GAP PROPERTIES OF HARMONIC MAPS AND SUBMANIFOLDS

QUN CHEN* AND ZHEN-RONG ZHOU ${ }^{\dagger}$

Abstract

In this article, we obtain a gap property of energy densities of harmonic maps from a closed Riemannian manifold to a Grassmannian and then, use it to Gaussian maps of some submanifolds to get a gap property of the second fundamental forms.

1. Introduction. Main Theorems

Let $f:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ be a smooth map between two Riemannian manifolds, $e(f)=\frac{1}{2}|d f|^{2}$ be the energy density of f. f is called a harmonic map if it is a critical point of the energy functional

$$
\begin{equation*}
E(f)=\int_{M} e(f) d v_{M} \tag{1}
\end{equation*}
$$

It is known that (see [7]) if the Ricci curvature $\operatorname{Ric}^{M} \geq A>0$ and the Riemannian sectional curvature Riem ${ }^{N} \leq B, B>0$, and if f is harmonic, then $e(f)=0$ or $e(f)=\frac{m A}{2(m-1) B}$ whenever $e(f) \leq \frac{m A}{2(m-1) B}$.

Let N be a Grassmannian, M a general closed Riemannian manifold, f a harmonic map from M to N. In this paper, we find some non-negative numbers A, B $(A<B)$ such that if $A \leq e(f) \leq B$, then $e(f)$ equals to A or B.

We denote the Laplace-Beltrami operator on $\left(M^{m}, g\right)$ by Δ_{M}. Then $-\Delta_{M}$ has a discrete spectrum:

$$
\begin{equation*}
\operatorname{spec}\left(\Delta_{M}\right)=\left\{0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots \rightarrow \infty\right\} \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
A(p, k)=\frac{p}{2(2 p-1)}\left(\lambda_{k}+\lambda_{k+1}-\sqrt{\lambda_{k}^{2}+\lambda_{k+1}^{2}+\frac{4-6 p}{p} \lambda_{k} \lambda_{k+1}}\right) \tag{3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
B(p, k)=\frac{p}{2(2 p-1)}\left(\lambda_{k}+\lambda_{k+1}+\sqrt{\lambda_{k}^{2}+\lambda_{k+1}^{2}+\frac{4-6 p}{p} \lambda_{k} \lambda_{k+1}}\right) . \tag{4}
\end{equation*}
$$

\]

Then $A(p, 0)=0, B(p, 0)=\frac{p}{2 p-1} \lambda_{1} ; A(1, k)=\lambda_{k}, B(1, k)=\lambda_{k+1}$. Let $G_{m, p}$ be the Grassmannian consisting of linear oriented m-subspaces of the Euclidean $m+p$-space. One can embedding it into the Euclidean space of m-wedge vectors. We denote the image of $G_{m, p}$ under this embedding still by $G_{m, p}$. We obtain
Theorem A. Let $f: M^{q} \rightarrow G_{m, p}$ be harmonic. If $A(p, k) \leq 2 e(f) \leq B(p, k)$ for some k, then $2 e(f)=A(p, k)$ or $2 e(f)=B(p, k)$. Especially, we have
(1) Let $f: M \rightarrow S^{m}(1)$ be harmonic. If $\lambda_{k} \leq 2 e(f) \leq \lambda_{k+1}$ for some $k \geq 0$, then $2 e(f)=\lambda_{k}$ or λ_{k+1}.
(2) Let $f: M \rightarrow G_{m, p}$ be harmonic. If $2 e(f) \leq \frac{p}{2 p-1} \lambda_{1}$, then $2 e(f)=\frac{p}{2 p-1} \lambda_{1}$ or 0 .

As a corollary, we have
Theorem B. Let M^{m} be a closed submanifold of E^{m+p} with parallel mean curvature, σ the square length of the second fundamental form. If $A(p, k) \leq \sigma \leq B(p, k)$ for some $k \geq 0$, then $\sigma=A(p, k)$ or $\sigma=B(p, k)$.

Especially, we have
(1) if $p=1$ and $\lambda_{k} \leq \sigma \leq \lambda_{k+1}$, then $\sigma=\lambda_{k}$ or λ_{k+1};
(2) if $p \geq 2$ and $\sigma \leq \frac{p}{2 p-1} \lambda_{1}$, then $\sigma=0$ or $\frac{p}{2 p-1} \lambda_{1}$.
S. S. Chern et al proved that if the square length σ of the second fundamental form of a minimal submanifold of spheres satisfies $\sigma \leq \frac{m p}{2 p-1}$, then $\sigma=0$ or $\frac{m p}{2 p-1}$. Our Theorem B shows that the similar gap phenomenon exists for submanifolds of the Euclidean space with parallel mean curvature. Our method is very different from theirs.

2. Preliminaries

Let M^{m} and N^{n} be two Riemannian manifolds, $f: M \rightarrow N$ be a smooth map. On M, we choose a local orthonormal field of frame around $x \in M$: $e=\left\{e_{i}, i=1, \ldots, m\right\}$. The dual is denoted by $\omega=\left\{\omega_{i}\right\}$. The corresponding fields around $f(x)$ are $e^{*}=\left\{e_{\alpha}^{*}, \alpha=1, \ldots, n\right\}$ and $\omega^{*}=\left\{\omega_{\alpha}^{*}\right\}$. We use the convention of summation. The ranges of indices in this section are:

$$
\begin{equation*}
i, j, \cdots=1,2, \ldots, m ; \quad \alpha, \beta, \cdots=1,2, \ldots, n \tag{5}
\end{equation*}
$$

Then the Riemann metrics of M and N can be written respectively as

$$
\begin{equation*}
d s_{M}^{2}=\sum \omega_{i}^{2} ; \quad d s_{N}^{2}=\sum \omega_{\alpha}^{* 2} \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
f^{*} \omega_{\alpha}^{*}=\sum a_{\alpha i} \omega_{i} \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
f^{*} d s_{N}^{2}=\sum a_{\alpha i} a_{\alpha j} \omega_{i} \omega_{j} \tag{8}
\end{equation*}
$$

Hence, the energy density of f is:

$$
\begin{equation*}
e(f)=\frac{1}{2} \operatorname{tr} f^{*} d s_{N}^{2}=\frac{1}{2} \sum\left(a_{\alpha i}\right)^{2} \tag{9}
\end{equation*}
$$

The structure equations of M are:

$$
\begin{align*}
\mathrm{d} \omega_{i} & =\sum \omega_{j} \wedge \omega_{j i}, \omega_{i j}+\omega_{j i}=0 \tag{10}\\
\mathrm{~d} \omega_{i j} & =\sum \omega_{i k} \wedge \omega_{k j}+\Omega_{i j}, \Omega_{i j}=-\frac{1}{2} \sum R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{11}
\end{align*}
$$

where $R_{i j k l}$ is the Riemannian curvature tensor of M. Take exterior differentiation in (7) and use the structure equations of M and N. we have

$$
\begin{equation*}
\sum D a_{\alpha i} \wedge \omega_{i}=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
D a_{\alpha i}:=\mathrm{d} a_{\alpha i}+\sum a_{\alpha j} \omega_{j i}+\sum a_{\beta i} \omega_{\beta \alpha}^{*} \circ f=: \sum a_{\alpha i j} \omega_{j} . \tag{13}
\end{equation*}
$$

By Cartan's Lemma, we have

$$
\begin{equation*}
a_{\alpha i j}=a_{\alpha j i} \tag{14}
\end{equation*}
$$

Define

$$
\begin{equation*}
b(f)=\sum a_{\alpha i j} \omega_{i} \otimes \omega_{j} \otimes e_{\alpha}^{*} \circ f \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes f^{-1} T N\right) \tag{15}
\end{equation*}
$$

We call $b(f)$ the second fundamental form of $f, \tau(f):=\operatorname{tr} b(f)=\sum a_{\alpha i i} e_{\alpha}^{*} \circ f$ the tension field of f. Then $\tau(f)=0$ if and only if f is harmonic. If $b(f)=0$, we say that f is totally geodesic. Apparently,

$$
\begin{equation*}
\tau(f)=0 \Longleftrightarrow \sum a_{\alpha i i}=0 ; \quad b(f)=0 \Longleftrightarrow a_{\alpha i j}=0 . \tag{16}
\end{equation*}
$$

Let P be the set of all orthonormal frame of the $m+p$-dimensional Euclidean space E^{m+p} with the positive orientation. On P, we introduce an equivalent relation $\sim: e=\left(e_{1}, \ldots, e_{m+p}\right) \sim \bar{e}=\left(\bar{e}_{1}, \ldots, \bar{e}_{m+p}\right)$ if and only if $\left(\bar{e}_{1}, \ldots, \bar{e}_{m}\right)=$ $\left(e_{1}, \ldots, e_{m}\right) \cdot g$, if and only if $\left(\bar{e}_{m+1}, \ldots, \bar{e}_{m+p}\right)=\left(e_{m+1}, \ldots, e_{m+p}\right) \cdot h$ where $g \in$ $S O(m)$ and $h \in S O(p)$. We denote P / \sim by $G_{m, p}$. It can be identified with $\frac{S O(m+p)}{S O(m) \times S O(p)}$, also with the space consisting of oriented m-linear subspace of E^{m+p}. We call it a Grassmannian.

Let $V=\wedge^{m} E^{m+p}$ be the space of m-degree wedge product of E^{m+p}. There is a natural inner product in V :

$$
\begin{equation*}
\left\langle e_{i_{1}} \wedge \cdots \wedge e_{i_{m}}, e_{j_{1}} \wedge \cdots \wedge e_{j_{m}}\right\rangle=\delta_{j_{1} \ldots j_{m}}^{i_{1} \ldots i_{m}} \tag{17}
\end{equation*}
$$

with respect to which, V forms a $K=C_{m+p}^{m}$-dimensional Euclidean space, where $\left(e_{1}, \ldots, e_{m+p}\right) \in P$ and $i_{k}, j_{k} \in\{1, \ldots, m+p\}, k=1, \ldots, m$.

We define a map $i: G_{m, p} \rightarrow V$ by:

$$
\begin{equation*}
X \mapsto e_{1} \wedge \cdots \wedge e_{m} \tag{18}
\end{equation*}
$$

for any $X=\left[e_{1}, \ldots, e_{m+p}\right] \in G_{m, p}$, the equivalent class of $\left(e_{1}, \ldots, e_{m+p}\right) \in P$ with respect to the relation \sim. Then i is an embedding (see [1]) from $G_{m, p}$ to V (precisely to S^{K-1}). We denote $i\left(G_{m, p}\right)$ still by $G_{m, p}$.

In the rest of this section, our indice ranges are:

$$
\begin{align*}
i, j, k, l & =1, \ldots, m ; \quad a, b, c, d=m+1, \ldots, m+p \\
A, B, C, D & =1, \ldots, m+p \tag{19}
\end{align*}
$$

The motion equation of point x in E^{m+p} is:

$$
\begin{equation*}
\mathrm{d} x=\sum \omega_{A} e_{A} \tag{20}
\end{equation*}
$$

and the motion equation of the frame $\left\{e_{A}\right\}$ is:

$$
\begin{equation*}
\mathrm{d} e_{A}=\sum \omega_{A B} e_{B} \tag{21}
\end{equation*}
$$

Then the structure equations of E^{m+p} are:

$$
\begin{align*}
\mathrm{d} \omega_{A} & =\sum \omega_{B} \wedge \omega_{B A}, \omega_{A B}+\omega_{B A}=0 \tag{22}\\
\mathrm{~d} \omega_{A B} & =\sum \omega_{A C} \wedge \omega_{C B} \tag{23}
\end{align*}
$$

For any $X \in G_{m, p}$, we can set $X=e_{1} \wedge \cdots \wedge e_{m}$. We have

$$
\begin{align*}
\mathrm{d} X & =\mathrm{d}\left(e_{1} \wedge \cdots \wedge e_{m}\right) \\
& =\sum_{i} e_{1} \wedge \cdots \wedge e_{i-1} \wedge \mathrm{~d} e_{i} \wedge e_{i+1} \wedge \cdots \wedge e_{m} \\
& =\sum_{i} e_{1} \wedge \cdots \wedge e_{i-1} \wedge\left(\sum_{j} \omega_{i j} e_{j}+\sum_{a} \omega_{i a} e_{a}\right) \wedge e_{i+1} \wedge \cdots \wedge e_{m} \tag{24}\\
& =\sum \omega_{i a} E_{i a}
\end{align*}
$$

where $E_{i a}=e_{1} \wedge \cdots \wedge e_{i-1} \wedge e_{a} \wedge e_{i+1} \wedge \cdots \wedge e_{m}$. Hence, $\left\{E_{i a}\right\}$ forms a base of $T_{X} G_{m, p}$. Let $d s_{G}^{2}=\sum\left(\omega_{i a}\right)^{2}$. Then it is a Riemannian metric making $\left\{E_{i a}\right\}$ orthonormal.

Let M be an m-dimensional submanifold of E^{m+p}. Identify the oriented tangent space at any point of M with an oriented m-dimensional linear subspace of E^{m+p} in the natural way. Suppose that $\left(e_{1}, \ldots, e_{m}\right)$ is a frame of the tangent space with the positive orientation. Then, $\omega_{a}=0$. Therefore, $\omega_{i a}=\sum h_{i j}^{a} \omega_{j}, h_{i j}^{a}=h_{j i}^{a}$. We call $\left(h_{i j}^{a}\right)$ the Weingarten matrix of M in E^{m+p}. We define the Gaussian map $g: M \rightarrow G_{m, p}$ of M by

$$
\begin{equation*}
g(x)=e_{1} \wedge \cdots \wedge e_{m} \tag{25}
\end{equation*}
$$

Then, by (24) we have, the tangent and the cotangent map g_{*} and g^{*} of g at x are

$$
\begin{gather*}
g_{*} e_{i}=d g\left(e_{i}\right)=\sum \omega_{j a}\left(e_{i}\right) E_{j a}=\sum h_{j i}^{a} E_{j a} \tag{26}\\
g^{*} \omega_{i a}=\sum h_{i j}^{a} \omega_{j} \tag{27}
\end{gather*}
$$

By (7), (9) and (27) we know that the energy density of g is

$$
\begin{equation*}
e(g)=\frac{1}{2} \sum\left(h_{i j}^{a}\right)^{2}=\frac{1}{2} \sigma \tag{28}
\end{equation*}
$$

where σ is the square length of the second fundamental form of M in E^{m+p}.
Hence we have

Lemma 2.1 Let M^{m} be a submanifold of E^{m+p}, g the Gussian map of M^{m}, σ the square length of the second fundamental form of the submanifold. Then we have

$$
\begin{equation*}
\sigma=2 e(g) \tag{29}
\end{equation*}
$$

Suppose that M^{q} is any q-dimensional closed manifold. Consider the following composition:

$$
\begin{equation*}
M \xrightarrow{f} G_{m, p} \xrightarrow{\iota} V, \tag{30}
\end{equation*}
$$

where ι is the the inclusion of $G_{m, n}$ in V (noting that we have embedded $G_{m, n}$ into V). Let $F=\iota \circ f$. In the following, we calculate the Laplacian of F.

For any $x \in M$, set $f(x)=e_{1} \wedge \cdots \wedge e_{m} \in G_{m, p}$, where $\left(e_{1}, \ldots e_{m+p}\right) \in P$. Then $F(x) \in V$. The ranges of indices in this section are the same as the above section. But $u \in\{1, \ldots, q\}$. Let $\left\{\epsilon_{u}, u=1, \ldots, q\right\}$ be a local orthonormal field of frame around x, whose dual is $\left\{\theta_{u}\right\}$, and let

$$
\begin{equation*}
f^{*} \omega_{i a}=\sum a_{i u}^{a} \theta_{u} \tag{31}
\end{equation*}
$$

Then we have

Lemma 2.2

$$
\begin{equation*}
-\Delta_{M} F=\tau(f)+2 e(f) F+G \tag{32}
\end{equation*}
$$

where

$$
G= \begin{cases}2 \sum_{i<j, a<b} \sum_{u}\left(a_{i u}^{a} a_{j u}^{b}-a_{i u}^{b} a_{j u}^{a}\right) E_{i a, j b} \circ f, & m, p \geq 2 \tag{33}\\ 0, & \text { otherwise }\end{cases}
$$

Here $E_{i a, j b}=E_{j b, i a}=e_{1} \wedge \cdots \wedge e_{i-1} \wedge e_{a} \wedge e_{i+1} \wedge \cdots \wedge e_{j-1} \wedge e_{b} \wedge e_{j+1} \wedge \cdots \wedge e_{m}$. It is a normal vector of $G_{m, p}$ in V.
Proof. Notice that $\left\{E_{i a}\right\}$ is an orthonormal base, whose dual is $\left\{\omega_{i a}\right\}$. By the structure equation (23) we have

$$
\begin{align*}
\mathrm{d} \omega_{i a} & =\sum \omega_{i j} \wedge \omega_{j a}+\sum \omega_{i b} \wedge \omega_{b a} \\
& =\sum \omega_{j b} \wedge\left(-\omega_{i j} \delta_{b a}+\omega_{b a} \delta_{i j}\right) \tag{34}\\
& \equiv \omega_{j b} \wedge \omega_{j b, i a}^{*} \circ f
\end{align*}
$$

where $\omega_{j b, i a}^{*} \circ f=-\omega_{i j} \delta_{b a}+\omega_{b a} \delta_{i j}$ are the connection forms of $G_{m, p}$.
The tension field of f is

$$
\begin{equation*}
\tau(f)=\sum a_{i u u}^{a} E_{i a} \circ f \tag{35}
\end{equation*}
$$

where (see (13))

$$
\begin{equation*}
\sum a_{i u v}^{a} \theta_{v}=\mathrm{d} a_{i u}^{a}-\sum a_{i v}^{a} \theta_{u v}+\sum a_{j u}^{b} f^{*} \omega_{j b, i a}^{*} \tag{36}
\end{equation*}
$$

Let $f_{*}=f_{u} \theta_{u}$. Then by (31) we have $f_{u}=\sum a_{i u}^{a} E_{i a} \circ f$.

Therefore

$$
\begin{align*}
\sum f_{u v} \theta_{v}= & \mathrm{d} f_{u}-\sum f_{v} \theta_{u v}=\sum \mathrm{d} a_{i u}^{a} \cdot E_{i a} \circ f \\
& +\sum a_{i u}^{a} \mathrm{~d}\left(E_{i a} \circ f\right)-\sum a_{i v}^{a} E_{i a} \circ f \theta_{u v} \tag{37}
\end{align*}
$$

It is not difficult to check that if $m, p \geq 2$, we have

$$
\mathrm{d}\left(E_{i a} \circ f\right)=-f^{*} \omega_{j i} E_{j a} \circ f+f^{*} \omega_{j b} E_{j b, i a} \circ f+f^{*} \omega_{a i} F+f^{*} \omega_{a b} E_{i b} \circ f,
$$

and that if $m=1$ or $p=1$, we have

$$
\mathrm{d}\left(E_{i a} \circ f\right)=-f^{*} \omega_{j i} E_{j a} \circ f+f^{*} \omega_{a i} F+f^{*} \omega_{a b} E_{i b} \circ f
$$

When $m, p \geq 2$,

$$
\begin{aligned}
\sum f_{u v} \theta_{v}= & \sum\left(a_{i u v}^{a} \theta_{v}+a_{i v}^{a} \theta_{u v}-a_{j u}^{b} f^{*} \omega_{j b, i a}^{*}\right) E_{i a} \circ f \\
& +\sum a_{i u}^{a}\left(-f^{*} \omega_{j i} E_{j a} \circ f+f^{*} \omega_{j b} E_{j b, i a} \circ f+f^{*} \omega_{a i} F+f^{*} \omega_{a b} E_{i b} \circ f\right) \\
& -\sum a_{i v}^{a} E_{i a} \circ f \theta_{u v} \\
= & \sum\left(a_{i u v}^{a} \theta_{v}+a_{i v}^{a} \theta_{u v}-a_{j u}^{b}\left(-f^{*} \omega_{i j} \delta_{b a}+f^{*} \omega_{b a} \delta_{i j}\right)\right) E_{i a} \circ f \\
& +\sum a_{i u}^{a}\left(-f^{*} \omega_{j i} E_{j a} \circ f+f^{*} \omega_{j b} E_{j b, i a} \circ f+f^{*} \omega_{a i} F+f^{*} \omega_{a b} E_{i b} \circ f\right) \\
& -\sum a_{i v}^{a} E_{i a} \circ f \theta_{u v} \\
= & \sum_{i, a, v} a_{i u v}^{a} E_{i a} \theta_{v}+\sum_{i \neq j, a \neq b} a_{i u}^{a} a_{j v}^{b} E_{i a, j b} \theta_{v}-\sum_{i, a, v} a_{i u}^{a} a_{i v}^{a} F \theta_{v}
\end{aligned}
$$

Because $\Delta F=\Delta f=\sum f_{u u}$, we have

$$
\begin{equation*}
\Delta_{M} F=\tau(f)-2 e(f) F+2 \sum_{i<j, a<b} \sum_{u}\left(a_{i u}^{a} a_{j u}^{b}-a_{i u}^{b} a_{j u}^{a}\right) E_{i a, j b} \circ f \tag{39}
\end{equation*}
$$

Similarly, When $m=1$ or $p=1$, we have

$$
\begin{equation*}
\Delta_{M} F=\tau(f)-2 e(f) F \tag{40}
\end{equation*}
$$

The lemma follows.
The following theorem is well known:
Lemma 2.3 (Ruh-Vilms' Theorem) Suppose that M is a submanifold of the Euclidean space. Then M has a parallel mean cavature if and only if its Gaussian map is harmonic.

For the proofs, see [6] and [3]. Here we give another one.
Proof. Let $g_{*}=\sum A_{(j a) i} \omega_{i} \otimes E_{j a} \circ g \in \Gamma\left(T^{*} M \otimes g^{-1}\left(T G_{m, p}\right)\right)$. Then by (26), we have $A_{(k a) i}=h_{k i}^{a}$. The latter is in $\Gamma\left(T^{*} M \otimes T^{*} M \otimes N M\right)$ where $N M$ is the normal bundle of M. We denote the covariant derivative of $h_{k i}^{a}$ in $\Gamma\left(T^{*} M \otimes g^{-1}\left(T G_{m, p}\right)\right)$
by $h_{k i ; j}^{a}$, and that in $\Gamma\left(T^{*} M \otimes T^{*} M \otimes N M\right)$ by $h_{k i \mid j}^{a}$. Then

$$
\begin{align*}
\sum h_{k i ; j}^{a} \omega_{j} & =\mathrm{d} h_{k i}^{a}+\sum h_{k j}^{a} \omega_{j i}+\sum h_{l i}^{b} \omega_{(l b)(k a)}^{*} \circ g \\
& =\mathrm{d} h_{k i}^{a}+\sum h_{k j}^{a} \omega_{j i}+\sum h_{l i}^{b}\left(-\omega_{k l} \delta_{b a}+\omega_{b a} \delta_{k l}\right) \tag{41}\\
& =\mathrm{d} h_{k i}^{a}+\sum h_{k j}^{a} \omega_{j i}-\sum h_{l i}^{a} \omega_{k l}+\sum h_{k i}^{b} \omega_{b a} \\
& =\sum h_{k i \mid j}^{a} \omega_{j} .
\end{align*}
$$

Hence $\tau(g)_{(k a)}=h_{k i ; i}^{a}=h_{k i \mid i}^{a}=h_{i k \mid i}^{a}=h_{i i \mid k}^{a}$. The lemma follows.
Let A be a $m \times n$ matrix, A^{\prime} its transport. Define $N(A)=\operatorname{tr}\left(A A^{\prime}\right)$. Then, we have

Lemma $2.4 N\left(A B^{\prime}-B A^{\prime}\right) \leq 2 N(A) N(B)$ for $m \times n$ matrices A and B
This inequality is proved by G. R. Wu and W. H. Chen in [9]. For completeness, we prove it in the following.

Proof. $N(A)$ is invariant under orthogonal transformations. Put $C=A B^{\prime}-B A^{\prime}$. It is anti-symmetric. By the theory of linear algebra, $\exists U \in O(m)$ such that

$$
U C U^{\prime}=\tilde{C}=\operatorname{diag}\left(\left(\begin{array}{ll}
0 & \lambda_{1} \tag{42}\\
-\lambda_{1} & 0
\end{array}\right), \ldots,\left(\begin{array}{ll}
0 & \lambda_{p} \\
-\lambda_{p} & 0
\end{array}\right), 0\right)
$$

where $2 p=\operatorname{rank} C, \lambda_{1}, \ldots, \lambda_{p}$ are non-zero real numbers, the last 0 is a zero matrix of $(m-2 p) \times(m-2 p)$. Let $\tilde{A}=U A=\left(\xi_{i}^{\alpha}\right)$ and $\tilde{B}=U B=\left(\eta_{i}^{\alpha}\right)$. Then we have

$$
\begin{equation*}
\tilde{C}_{2 r-1,2 r}=\sum_{\alpha}\left(\xi_{2 r-1}^{\alpha} \eta_{2 r}^{\alpha}-\xi_{2 r}^{\alpha} \eta_{2 r-1}^{\alpha}\right)=\lambda_{r}, \quad 1 \leq r \leq p \tag{43}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
N(C)=N(\tilde{C}) & =2 \sum_{r=1}^{p}\left(\sum_{\alpha}\left(\xi_{2 r-1}^{\alpha} \eta_{2 r}^{\alpha}-\xi_{2 r}^{\alpha} \eta_{2 r-1}^{\alpha}\right)\right)^{2} \tag{44}\\
& =2 \sum_{r=1}^{p}\left(X_{r} \cdot Y_{r}\right)^{2}
\end{align*}
$$

where $X_{r}=\left(\xi_{2 r-1}^{1}, \ldots, \xi_{2 r-1}^{n}, \xi_{2 r}^{1}, \ldots, \xi_{2 r}^{n}\right), Y_{r}=\left(\eta_{2 r}^{1}, \ldots, \eta_{2 r}^{n},-\eta_{2 r-1}^{1}, \ldots,-\eta_{2 r-1}^{n}\right)$, $X_{r} \cdot Y_{r}$ stands for the euclidean inner product. By Schwarz inequality we have

$$
\begin{aligned}
N(C) & =2 \sum_{r=1}^{p}\left(X_{r} \cdot Y_{r}\right)^{2} \leq 2 \sum_{r=1}^{p}\left|X_{r}\right|^{2}\left|Y_{r}\right|^{2} \\
& \leq 2 \sqrt{\sum_{r=1}^{p}\left|X_{r}\right|^{4}} \sqrt{\sum_{r=1}^{p}\left|Y_{r}\right|^{4}} \leq 2 \sum_{r=1}^{p}\left|X_{r}\right|^{2} \sum_{r=1}^{p}\left|Y_{r}\right|^{2} \\
& \leq 2 N(\tilde{A}) N(\tilde{B})=2 N(A) N(B)
\end{aligned}
$$

as desired.

Proof of Theorem A

Expand F as $F=F_{0}+\sum_{s \geq 1} F_{s}$, where F_{0} is a constant vector called the mass center of F or $f, F_{s}, s \geq 0$ are eigenfunctions of Δ_{M} with respect to the eigenvalues λ_{s}, i.e.

$$
\begin{equation*}
\Delta_{M} F_{s}=-\lambda_{s} F_{s} \tag{46}
\end{equation*}
$$

If $F_{0}=0$, we say that F or f is mass-symmetric. If $\exists u_{i} \geq 1, i=1, \ldots, k$, such that $F=F_{0}+\sum_{i=1}^{k} F_{u_{i}}$, then F or f is called of k-type and $\left\{u_{1}, \ldots, u_{k}\right\}$ is by definition the order of F or f. For example, if f is a minimal isometric immersion of M^{q} into S^{q+p}, then $F=i \circ f$ is mass symmetric, of 1-type and its order is $\{k\}$ for some $k \geq 1$ by Takahashi theorem([8]):

$$
\begin{equation*}
\Delta_{M} F=H F-q F \tag{47}
\end{equation*}
$$

where H is the mean curvature of f.
Denote

$$
\begin{align*}
\Psi_{k} & =-\int_{M}\left\langle\Delta_{M} F, F\right\rangle d v_{M}-\lambda_{k} \int_{M}\langle F, F\rangle d v_{M} \tag{48}\\
\Theta_{k} & =\int_{M}\left\langle\Delta_{M} F, \Delta_{M} F\right\rangle d v_{M}+\lambda_{k} \int_{M}\left\langle\Delta_{M} F, F\right\rangle d v_{M}
\end{align*}
$$

Then

$$
\begin{align*}
\Psi_{k} & =\int_{M}\left\langle\sum \lambda_{s} F_{s}, \sum F_{s}\right\rangle d v_{M}-\lambda_{k} \int_{M}\left\langle\sum F_{s}, \sum F_{s}\right\rangle d v_{M} \\
& =\sum \lambda_{s} \int_{M}\left\langle F_{s}, F_{s}\right\rangle d v_{M}-\sum \lambda_{k} \int_{M}\left\langle F_{s}, F_{s}\right\rangle d v_{M} \tag{50}\\
& =\sum \lambda_{s} a_{s}-\sum \lambda_{k} a_{s}
\end{align*}
$$

where $a_{s}=\int_{M}\left\langle F_{s}, F_{s}\right\rangle d v_{M}$. Similarly

$$
\begin{equation*}
\Theta_{k}=\sum \lambda_{s}^{2} a_{s}-\lambda_{k} \sum \lambda_{s} a_{s} . \tag{51}
\end{equation*}
$$

Accordingly

$$
\begin{gather*}
\Theta_{k}-\lambda_{k+1} \Psi_{k}=\lambda_{k} \lambda_{k+1} a_{0}+\sum_{s \geq 1}\left(\lambda_{s}-\lambda_{k}\right)\left(\lambda_{s}-\lambda_{k+1}\right) a_{s} \geq 0 \tag{52}\\
\forall k \geq 0
\end{gather*}
$$

and the equality holds if and only if F is
(a) of 1-type and its order is $\{1\}$ when $k=0$;
(b) of 2-type and its order is $\{k, k+1\}$ when $k \geq 1$.

On the other hand, by (32), and noting that $E_{i a, j b}$ is normal to $G_{m, p}$ at $f(x)$, and also normal to $F(x)$ (as a vector in V), we have:

$$
\begin{align*}
& \int_{M}\langle F, F\rangle d v_{M}=V_{M} \text { the volume of } M^{q} ; \tag{53}\\
& \int_{M}\left\langle\Delta_{M} F, F\right\rangle d v_{M}=-2 E(f), \\
& \quad \text { by Lemma } 2.2 \text { and noting that } \tau(f)(x) \perp F(x) ;
\end{align*}
$$

$$
\begin{aligned}
& \int_{M}\left\langle\Delta_{M} F, \Delta_{M} F\right\rangle d v_{M}=\int_{M}\langle\tau(f), \tau(f)\rangle d v_{M} \\
& \quad+\int_{M}|d f|^{4} d v_{M}+\int_{M}|G|^{2} d v_{M}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \Psi_{k}=2 E(f)-\lambda_{k} V_{M} \tag{56}\\
& \Theta_{k}=\int_{M}\langle\tau(f), \tau(f)\rangle d v_{M}+\int_{M}|d f|^{4} d v_{M}+\int_{M}|G|^{2} d v_{M}-2 \lambda_{k} E(f) . \tag{57}
\end{align*}
$$

From (52), (56) and (57) we get:

$$
\begin{align*}
& \int_{M}\langle\tau(f), \tau(f)\rangle d v_{M}+\int_{M}|G|^{2} d v_{M} \\
& \quad+\int_{M}\left(|d f|^{2}-\lambda_{k}\right)\left(|d f|^{2}-\lambda_{k+1}\right) d v_{M} \geq 0 \tag{58}
\end{align*}
$$

So, when p is 1 , we have

$$
\begin{equation*}
\int_{M}\langle\tau(f), \tau(f)\rangle d v_{M}+\int_{M}\left(|d f|^{2}-\lambda_{k}\right)\left(|d f|^{2}-\lambda_{k+1}\right) d v_{M} \geq 0 \tag{59}
\end{equation*}
$$

whence, if $\tau=0$, we have

$$
\int_{M}\left(|d f|^{2}-\lambda_{k}\right)\left(|d f|^{2}-\lambda_{k+1}\right) d v_{M} \geq 0
$$

i.e.

$$
\begin{equation*}
\int_{M}\left(2 e(f)-\lambda_{k}\right)\left(2 e(f)-\lambda_{k+1}\right) d v_{M} \geq 0 . \tag{60}
\end{equation*}
$$

When $m, p \geq 2$, we put $A_{a}=\left(a_{i u}^{a}\right)$ be $m \times q$ matrices. From Lemma 2.4, we have

$$
\begin{align*}
|G|^{2} & =2 \sum_{i<j, a<b}\left(\sum_{u}\left(a_{i u}^{a} a_{j u}^{b}-a_{i u}^{b} a_{j u}^{a}\right)\right)^{2}=\sum_{a<b} \sum_{i, j}\left(\sum_{u}\left(a_{i u}^{a} a_{j u}^{b}-a_{i u}^{b} a_{j u}^{a}\right)\right)^{2} \\
& =\sum_{a<b} N\left(A_{a} A_{b}^{\prime}-A_{b} A_{a}^{\prime}\right) \leq 2 \sum_{a<b} N\left(A_{a}\right) N\left(A_{b}\right) \\
& =\left(\left(\sum_{a} N\left(A_{a}\right)\right)^{2}-\sum_{a}\left(N\left(A_{a}\right)\right)^{2}\right) \leq \frac{p-1}{p}\left(\sum_{a} N\left(A_{a}\right)\right)^{2} \\
& =\frac{(p-1)}{p}|d f|^{4} . \tag{61}
\end{align*}
$$

Insert it into (58), we have

$$
\begin{align*}
& \int_{M}\langle\tau(f), \tau(f)\rangle d v_{M} \\
& \quad+\int_{M}\left(\frac{2 p-1}{p}|d f|^{4}-\left(\lambda_{k}+\lambda_{k+1}\right)|d f|^{2}+\lambda_{k} \lambda_{k+1}\right) d v_{M} \geq 0 \tag{62}
\end{align*}
$$

i.e.

$$
\begin{align*}
& \int_{M}\langle\tau(f), \tau(f)\rangle d v_{M} \\
& \quad+\frac{2 p-1}{p} \int_{M}\left(|d f|^{2}-A(p, k)\right)\left(|d f|^{2}-B(p, k)\right) d v_{M} \geq 0 \tag{63}
\end{align*}
$$

If f is harmonic, then $\tau(f)=0$. Therefore (63) becomes

$$
\begin{equation*}
\int_{M}\left(|d f|^{2}-A(p, k)\right)\left(|d f|^{2}-B(p, k)\right) d v_{M} \geq 0 \tag{64}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\int_{M}(2 e(f)-A(p, k))(2 e(f)-B(p, k)) d v_{M} \geq 0 \tag{65}
\end{equation*}
$$

This inequality is also valid for $p=1$ by (60). Hence if $A(p, k) \leq 2 e(f) \leq B(p, k)$ for some $p \geq 1$ and some $k \geq 0$, then the integrand in (65) is non-positive, hence vanishing. So $2 e(f)=A(p, k)$ or $2 e(f)=B(p, k)$. Theorem A follows.

Proof of Theorem B

By Theorem A, Ruh-Vilms' Theorem (Lemma 2.3) and Lemma 2.1, Theorem B follows.

Remark 3.1. The order of the map in Theorem A must be $\{1\}$ when $k=0$ or $\{k, k+1\}$ when $k \geq 1$.

Remark 3.2. When $p=1, G_{m, p}=S^{m}$. From (60) we conclude that
(i) If f is mass symmetric and of order $\{k, k+1\}$, and $2 e(f) \leq \lambda_{k}$ or $2 e(f) \geq$ λ_{k+1} for some $k \geq 1$, then f is harmonic, and $2 e(f)=\lambda_{k}$ or $2 e(f)=\lambda_{k+1}$.
(ii) If f is of order $\{1\}$ and $2 e(f) \geq \lambda_{1}$, then f is harmonic and $2 e(f)=\lambda_{1}$.

References

[1] Chen, W. H., Geometry of Grassmannian manifolds as submanifolds (in Chinese), Acta Math. Sinica 31(1) (1998), 46-53.
[2] Chen, X. P., Harmonic maps and Gaussian maps (in Chinese), Chin. Ann. Math. 4A(4) (1983), 449-456.
[3] Chern, S. S., Goldberg, S. I., On the volume decreasing property of a class of real harmonic mappings, Amer. J. Math. 97(1) (1975), 133-147.
[4] Chern, S. S., doCarmo, M., Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Anal. Rel. Fields (1970), 59-75.
[5] Eells, J., Lemaire, L., Selected topics on harmonic maps, Expository Lectures from the CBMS Regional Conf. held at Tulane Univ., Dec. 15-19, 1980.
[6] Ruh, E. A. Vilms, J., The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573.
[7] Sealey, H. C. J., Harmonic maps of small energy, Bull. London Math. Soc. 13 (1981), 405-408.
[8] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan. 18 (1966), 380-385.
[9] Wu, G. R., Chen, W. H., An inequality on matrix and its geometrical application (in Chinese), Acta Math. Sinica 31(3) (1988), 348-355.
[10] Yano, K., Kon, M., Structures on Manifolds, Series in Pure Math. 3 (1984), World Scientific.

School of Mathematics and Statistics, Central China Normal University
Wuhan, 430079 , P. R. China
E-mail: qunchen@mail.ccnu.edu.cn
zrzhou@ccnu.edu.cn

[^0]: 2000 Mathematics Subject Classification: 58E20, 53C43.
 Key words and phrases: Grassmannian, Gaussian map, mean curvature, the second fundamental form.
 *Research supported by National Natural Science Fundation of China No. 19901010, Fok Ying-Tung Education Fundation, and COCDM Project.
 ${ }^{\dagger}$ Research supported by National Natural Science Fundation of China No. 10371047.
 Received April 11, 2003.

