is an embedding (see [1]) from $G_{m,p}$ to *V* (precisely to S^{K-1}). We denote $i(G_{m,p})$ still by $G_{m,p}$.

;

In the rest of this section, our indice ranges are:

(19)
$$i, j, k, l = 1, \dots, m; \quad a, b, c, d = m + 1, \dots, m + p$$

$$A, B, C, D = 1, \dots, m + p$$

The motion equation of point x in E^{m+p} is:

(20)
$$dx = \sum \omega_A e_A \, ,$$

and the motion equation of the frame $\{e_A\}$ is:

(21)
$$de_A = \sum \omega_{AB} e_B \,.$$

Then the structure equations of E^{m+p} are:

(22)
$$d\omega_A = \sum \omega_B \wedge \omega_{BA}, \omega_{AB} + \omega_{BA} = 0,$$

(23)
$$d\omega_{AB} = \sum \omega_{AC} \wedge \omega_{CB}.$$

For any $X \in G_{m,p}$, we can set $X = e_1 \wedge \cdots \wedge e_m$. We have

$$dX = d(e_1 \wedge \dots \wedge e_m)$$

$$= \sum_i e_1 \wedge \dots \wedge e_{i-1} \wedge de_i \wedge e_{i+1} \wedge \dots \wedge e_m$$

$$(24) \qquad = \sum_i e_1 \wedge \dots \wedge e_{i-1} \wedge (\sum_j \omega_{ij} e_j + \sum_a \omega_{ia} e_a) \wedge e_{i+1} \wedge \dots \wedge e_m$$

$$= \sum_i \omega_{ia} E_{ia}$$

where $E_{ia} = e_1 \wedge \cdots \wedge e_{i-1} \wedge e_a \wedge e_{i+1} \wedge \cdots \wedge e_m$. Hence, $\{E_{ia}\}$ forms a base of $T_X G_{m,p}$. Let $ds_G^2 = \sum (\omega_{ia})^2$. Then it is a Riemannian metric making $\{E_{ia}\}$ orthonormal.

Let M be an m-dimensional submanifold of E^{m+p} . Identify the oriented tangent space at any point of M with an oriented m-dimensional linear subspace of E^{m+p} in the natural way. Suppose that (e_1, \ldots, e_m) is a frame of the tangent space with the positive orientation. Then, $\omega_a = 0$. Therefore, $\omega_{ia} = \sum h_{ij}^a \omega_j$, $h_{ij}^a = h_{ji}^a$. We call (h_{ij}^a) the Weingarten matrix of M in E^{m+p} . We define the Gaussian map $g: M \to G_{m,p}$ of M by

(25)
$$g(x) = e_1 \wedge \dots \wedge e_m.$$

Then, by (24) we have, the tangent and the cotangent map g_* and g^* of g at x are

(26)
$$g_*e_i = dg(e_i) = \sum \omega_{ja}(e_i)E_{ja} = \sum h_{ji}^a E_{ja},$$

(27)
$$g^*\omega_{ia} = \sum h^a_{ij}\omega_j$$

By (7), (9) and (27) we know that the energy density of g is

(28)
$$e(g) = \frac{1}{2} \sum (h_{ij}^a)^2 = \frac{1}{2} \sigma$$

where σ is the square length of the second fundamental form of M in E^{m+p} . Hence we have

Lemma 2.1 Let M^m be a submanifold of E^{m+p} , g the Gussian map of M^m , σ the square length of the second fundamental form of the submanifold. Then we have

(29)
$$\sigma = 2e(g).$$

Suppose that M^q is any q-dimensional closed manifold. Consider the following composition:

(30)
$$M \xrightarrow{J} G_{m,p} \xrightarrow{\iota} V$$
,

where ι is the inclusion of $G_{m,n}$ in V (noting that we have embedded $G_{m,n}$ into V). Let $F = \iota \circ f$. In the following, we calculate the Laplacian of F.

For any $x \in M$, set $f(x) = e_1 \wedge \cdots \wedge e_m \in G_{m,p}$, where $(e_1, \ldots, e_{m+p}) \in P$. Then $F(x) \in V$. The ranges of indices in this section are the same as the above section. But $u \in \{1, \ldots, q\}$. Let $\{\epsilon_u, u = 1, \ldots, q\}$ be a local orthonormal field of frame around x, whose dual is $\{\theta_u\}$, and let

(31)
$$f^*\omega_{ia} = \sum a^a_{iu}\theta_u \,.$$

Then we have

Lemma 2.2

(32)
$$-\Delta_M F = \tau(f) + 2e(f)F + G,$$

where

(33)
$$G = \begin{cases} 2\sum_{i < j, a < b} \sum_{u} (a^{a}_{iu}a^{b}_{ju} - a^{b}_{iu}a^{a}_{ju}) E_{ia,jb} \circ f, & m, p \ge 2; \\ 0, & \text{otherwise.} \end{cases}$$

Here $E_{ia,jb} = E_{jb,ia} = e_1 \wedge \cdots \wedge e_{i-1} \wedge e_a \wedge e_{i+1} \wedge \cdots \wedge e_{j-1} \wedge e_b \wedge e_{j+1} \wedge \cdots \wedge e_m$. It is a normal vector of $G_{m,p}$ in V.

Proof. Notice that $\{E_{ia}\}$ is an orthonormal base, whose dual is $\{\omega_{ia}\}$. By the structure equation (23) we have

(34)
$$d\omega_{ia} = \sum \omega_{ij} \wedge \omega_{ja} + \sum \omega_{ib} \wedge \omega_{ba}$$
$$= \sum \omega_{jb} \wedge (-\omega_{ij}\delta_{ba} + \omega_{ba}\delta_{ij})$$
$$\equiv \omega_{jb} \wedge \omega^*_{jb,ia} \circ f$$

where $\omega_{jb,ia}^* \circ f = -\omega_{ij}\delta_{ba} + \omega_{ba}\delta_{ij}$ are the connection forms of $G_{m,p}$. The tension field of f is

(35)
$$\tau(f) = \sum a_{iuu}^a E_{ia} \circ f$$

where (see (13))

(36)
$$\sum a_{iuv}^a \theta_v = \mathrm{d}a_{iu}^a - \sum a_{iv}^a \theta_{uv} + \sum a_{ju}^b f^* \omega_{jb,ia}^* \,.$$

Let $f_* = f_u \theta_u$. Then by (31) we have $f_u = \sum a_{iu}^a E_{ia} \circ f$.

Therefore

(37)
$$\sum f_{uv}\theta_v = \mathrm{d}f_u - \sum f_v\theta_{uv} = \sum \mathrm{d}a^a_{iu} \cdot E_{ia} \circ f + \sum a^a_{iu}\mathrm{d}(E_{ia} \circ f) - \sum a^a_{iv}E_{ia} \circ f\theta_{uv}.$$

It is not difficult to check that if $m, p \ge 2$, we have

$$d(E_{ia} \circ f) = -f^* \omega_{ji} E_{ja} \circ f + f^* \omega_{jb} E_{jb,ia} \circ f + f^* \omega_{ai} F + f^* \omega_{ab} E_{ib} \circ f ,$$

and that if m = 1 or p = 1, we have

$$d(E_{ia} \circ f) = -f^* \omega_{ji} E_{ja} \circ f + f^* \omega_{ai} F + f^* \omega_{ab} E_{ib} \circ f.$$

When $m, p \geq 2$,

$$\sum f_{uv}\theta_v = \sum (a^a_{iuv}\theta_v + a^a_{iv}\theta_{uv} - a^b_{ju}f^*\omega^*_{jb,ia})E_{ia} \circ f$$

$$+ \sum a^a_{iu}(-f^*\omega_{ji}E_{ja} \circ f + f^*\omega_{jb}E_{jb,ia} \circ f + f^*\omega_{ai}F + f^*\omega_{ab}E_{ib} \circ f)$$

$$- \sum a^a_{iv}E_{ia} \circ f\theta_{uv}$$

$$(38) \qquad - \sum (a^a_{iv}\theta_v + a^a_{iv}\theta_v - a^b_{iv}(-f^*\omega_{iv}\delta_v + f^*\omega_{iv}\delta_{vv}))E_{iv} \circ f$$

$$(38) = \sum \left(a_{iuv}^{a}\theta_{v} + a_{iv}^{a}\theta_{uv} - a_{ju}^{b}(-f^{*}\omega_{ij}\delta_{ba} + f^{*}\omega_{ba}\delta_{ij})\right)E_{ia}\circ f$$
$$+ \sum a_{iu}^{a}(-f^{*}\omega_{ji}E_{ja}\circ f + f^{*}\omega_{jb}E_{jb,ia}\circ f + f^{*}\omega_{ai}F + f^{*}\omega_{ab}E_{ib}\circ f)$$
$$- \sum a_{iv}^{a}E_{ia}\circ f\theta_{uv}$$
$$= \sum_{i,a,v}a_{iuv}^{a}E_{ia}\theta_{v} + \sum_{i\neq j,a\neq b}a_{iu}^{a}a_{jv}^{b}E_{ia,jb}\theta_{v} - \sum_{i,a,v}a_{iu}^{a}a_{iv}^{a}F\theta_{v}.$$

Because $\Delta F = \Delta f = \sum f_{uu}$, we have

(39)
$$\Delta_M F = \tau(f) - 2e(f)F + 2\sum_{i < j, a < b} \sum_u (a^a_{iu}a^b_{ju} - a^b_{iu}a^a_{ju})E_{ia,jb} \circ f.$$

Similarly, When m = 1 or p = 1, we have

(40)
$$\Delta_M F = \tau(f) - 2e(f)F$$

The lemma follows.

The following theorem is well known:

Lemma 2.3 (Ruh-Vilms' Theorem) Suppose that M is a submanifold of the Euclidean space. Then M has a parallel mean cavature if and only if its Gaussian map is harmonic.

For the proofs, see [6] and [3]. Here we give another one.

Proof. Let $g_* = \sum A_{(ja)i} \omega_i \otimes E_{ja} \circ g \in \Gamma(T^*M \otimes g^{-1}(TG_{m,p}))$. Then by (26), we have $A_{(ka)i} = h^a_{ki}$. The latter is in $\Gamma(T^*M \otimes T^*M \otimes NM)$ where NM is the normal bundle of M. We denote the covariant derivative of h^a_{ki} in $\Gamma(T^*M \otimes g^{-1}(TG_{m,p}))$

by $h^a_{ki;j}$, and that in $\Gamma(T^*M \otimes T^*M \otimes NM)$ by $h^a_{ki|j}$. Then

(41)

$$\sum h_{ki;j}^{a}\omega_{j} = dh_{ki}^{a} + \sum h_{kj}^{a}\omega_{ji} + \sum h_{li}^{b}\omega_{(lb)(ka)}^{*} \circ g$$

$$= dh_{ki}^{a} + \sum h_{kj}^{a}\omega_{ji} + \sum h_{li}^{b}(-\omega_{kl}\delta_{ba} + \omega_{ba}\delta_{kl})$$

$$= dh_{ki}^{a} + \sum h_{kj}^{a}\omega_{ji} - \sum h_{li}^{a}\omega_{kl} + \sum h_{ki}^{b}\omega_{ba}$$

$$= \sum h_{ki|j}^{a}\omega_{j}.$$

Hence $\tau(g)_{(ka)} = h^a_{ki;i} = h^a_{ki|i} = h^a_{ik|i} = h^a_{ii|k}$. The lemma follows.

Let A be a $m\times n$ matrix, A' its transport. Define $N(A)=\mathrm{tr}(AA').$ Then, we have

Lemma 2.4 $N(AB' - BA') \leq 2N(A)N(B)$ for $m \times n$ matrices A and B

This inequality is proved by G. R. Wu and W. H. Chen in [9]. For completeness, we prove it in the following.

Proof. N(A) is invariant under orthogonal transformations. Put C = AB' - BA'. It is anti-symmetric. By the theory of linear algebra, $\exists U \in O(m)$ such that

(42)
$$UCU' = \tilde{C} = \operatorname{diag}\left(\left(\begin{array}{cc} 0 & \lambda_1 \\ -\lambda_1 & 0 \end{array} \right), \dots, \left(\begin{array}{cc} 0 & \lambda_p \\ -\lambda_p & 0 \end{array} \right), 0 \right)$$

where $2p = \operatorname{rank} C$, $\lambda_1, \ldots, \lambda_p$ are non-zero real numbers, the last 0 is a zero matrix of $(m-2p) \times (m-2p)$. Let $\tilde{A} = UA = (\xi_i^{\alpha})$ and $\tilde{B} = UB = (\eta_i^{\alpha})$. Then we have

(43)
$$\tilde{C}_{2r-1,2r} = \sum_{\alpha} (\xi_{2r-1}^{\alpha} \eta_{2r}^{\alpha} - \xi_{2r}^{\alpha} \eta_{2r-1}^{\alpha}) = \lambda_r , \quad 1 \le r \le p .$$

Hence we have

(44)
$$N(C) = N(\tilde{C}) = 2\sum_{r=1}^{p} \left(\sum_{\alpha} (\xi_{2r-1}^{\alpha} \eta_{2r}^{\alpha} - \xi_{2r}^{\alpha} \eta_{2r-1}^{\alpha})\right)^{2}$$
$$= 2\sum_{r=1}^{p} (X_{r} \cdot Y_{r})^{2}$$

where $X_r = (\xi_{2r-1}^1, \dots, \xi_{2r-1}^n, \xi_{2r}^1, \dots, \xi_{2r}^n), Y_r = (\eta_{2r}^1, \dots, \eta_{2r}^n, -\eta_{2r-1}^1, \dots, -\eta_{2r-1}^n), X_r \cdot Y_r$ stands for the euclidean inner product. By Schwarz inequality we have

(45)
$$N(C) = 2\sum_{r=1}^{p} (X_r \cdot Y_r)^2 \le 2\sum_{r=1}^{p} |X_r|^2 |Y_r|^2$$
$$\le 2\sqrt{\sum_{r=1}^{p} |X_r|^4} \sqrt{\sum_{r=1}^{p} |Y_r|^4} \le 2\sum_{r=1}^{p} |X_r|^2 \sum_{r=1}^{p} |Y_r|^2$$
$$\le 2N(\tilde{A})N(\tilde{B}) = 2N(A)N(B)$$

as desired.

3. Proofs of Theorems A and B

Proof of Theorem A

Expand F as $F = F_0 + \sum_{s \ge 1} F_s$, where F_0 is a constant vector called the mass center of F or $f, F_s, s \ge 0$ are eigenfunctions of Δ_M with respect to the eigenvalues λ_s , i.e.

(46)
$$\Delta_M F_s = -\lambda_s F_s \,.$$

If $F_0 = 0$, we say that F or f is mass-symmetric. If $\exists u_i \ge 1, i = 1, \dots, k$, such that $F = F_0 + \sum_{i=1}^{k} F_{u_i}$, then F or f is called of k-type and $\{u_1, \ldots, u_k\}$ is by definition the order of F or f. For example, if f is a minimal isometric immersion of M^q into S^{q+p} , then $F = i \circ f$ is mass symmetric, of 1-type and its order is $\{k\}$ for some $k \ge 1$ by Takahashi theorem([8]):

(47)
$$\Delta_M F = HF - qF$$

where H is the mean curvature of f. Denote

(48)
$$\Psi_k = -\int_M \langle \Delta_M F, F \rangle dv_M - \lambda_k \int_M \langle F, F \rangle dv_M ,$$

(49)
$$\Theta_k = \int_M \langle \Delta_M F, \Delta_M F \rangle dv_M + \lambda_k \int_M \langle \Delta_M F, F \rangle dv_M$$

Then

(50)

$$\Psi_{k} = \int_{M} \langle \sum \lambda_{s} F_{s}, \sum F_{s} \rangle dv_{M} - \lambda_{k} \int_{M} \langle \sum F_{s}, \sum F_{s} \rangle dv_{M}$$

$$= \sum \lambda_{s} \int_{M} \langle F_{s}, F_{s} \rangle dv_{M} - \sum \lambda_{k} \int_{M} \langle F_{s}, F_{s} \rangle dv_{M}$$

$$= \sum \lambda_{s} a_{s} - \sum \lambda_{k} a_{s}$$

where $a_s = \int_M \langle F_s, F_s \rangle dv_M$. Similarly

(51)
$$\Theta_k = \sum \lambda_s^2 a_s - \lambda_k \sum \lambda_s a_s \,.$$

Accordingly

(52)
$$\Theta_k - \lambda_{k+1} \Psi_k = \lambda_k \lambda_{k+1} a_0 + \sum_{s \ge 1} (\lambda_s - \lambda_k) (\lambda_s - \lambda_{k+1}) a_s \ge 0,$$
$$\forall k \ge 0,$$

and the equality holds if and only if F is

- (a) of 1-type and its order is $\{1\}$ when k = 0;
- (b) of 2-type and its order is $\{k, k+1\}$ when $k \ge 1$.

On the other hand, by (32), and noting that $E_{ia,jb}$ is normal to $G_{m,p}$ at f(x), and also normal to F(x) (as a vector in V), we have:

(53)
$$\int_{M} \langle F, F \rangle dv_{M} = V_{M} \text{ the volume of } M^{q};$$

$$\int_{M} \langle \Delta_M F, F \rangle dv_M = -2E(f) \, ,$$

(54) by Lemma 2.2 and noting that
$$\tau(f)(x) \perp F(x)$$
;

(55)
$$\int_{M} \langle \Delta_{M} F, \Delta_{M} F \rangle dv_{M} = \int_{M} \langle \tau(f), \tau(f) \rangle dv_{M} + \int_{M} |df|^{4} dv_{M} + \int_{M} |G|^{2} dv_{M} .$$

Hence,

(56)
$$\Psi_k = 2E(f) - \lambda_k V_M;$$

(57)
$$\Theta_k = \int_M \langle \tau(f), \tau(f) \rangle dv_M + \int_M |df|^4 dv_M + \int_M |G|^2 dv_M - 2\lambda_k E(f) \, .$$

From (52), (56) and (57) we get:

(58)
$$\int_{M} \langle \tau(f), \tau(f) \rangle dv_M + \int_{M} |G|^2 dv_M + \int_{M} (|df|^2 - \lambda_k) (|df|^2 - \lambda_{k+1}) dv_M \ge 0.$$

So, when p is 1, we have

(59)
$$\int_M \langle \tau(f), \tau(f) \rangle dv_M + \int_M (|df|^2 - \lambda_k) (|df|^2 - \lambda_{k+1}) dv_M \ge 0,$$

whence, if $\tau = 0$, we have

$$\int_M (|df|^2 - \lambda_k) (|df|^2 - \lambda_{k+1}) dv_M \ge 0,$$

i.e.

(60)
$$\int_M (2e(f) - \lambda_k)(2e(f) - \lambda_{k+1})dv_M \ge 0.$$

When $m, p \ge 2$, we put $A_a = (a_{iu}^a)$ be $m \times q$ matrices. From Lemma 2.4, we have

$$|G|^{2} = 2 \sum_{i < j, a < b} \left(\sum_{u} (a_{iu}^{a} a_{ju}^{b} - a_{iu}^{b} a_{ju}^{a}) \right)^{2} = \sum_{a < b} \sum_{i,j} \left(\sum_{u} (a_{iu}^{a} a_{ju}^{b} - a_{iu}^{b} a_{ju}^{a}) \right)^{2}$$
$$= \sum_{a < b} N(A_{a}A_{b}' - A_{b}A_{a}') \leq 2 \sum_{a < b} N(A_{a})N(A_{b})$$
$$= \left(\left(\sum_{a} N(A_{a}) \right)^{2} - \sum_{a} (N(A_{a}))^{2} \right) \leq \frac{p-1}{p} \left(\sum_{a} N(A_{a}) \right)^{2}$$
$$(61) \qquad = \frac{(p-1)}{p} |df|^{4}.$$

Insert it into (58), we have

(62)
$$\int_{M} \langle \tau(f), \tau(f) \rangle dv_{M} + \int_{M} \left(\frac{2p-1}{p} |df|^{4} - (\lambda_{k} + \lambda_{k+1}) |df|^{2} + \lambda_{k} \lambda_{k+1} \right) dv_{M} \ge 0,$$

i.e.

(63)
$$\int_{M} \langle \tau(f), \tau(f) \rangle dv_{M} + \frac{2p-1}{p} \int_{M} (|df|^{2} - A(p,k)) (|df|^{2} - B(p,k)) dv_{M} \ge 0.$$

If f is harmonic, then $\tau(f) = 0$. Therefore (63) becomes

(64)
$$\int_{M} (|df|^2 - A(p,k))(|df|^2 - B(p,k))dv_M \ge 0,$$

i.e.

(65)
$$\int_{M} (2e(f) - A(p,k))(2e(f) - B(p,k))dv_{M} \ge 0.$$

This inequality is also valid for p = 1 by (60). Hence if $A(p,k) \le 2e(f) \le B(p,k)$ for some $p \ge 1$ and some $k \ge 0$, then the integrand in (65) is non-positive, hence vanishing. So 2e(f) = A(p,k) or 2e(f) = B(p,k). Theorem A follows.

Proof of Theorem B

By Theorem A, Ruh-Vilms' Theorem (Lemma 2.3) and Lemma 2.1, Theorem B follows. $\hfill \Box$

Remark 3.1. The order of the map in Theorem A must be $\{1\}$ when k = 0 or $\{k, k+1\}$ when $k \ge 1$.

Remark 3.2. When p = 1, $G_{m,p} = S^m$. From (60) we conclude that

(i) If f is mass symmetric and of order $\{k, k+1\}$, and $2e(f) \leq \lambda_k$ or $2e(f) \geq \lambda_{k+1}$ for some $k \geq 1$, then f is harmonic, and $2e(f) = \lambda_k$ or $2e(f) = \lambda_{k+1}$.

(ii) If f is of order $\{1\}$ and $2e(f) \ge \lambda_1$, then f is harmonic and $2e(f) = \lambda_1$.

References

- Chen, W. H., Geometry of Grassmannian manifolds as submanifolds (in Chinese), Acta Math. Sinica 31(1) (1998), 46–53.
- [2] Chen, X. P., Harmonic maps and Gaussian maps (in Chinese), Chin. Ann. Math. 4A(4) (1983), 449–456.
- [3] Chern, S. S., Goldberg, S. I., On the volume decreasing property of a class of real harmonic mappings, Amer. J. Math. 97(1) (1975), 133–147.
- [4] Chern, S. S., doCarmo, M., Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Anal. Rel. Fields (1970), 59–75.
- [5] Eells, J., Lemaire, L., Selected topics on harmonic maps, Expository Lectures from the CBMS Regional Conf. held at Tulane Univ., Dec. 15–19, 1980.
- [6] Ruh, E. A. Vilms, J., The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569–573.
- [7] Sealey, H. C. J., Harmonic maps of small energy, Bull. London Math. Soc. 13 (1981), 405–408.
- [8] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan. 18 (1966), 380–385.
- [9] Wu, G. R., Chen, W. H., An inequality on matrix and its geometrical application (in Chinese), Acta Math. Sinica 31(3) (1988), 348–355.
- [10] Yano, K., Kon, M., Structures on Manifolds, Series in Pure Math. 3 (1984), World Scientific.

SCHOOL OF MATHEMATICS AND STATISTICS, CENTRAL CHINA NORMAL UNIVERSITY WUHAN,430079, P. R. CHINA *E-mail:* qunchen@mail.ccnu.edu.cn

zrzhou@ccnu.edu.cn