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GAP PROPERTIES OF HARMONIC MAPS AND

SUBMANIFOLDS

QUN CHEN∗ AND ZHEN-RONG ZHOU†

Abstract. In this article, we obtain a gap property of energy densities of
harmonic maps from a closed Riemannian manifold to a Grassmannian and
then, use it to Gaussian maps of some submanifolds to get a gap property of
the second fundamental forms.

1. Introduction. Main Theorems

Let f : (Mm, g) → (Nn, h) be a smooth map between two Riemannian mani-
folds, e(f) = 1

2 |df |
2 be the energy density of f . f is called a harmonic map if it is

a critical point of the energy functional

E(f) =

∫

M

e(f)dvM .(1)

It is known that (see [7]) if the Ricci curvature RicM ≥ A > 0 and the Riemannian

sectional curvature RiemN ≤ B, B > 0, and if f is harmonic, then e(f) = 0 or
e(f) = mA

2(m−1)B whenever e(f) ≤ mA
2(m−1)B .

Let N be a Grassmannian, M a general closed Riemannian manifold, f a har-
monic map from M to N. In this paper, we find some non-negative numbers A, B
( A < B) such that if A ≤ e(f) ≤ B, then e(f) equals to A or B.

We denote the Laplace-Beltrami operator on (Mm, g) by ∆M . Then −∆M has
a discrete spectrum:

spec(∆M ) = {0 = λ0 < λ1 < λ2 < · · · → ∞}.(2)

Let

A(p, k) =
p

2(2p − 1)

(

λk + λk+1 −

√

λ2
k + λ2

k+1 +
4 − 6p

p
λkλk+1

)

(3)
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and

B(p, k) =
p

2(2p − 1)

(

λk + λk+1 +

√

λ2
k + λ2

k+1 +
4 − 6p

p
λkλk+1

)

.(4)

Then A(p, 0) = 0, B(p, 0) = p
2p−1λ1; A(1, k) = λk, B(1, k) = λk+1. Let Gm,p

be the Grassmannian consisting of linear oriented m-subspaces of the Euclidean
m + p-space. One can embedding it into the Euclidean space of m-wedge vectors.
We denote the image of Gm,p under this embedding still by Gm,p. We obtain

Theorem A. Let f : M q → Gm,p be harmonic. If A(p, k) ≤ 2e(f) ≤ B(p, k) for

some k, then 2e(f) = A(p, k) or 2e(f) = B(p, k). Especially, we have

(1) Let f : M → Sm(1) be harmonic. If λk ≤ 2e(f) ≤ λk+1 for some k ≥ 0,
then 2e(f) = λk or λk+1.

(2) Let f : M → Gm,p be harmonic. If 2e(f) ≤ p
2p−1λ1, then 2e(f) = p

2p−1λ1

or 0.

As a corollary, we have

Theorem B. Let Mm be a closed submanifold of Em+p with parallel mean curva-

ture, σ the square length of the second fundamental form. If A(p, k) ≤ σ ≤ B(p, k)
for some k ≥ 0, then σ = A(p, k) or σ = B(p, k).

Especially, we have

(1) if p = 1 and λk ≤ σ ≤ λk+1, then σ = λk or λk+1;

(2) if p ≥ 2 and σ ≤ p
2p−1λ1, then σ = 0 or p

2p−1λ1.

S. S. Chern et al proved that if the square length σ of the second fundamental
form of a minimal submanifold of spheres satisfies σ ≤ mp

2p−1 , then σ = 0 or mp
2p−1 .

Our Theorem B shows that the similar gap phenomenon exists for submanifolds
of the Euclidean space with parallel mean curvature. Our method is very different
from theirs.

2. Preliminaries

Let Mm and Nn be two Riemannian manifolds, f : M → N be a smooth
map. On M , we choose a local orthonormal field of frame around x ∈ M :
e = {ei, i = 1, . . . , m}. The dual is denoted by ω = {ωi}. The corresponding fields
around f(x) are e∗ = {e∗α, α = 1, . . . , n} and ω∗ = {ω∗

α}. We use the convention
of summation. The ranges of indices in this section are:

i, j, · · · = 1, 2, . . . , m ; α, β, · · · = 1, 2, . . . , n .(5)

Then the Riemann metrics of M and N can be written respectively as

ds2
M =

∑

ω2
i ; ds2

N =
∑

ω∗2
α .(6)

Let

f∗ω∗
α =

∑

aαiωi .(7)

then

f∗ds2
N =

∑

aαiaαjωiωj .(8)
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Hence, the energy density of f is:

e(f) =
1

2
trf∗ds2

N =
1

2

∑

(aαi)
2 .(9)

The structure equations of M are:

dωi =
∑

ωj ∧ ωji, ωij + ωji = 0 ,(10)

dωij =
∑

ωik ∧ ωkj + Ωij , Ωij = −
1

2

∑

Rijklωk ∧ ωl ,(11)

where Rijkl is the Riemannian curvature tensor of M . Take exterior differentiation
in (7) and use the structure equations of M and N . we have

∑

Daαi ∧ ωi = 0(12)

where

Daαi := daαi +
∑

aαjωji +
∑

aβiω
∗
βα ◦ f =:

∑

aαijωj .(13)

By Cartan’s Lemma, we have

aαij = aαji .(14)

Define

b(f) =
∑

aαijωi ⊗ ωj ⊗ e∗α ◦ f ∈ Γ(T ∗M ⊗ T ∗M ⊗ f−1TN) .(15)

We call b(f) the second fundamental form of f , τ(f) := tr b(f) =
∑

aαiie
∗
α ◦ f the

tension field of f . Then τ(f) = 0 if and only if f is harmonic. If b(f) = 0, we say
that f is totally geodesic. Apparently,

τ(f) = 0 ⇐⇒
∑

aαii = 0 ; b(f) = 0 ⇐⇒ aαij = 0 .(16)

Let P be the set of all orthonormal frame of the m + p-dimensional Euclidean
space Em+p with the positive orientation. On P , we introduce an equivalent
relation ∼: e = (e1, . . . , em+p) ∼ e = (e1, . . . , em+p) if and only if (e1, . . . , em) =
(e1, . . . , em) · g, if and only if (em+1, . . . , em+p) = (em+1, . . . , em+p) · h where g ∈
SO(m) and h ∈ SO(p). We denote P/ ∼ by Gm,p. It can be identified with

SO(m+p)
SO(m)×SO(p) , also with the space consisting of oriented m-linear subspace of Em+p.

We call it a Grassmannian.
Let V = ∧mEm+p be the space of m-degree wedge product of Em+p. There is

a natural inner product in V :

〈ei1 ∧ · · · ∧ eim
, ej1 ∧ · · · ∧ ejm

〉 = δi1...im

j1...jm
,(17)

with respect to which, V forms a K = Cm
m+p-dimensional Euclidean space, where

(e1, . . . , em+p) ∈ P and ik, jk ∈ {1, . . . , m + p}, k = 1, . . . , m.
We define a map i : Gm,p → V by:

X 7→ e1 ∧ · · · ∧ em(18)

for any X = [e1, . . . , em+p] ∈ Gm,p, the equivalent class of (e1, . . . , em+p) ∈ P
with respect to the relation ∼. Then i is an embedding (see [1]) from Gm,p to V
(precisely to SK−1). We denote i(Gm,p) still by Gm,p.
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In the rest of this section, our indice ranges are:

i, j, k, l = 1, . . . , m ; a, b, c, d = m + 1, . . . , m + p ;

A, B, C, D = 1, . . . , m + p .
(19)

The motion equation of point x in Em+p is:

dx =
∑

ωAeA ,(20)

and the motion equation of the frame {eA} is:

deA =
∑

ωABeB .(21)

Then the structure equations of Em+p are:

dωA =
∑

ωB ∧ ωBA, ωAB + ωBA = 0 ,(22)

dωAB =
∑

ωAC ∧ ωCB .(23)

For any X ∈ Gm,p, we can set X = e1 ∧ · · · ∧ em. We have

dX = d(e1 ∧ · · · ∧ em)

=
∑

i

e1 ∧ · · · ∧ ei−1 ∧ dei ∧ ei+1 ∧ · · · ∧ em

=
∑

i

e1 ∧ · · · ∧ ei−1 ∧ (
∑

j

ωijej +
∑

a

ωiaea) ∧ ei+1 ∧ · · · ∧ em(24)

=
∑

ωiaEia

where Eia = e1 ∧ · · · ∧ ei−1 ∧ ea ∧ ei+1 ∧ · · · ∧ em. Hence, {Eia} forms a base
of TXGm,p. Let ds2

G =
∑

(ωia)2. Then it is a Riemannian metric making {Eia}
orthonormal.

Let M be an m-dimensional submanifold of Em+p. Identify the oriented tangent
space at any point of M with an oriented m-dimensional linear subspace of Em+p

in the natural way. Suppose that (e1, . . . , em) is a frame of the tangent space with
the positive orientation. Then, ωa = 0. Therefore, ωia =

∑

ha
ijωj , ha

ij = ha
ji. We

call (ha
ij) the Weingarten matrix of M in Em+p. We define the Gaussian map

g : M → Gm,p of M by

g(x) = e1 ∧ · · · ∧ em .(25)

Then, by (24) we have, the tangent and the cotangent map g∗ and g∗ of g at x are

g∗ei = dg(ei) =
∑

ωja(ei)Eja =
∑

ha
jiEja ,(26)

g∗ωia =
∑

ha
ijωj .(27)

By (7), (9) and (27) we know that the energy density of g is

e(g) =
1

2

∑

(ha
ij)

2 =
1

2
σ ,(28)

where σ is the square length of the second fundamental form of M in Em+p.
Hence we have
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Lemma 2.1 Let Mm be a submanifold of Em+p, g the Gussian map of Mm,

σ the square length of the second fundamental form of the submanifold. Then we

have

σ = 2e(g) .(29)

Suppose that M q is any q-dimensional closed manifold. Consider the following
composition:

M
f
→ Gm,p

ι
→ V ,(30)

where ι is the the inclusion of Gm,n in V (noting that we have embedded Gm,n

into V ). Let F = ι ◦ f . In the following, we calculate the Laplacian of F .
For any x ∈ M, set f(x) = e1∧· · ·∧em ∈ Gm,p, where (e1, . . . em+p) ∈ P . Then

F (x) ∈ V . The ranges of indices in this section are the same as the above section.
But u ∈ {1, . . . , q}. Let {εu, u = 1, . . . , q} be a local orthonormal field of frame
around x, whose dual is {θu}, and let

f∗ωia =
∑

aa
iuθu .(31)

Then we have

Lemma 2.2

− ∆MF = τ(f) + 2e(f)F + G ,(32)

where

G =

{

2
∑

i<j,a<b

∑

u(aa
iuab

ju − ab
iuaa

ju)Eia,jb ◦ f , m, p ≥ 2 ;

0 , otherwise.
(33)

Here Eia,jb = Ejb,ia = e1 ∧ · · · ∧ ei−1 ∧ ea ∧ ei+1 ∧ · · · ∧ ej−1 ∧ eb ∧ ej+1 ∧ · · · ∧ em.
It is a normal vector of Gm,p in V .

Proof. Notice that {Eia} is an orthonormal base, whose dual is {ωia}. By the
structure equation (23) we have

dωia =
∑

ωij ∧ ωja +
∑

ωib ∧ ωba

=
∑

ωjb ∧ (−ωijδba + ωbaδij)

≡ ωjb ∧ ω∗
jb,ia ◦ f

(34)

where ω∗
jb,ia ◦ f = −ωijδba + ωbaδij are the connection forms of Gm,p.

The tension field of f is

τ(f) =
∑

aa
iuuEia ◦ f(35)

where (see (13))
∑

aa
iuvθv = daa

iu −
∑

aa
ivθuv +

∑

ab
juf∗ω∗

jb,ia .(36)

Let f∗ = fuθu. Then by (31) we have fu =
∑

aa
iuEia ◦ f .
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Therefore
∑

fuvθv = dfu −
∑

fvθuv =
∑

daa
iu · Eia ◦ f

+
∑

aa
iud(Eia ◦ f) −

∑

aa
ivEia ◦ fθuv .

(37)

It is not difficult to check that if m, p ≥ 2, we have

d(Eia ◦ f) = −f∗ωjiEja ◦ f + f∗ωjbEjb,ia ◦ f + f∗ωaiF + f∗ωabEib ◦ f ,

and that if m = 1 or p = 1, we have

d(Eia ◦ f) = −f∗ωjiEja ◦ f + f∗ωaiF + f∗ωabEib ◦ f .

When m, p ≥ 2,

∑

fuvθv =
∑

(aa
iuvθv + aa

ivθuv − ab
juf∗ω∗

jb,ia)Eia ◦ f

+
∑

aa
iu(−f∗ωjiEja ◦ f + f∗ωjbEjb,ia ◦ f + f∗ωaiF + f∗ωabEib ◦ f)

−
∑

aa
ivEia ◦ fθuv

=
∑

(aa
iuvθv + aa

ivθuv − ab
ju(−f∗ωijδba + f∗ωbaδij))Eia ◦ f(38)

+
∑

aa
iu(−f∗ωjiEja ◦ f + f∗ωjbEjb,ia ◦ f + f∗ωaiF + f∗ωabEib ◦ f)

−
∑

aa
ivEia ◦ fθuv

=
∑

i,a,v

aa
iuvEiaθv +

∑

i6=j,a6=b

aa
iuab

jvEia,jbθv −
∑

i,a,v

aa
iuaa

ivFθv .

Because ∆F = ∆f =
∑

fuu, we have

∆MF = τ(f) − 2e(f)F + 2
∑

i<j,a<b

∑

u

(aa
iuab

ju − ab
iuaa

ju)Eia,jb ◦ f .(39)

Similarly, When m = 1 or p = 1, we have

∆MF = τ(f) − 2e(f)F .(40)

The lemma follows.

The following theorem is well known:

Lemma 2.3 (Ruh-Vilms’ Theorem) Suppose that M is a submanifold of the

Euclidean space. Then M has a parallel mean cavature if and only if its Gaussian

map is harmonic.

For the proofs, see [6] and [3]. Here we give another one.

Proof. Let g∗ =
∑

A(ja)iωi ⊗Eja ◦ g ∈ Γ(T ∗M ⊗ g−1(TGm,p)). Then by (26), we
have A(ka)i = ha

ki. The latter is in Γ(T ∗M⊗T ∗M⊗NM) where NM is the normal

bundle of M . We denote the covariant derivative of ha
ki in Γ(T ∗M ⊗ g−1(TGm,p))
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by ha
ki;j , and that in Γ(T ∗M ⊗ T ∗M ⊗ NM) by ha

ki|j . Then

∑

ha
ki;jωj = dha

ki +
∑

ha
kjωji +

∑

hb
liω

∗
(lb)(ka) ◦ g

= dha
ki +

∑

ha
kjωji +

∑

hb
li(−ωklδba + ωbaδkl)

= dha
ki +

∑

ha
kjωji −

∑

ha
liωkl +

∑

hb
kiωba

=
∑

ha
ki|jωj .

(41)

Hence τ(g)(ka) = ha
ki;i = ha

ki|i = ha
ik|i = ha

ii|k. The lemma follows.

Let A be a m × n matrix, A′ its transport. Define N(A) = tr(AA′). Then, we
have

Lemma 2.4 N(AB′ − BA′) ≤ 2N(A)N(B) for m × n matrices A and B

This inequality is proved by G. R. Wu and W. H. Chen in [9]. For completeness,
we prove it in the following.

Proof. N(A) is invariant under orthogonal transformations. Put C = AB ′−BA′.
It is anti-symmetric. By the theory of linear algebra, ∃U ∈ O(m) such that

UCU ′ = C̃ = diag

( (

0 λ1

−λ1 0

)

, . . . ,

(

0 λp

−λp 0

)

, 0

)

(42)

where 2p = rankC, λ1, . . . , λp are non-zero real numbers, the last 0 is a zero matrix

of (m − 2p) × (m − 2p). Let Ã = UA = (ξα
i ) and B̃ = UB = (ηα

i ). Then we have

C̃2r−1,2r =
∑

α

(ξα
2r−1η

α
2r − ξα

2rη
α
2r−1) = λr , 1 ≤ r ≤ p .(43)

Hence we have

N(C) = N(C̃) = 2

p
∑

r=1

(

∑

α

(ξα
2r−1η

α
2r − ξα

2rη
α
2r−1)

)2

= 2

p
∑

r=1

(Xr · Yr)
2

(44)

where Xr = (ξ1
2r−1, . . . , ξ

n
2r−1, ξ

1
2r, . . . , ξ

n
2r), Yr = (η1

2r, . . . , η
n
2r,−η1

2r−1, . . . ,−ηn
2r−1),

Xr · Yr stands for the euclidean inner product. By Schwarz inequality we have

N(C) = 2

p
∑

r=1

(Xr · Yr)
2 ≤ 2

p
∑

r=1

|Xr|
2|Yr|

2

≤ 2

√

√

√

√

p
∑

r=1

|Xr|4

√

√

√

√

p
∑

r=1

|Yr|4 ≤ 2

p
∑

r=1

|Xr|
2

p
∑

r=1

|Yr|
2

≤ 2N(Ã)N(B̃) = 2N(A)N(B)

(45)

as desired.
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3. Proofs of Theorems A and B

Proof of Theorem A

Expand F as F = F0 +
∑

s≥1

Fs, where F0 is a constant vector called the mass

center of F or f , Fs, s ≥ 0 are eigenfunctions of ∆M with respect to the eigenvalues
λs, i.e.

∆MFs = −λsFs .(46)

If F0 = 0, we say that F or f is mass-symmetric. If ∃ui ≥ 1, i = 1, . . . , k, such that

F = F0 +

k
∑

i=1

Fui
, then F or f is called of k-type and {u1, . . . , uk} is by definition

the order of F or f . For example, if f is a minimal isometric immersion of M q

into Sq+p, then F = i ◦ f is mass symmetric, of 1-type and its order is {k} for
some k ≥ 1 by Takahashi theorem([8]):

∆MF = HF − qF(47)

where H is the mean curvature of f .
Denote

Ψk = −

∫

M

〈∆MF, F 〉dvM − λk

∫

M

〈F, F 〉dvM ,(48)

Θk =

∫

M

〈∆MF, ∆MF 〉dvM + λk

∫

M

〈∆MF, F 〉dvM .(49)

Then

Ψk =

∫

M

〈
∑

λsFs,
∑

Fs〉dvM − λk

∫

M

〈
∑

Fs,
∑

Fs〉dvM

=
∑

λs

∫

M

〈Fs, Fs〉dvM −
∑

λk

∫

M

〈Fs, Fs〉dvM

=
∑

λsas −
∑

λkas

(50)

where as =
∫

M
〈Fs, Fs〉dvM . Similarly

Θk =
∑

λ2
sas − λk

∑

λsas .(51)

Accordingly

Θk − λk+1Ψk = λkλk+1a0 +
∑

s≥1

(λs − λk)(λs − λk+1)as ≥ 0 ,

∀k ≥ 0 ,

(52)

and the equality holds if and only if F is
(a) of 1-type and its order is {1} when k = 0;
(b) of 2-type and its order is {k, k + 1} when k ≥ 1.
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On the other hand, by (32), and noting that Eia,jb is normal to Gm,p at f(x),
and also normal to F (x) (as a vector in V ), we have:

∫

M

〈F, F 〉dvM = VM the volume of M q ;(53)

∫

M

〈∆MF, F 〉dvM = −2E(f) ,

by Lemma 2.2 and noting that τ(f)(x) ⊥ F (x) ;(54)

∫

M

〈∆MF, ∆MF 〉dvM =

∫

M

〈τ(f), τ(f)〉dvM

+

∫

M

|df |4dvM +

∫

M

|G|2dvM .(55)

Hence,

Ψk = 2E(f) − λkVM ;(56)

Θk =

∫

M

〈τ(f), τ(f)〉dvM +

∫

M

|df |4dvM +

∫

M

|G|2dvM − 2λkE(f) .(57)

From (52), (56) and (57) we get:

∫

M

〈τ(f), τ(f)〉dvM +

∫

M

|G|2dvM

+

∫

M

(|df |2 − λk)(|df |2 − λk+1)dvM ≥ 0 .

(58)

So, when p is 1, we have

∫

M

〈τ(f), τ(f)〉dvM +

∫

M

(|df |2 − λk)(|df |2 − λk+1)dvM ≥ 0 ,(59)

whence, if τ = 0, we have

∫

M

(|df |2 − λk)(|df |2 − λk+1)dvM ≥ 0 ,

i.e.

∫

M

(2e(f) − λk)(2e(f) − λk+1)dvM ≥ 0 .(60)
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When m, p ≥ 2, we put Aa = (aa
iu) be m× q matrices. From Lemma 2.4, we have

|G|2 = 2
∑

i<j,a<b

(

∑

u

(aa
iuab

ju − ab
iuaa

ju)

)2

=
∑

a<b

∑

i,j

(

∑

u

(aa
iuab

ju − ab
iuaa

ju)

)2

=
∑

a<b

N(AaA′
b − AbA

′
a) ≤ 2

∑

a<b

N(Aa)N(Ab)

=

((

∑

a

N(Aa)

)2

−
∑

a

(N(Aa))2
)

≤
p − 1

p

(

∑

a

N(Aa)

)2

=
(p − 1)

p
|df |4 .(61)

Insert it into (58), we have
∫

M

〈τ(f), τ(f)〉dvM

+

∫

M

(2p − 1

p
|df |4 − (λk + λk+1)|df |

2 + λkλk+1

)

dvM ≥ 0 ,

(62)

i.e.
∫

M

〈τ(f), τ(f)〉dvM

+
2p − 1

p

∫

M

(|df |2 − A(p, k))(|df |2 − B(p, k))dvM ≥ 0 .

(63)

If f is harmonic, then τ(f) = 0. Therefore (63) becomes
∫

M

(|df |2 − A(p, k))(|df |2 − B(p, k))dvM ≥ 0 ,(64)

i.e.
∫

M

(2e(f) − A(p, k))(2e(f) − B(p, k))dvM ≥ 0 .(65)

This inequality is also valid for p = 1 by (60). Hence if A(p, k) ≤ 2e(f) ≤ B(p, k)
for some p ≥ 1 and some k ≥ 0, then the integrand in (65) is non-positive, hence
vanishing. So 2e(f) = A(p, k) or 2e(f) = B(p, k). Theorem A follows.

Proof of Theorem B

By Theorem A, Ruh-Vilms’ Theorem (Lemma 2.3) and Lemma 2.1, Theorem
B follows.

Remark 3.1. The order of the map in Theorem A must be {1} when k = 0 or
{k, k + 1} when k ≥ 1.

Remark 3.2. When p = 1, Gm,p = Sm. From (60) we conclude that
(i) If f is mass symmetric and of order {k, k + 1}, and 2e(f) ≤ λk or 2e(f) ≥

λk+1 for some k ≥ 1, then f is harmonic, and 2e(f) = λk or 2e(f) = λk+1.
(ii) If f is of order {1} and 2e(f) ≥ λ1, then f is harmonic and 2e(f) = λ1.
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