ON TOTALLY REAL MINIMAL SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACE

XIAOLI CHAO AND YAOWEN LI

Abstract

In this paper, we obtain some pinching theorems for totally real minimal submanifolds in complex projective space.

§1. Introduction

Let $C P^{n}(c)$ be an n-dimensional complex projective space with the FubiniStudy metric of constant holomorphic sectional curvature $c(c>0)$. The pinching problem for totally real minimal submanifolds in $C P^{n}(c)$ has been studied by many mathematicians. Montiel, Ros and Urbano [MRU] proved a pinching result about Ricci curvature condition. Recently, Matsuyama [M1,2] has discussed the scalar curvature case which give a positive answer for Ogiue's conjecture [O]. Now, in this paper, we give a pinching condition for the norm of the second fundamental form under which the submanifolds is totally geodesic.

Throughout this paper, we use the similar notations and formulas as those used in [MRU]. Let M be an n-dimensional compact Riemannian manifold. We denote by $U M$ the unit tangent bundle over M and by $U M_{p}$ its fibre at $p \in M$. For any continuous function $f: U M \rightarrow R$, we have

$$
\int_{U M} f d v=\int_{M} \int_{U M_{p}} f d v_{p} d p
$$

where $d p, d v_{p}$ and $d v$ stand for the canonical measures on $M, U M_{p}$ and $U M$ respectively.

If T is a k-covariant tensor on M and ∇T is covariant derivative, then we have ([R1])

$$
\begin{equation*}
\int_{U M}\left\{\sum_{i=1}^{n}(\nabla T)\left(e_{i}, e_{i}, v, \cdots . v\right)\right\} d v=0 \tag{1.1}
\end{equation*}
$$

[^0]where e_{1}, \ldots, e_{n} is an orthonormal basis of $T_{p} M, p \in M$.
Suppose now that M is isometrically immersed in an $(n+p)$-dimensional Riemannian manifold \bar{M}^{n+p}. We denote by \langle,$\rangle the metric of \bar{M}$ as well as that induced on M. Let σ be the second fundamental form of the isometrically immersion and A_{ξ} the Weingarten endomorphism for a normal vector ξ. If $T_{p} M$ and $T_{p}^{\perp} M$ denote the tangent and normal spaces to M at p, one can define
$$
L: T_{p} M \rightarrow T_{p} M \quad \text { and } \quad T: T_{p}^{\perp} M \times T_{p}^{\perp} M \rightarrow R
$$
by the expressions
$$
L v=\sum_{i=1}^{n} A_{\sigma\left(v, e_{i}\right)} e_{i} \quad \text { and } \quad T(\xi, \eta)=\operatorname{trace} A_{\xi} A_{\eta}
$$
where e_{1}, \ldots, e_{n} is an orthonormal basis of $T_{p} M$. Then L is a self-adjoint linear map and T a symmetric bilinear map.

There are many submanifolds satisfying $T=k\langle$,$\rangle . Obviously, hypersurfaces$ represent a trivial case. In $C P^{n+p}(c)$, a Kaehler submanifold of order $\left\{k_{1}, k_{2}\right\}$ for some natural numbers k_{1} and k_{2} is one submanifold of this type ([R3]). In this paper, we have a pinching theorem for this kind of submanifolds as following:
Theorem 3.1. Let M^{n} be a totally real minimal submanifold with $T=k\langle$,$\rangle in$ $C P^{n+p}(c)$. If

$$
|\sigma|^{2}<\frac{n c(n+2 p)(n+4)}{4(n+2)(n+4)+n(n+4)^{2}+4 n}
$$

then M must be totally geodesic.

§2. Some Lemmas

In this section, we will prove some lemmas which will be used later. First, we give the following modified version of Simons' formula which generalizes a result from [MRU]. Now we suppose that M is a curvature-invariant submanifold of \bar{M}, i.e., $\bar{R}(X, Y) Z \in T_{p} M$ for all $X, Y, Z \in T_{p} M$, being \bar{R} the curvature operator of \bar{M}.
Lemma 2.1 [LC]. Let M be an n-dimensional compact curvature-invariant submanifold with parallel mean curvature vector isometrically immersed in an $(n+p)$ dimensional Riemannian manifold \bar{M}^{n+p}. Then we have

$$
\begin{aligned}
0= & \int_{U M}\left\{\sum_{i=1}^{n}\left|(\nabla \sigma)\left(e_{i}, v, v\right)\right|^{2}+\sum_{i=1}^{n}\left\langle\sigma\left(e_{i}, e_{i}\right), A_{\sigma(v, v)} v\right\rangle\right. \\
& +(n+4)\left|A_{\sigma(v, v)} v\right|^{2}-4\left\langle L v, A_{\sigma(v, v)} v\right\rangle-2 T(\sigma(v, v), \sigma(v, v)) \\
& \left.+\left[\sum_{i=1}^{n} \bar{R}\left(e_{i}, v, \sigma\left(v, e_{i}\right), \sigma(v, v)\right)+2 \sum_{i=1}^{n} \bar{R}\left(e_{i}, v, v, A_{\sigma\left(v, e_{i}\right)} v\right)\right]\right\} d v
\end{aligned}
$$

Remark. When the immersion is minimal, Lemma 2.1 is due to [MRU].
Remark. It's clear that submanifolds in real space forms, Kahler, and totally real submanifolds in complex space forms are curvature-invariant.

Lemma 2.2. Let M be an n-dimensional compact submanifold isometrically immersed in a Riemannian manifold \bar{M}^{n+p}. Then, for $\forall p \in M$, we have:
i)

$$
\begin{aligned}
& \int_{U M_{p}}\left\langle L v, A_{\sigma(v, v)} v\right\rangle d v_{p} \\
& \quad=\frac{2}{n+2} \int_{U M_{p}}|L v|^{2} d v_{p}+\frac{1}{n+2} \int_{U M_{p}}\langle\sigma(v, v), \xi\rangle d v_{p}
\end{aligned}
$$

ii) $\int_{U M_{p}}|\sigma(v, v)|^{2} d v_{p}$

$$
=\frac{2}{n+2} \int_{U M_{p}}\langle L v, v\rangle d v_{p}+\frac{1}{n+2} \int_{U M_{p}} \sum_{i=1}^{n}\left\langle\sigma(v, v), \sigma\left(e_{i}, e_{i}\right)\right\rangle d v_{p}
$$

iii)

$$
\int_{U M_{p}}\langle L v, v\rangle d v_{p}=\frac{1}{n} \int_{U M_{p}}|\sigma|^{2} d v_{p}
$$

iv) $\quad \int_{U M_{p}}\langle\sigma(v, v), \eta\rangle d v_{p}=\frac{1}{n} \int_{U M_{p}} \sum_{i=1}^{n}\left\langle\sigma\left(e_{i}, e_{i}\right), \eta\right\rangle d v_{p}$

Where $\xi=\sum_{i=1}^{n} \sigma\left(e_{i}, L e_{i}\right)$ and η is a fixed vector in normal bundle.
Proof. Let α^{1} be the 1-form on $U M_{p}$ defined by

$$
\alpha^{1}(e)=\left\langle L v, A_{\sigma(v, v)} e\right\rangle, \quad v \in U M_{p}, \quad e \in T_{v} U M_{p}
$$

For any $v \in U M_{p}$, let $e_{1}, \ldots, e_{n-1}, e_{n}=v$ be an orthonormal basis of $T_{p} M$. Then

$$
\left(\delta \alpha^{1}\right)(v)=-(n+2)\left\langle L v, A_{\sigma(v, v)} v\right\rangle+2|L v|^{2}+\langle\sigma(v, v), \xi\rangle .
$$

Integrating it over $U M_{p}$, we obtain i).
ii), iii) and iv) are obtained by using the same technique for the 1 -forms α^{2}, α^{3} and α^{4} on $U M_{p}$ defined by

$$
\begin{aligned}
& \alpha_{v}^{2}(e)=\langle\sigma(v, v), \sigma(v, e)\rangle \\
& \alpha_{v}^{3}(e)=\langle L v, e\rangle \\
& \alpha_{v}^{4}(e)=\langle\sigma(v, e), \eta\rangle
\end{aligned}
$$

Lemma 2.3. Let M be an n-dimensional compact submanifold isometrically immersed in a Riemannian manifold \bar{M}^{n+p}. Then we have

$$
\begin{aligned}
\int_{U M_{p}}\left|A_{\sigma(v, v)} v\right|^{2} d v_{p} \geq & \frac{2}{n+2} \int_{U M_{p}}\left\langle L v, A_{\sigma(v, v)} v\right\rangle d v_{p} \\
& +\frac{1}{n+2} \int_{U M_{p}}\left\langle A_{\sigma\left(e_{i}, e_{i}\right)} v, A_{\sigma(v, v)} v\right\rangle d v_{p}
\end{aligned}
$$

Proof. Let \triangle denote the Laplace operator on S^{n-1}. Then, for the function $f: U M_{p} \rightarrow T_{p} M$ defined by $f(v)=A_{\sigma(v, v)} v$, we have

$$
(\triangle f)(v)=-3(n+1) A_{\sigma(v, v)} v+4 L v+2 A_{\sigma\left(e_{i}, e_{i}\right)} v
$$

Since $U M_{p}$ is a $(n-1)$-dimensional sphere, the first eigenvalue of $-\triangle=\nabla_{\nabla_{e_{i}} e_{i}}-$ $\nabla_{e_{i}} \nabla_{e_{i}}$ is $n-1$. Then

$$
-\int_{U M_{p}}\langle\triangle f, f\rangle d v_{p} \geq(n-1) \int_{U M_{p}}|f|^{2} d v_{p}
$$

and the lemma follows.
Let α be a 1-form on $U M_{p}$ defined by

$$
\alpha_{v}(e)=\left\langle A_{\sigma(v, v)} e, A_{\sigma(v, v)} v\right\rangle
$$

where $v \in U M_{p}$, and $e \in T_{v} U M_{p}$. If e_{1}, \ldots, e_{n-1} is an orthnormal basis of $T_{v} U M_{p}$, then the codifferential of α is

$$
\begin{aligned}
(\delta \alpha)= & \sum_{i=1}^{n} e_{i} \cdot \alpha_{v}\left(e_{i}\right) \\
= & -(n+4)\left|A_{\sigma(v, v)} v\right|^{2}+2\left\langle L v, A_{\sigma(v, v)} v\right\rangle \\
& +T(\sigma(v, v), \sigma(v, v))+2 \sum_{i=1}^{n}\left\langle A_{\sigma(v, v)} e_{i}, A_{\sigma\left(v, e_{i}\right)} v\right\rangle
\end{aligned}
$$

where $e_{1}, \ldots, e_{n-1}, e_{n}=v$ is an orthonormal basis of $T_{p} M$. Now integrating the above equality over $U M_{p}$ and using divergence theorem, we have

$$
\begin{align*}
2 \int_{U M_{p}} & \left\{\sum_{i=1}^{n}\left\langle A_{\sigma(v, v)} e_{i}, A_{\sigma\left(v, e_{i}\right)} v\right\rangle\right\} d v_{p} \\
= & (n+4) \int_{U M_{p}}\left|A_{\sigma(v, v)} v\right|^{2} d v_{p}-2 \int_{U M_{p}}\left\langle L v, A_{\sigma(v, v)} v\right\rangle d v_{p} \\
& -\int_{U M_{p}} T(\sigma(v, v), \sigma(v, v)) d v_{p} \tag{2.1}
\end{align*}
$$

In a similar way, for the 1 -form α defined by

$$
\alpha_{v}(e)=\left\langle A_{\sigma(v, e)} v, A_{\sigma(v, v)} v\right\rangle
$$

we have

$$
\begin{aligned}
(\delta \alpha)(v)= & \sum_{i=1}^{n}\left\{2\left|A_{\sigma\left(v, e_{i}\right)} v\right|^{2}+\left\langle A_{\sigma\left(v, e_{i}\right)} v, A_{\sigma(v, v)} e_{i}\right\rangle\right. \\
& \left.+\left\langle A_{\sigma\left(e_{i}, e_{i}\right)} v, A_{\sigma(v, v)} v\right\rangle\right\}-(n+4)|f(v)|^{2}+\langle L v, f(v)\rangle
\end{aligned}
$$

Integrating this and using (2.1), we get

$$
\begin{align*}
2 \int_{U M_{p}} \sum_{i=1}^{n}\left|A_{\sigma\left(v, e_{i}\right)} v\right|^{2} d v_{p}= & \int_{U M_{p}}\left\{\frac{n+4}{2}|f(v)|^{2}-\left\langle A_{n H} v, f(v)\right\rangle\right. \\
& \left.+\frac{1}{2} T(\sigma(v, v), \sigma(v, v))\right\} d v_{p} \tag{2.2}
\end{align*}
$$

By (2.1), (2.2) and

$$
\begin{align*}
2 \sum_{i=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} v, A_{\sigma(v, v)} e_{i}\right\rangle & \leq a \sum_{i=1}^{n}\left|A_{\sigma\left(v, e_{i}\right)} v\right|^{2}+\frac{1}{a} \sum_{i=1}^{n}\left|A_{\sigma(v, v)} e_{i}\right|^{2} \\
& =a \sum_{i=1}^{n}\left|A_{\sigma\left(v, e_{i}\right)} v\right|^{2} \frac{1}{a} T(\sigma(v, v), \sigma(v, v)) \tag{2.3}
\end{align*}
$$

By (2.1),(2.2) and (2.3), we have, for $\forall b>0$,

$$
\int_{U M_{p}}\left\{\left(n+4-\frac{b(n+4)}{4}\right)|f(v)|^{2}-2\langle L v, f(v)\rangle\right.
$$

$$
\begin{equation*}
\left.-\left(1+\frac{b}{4}+\frac{1}{b}\right) T(\sigma(v, v), \sigma(v, v))\right\} d v \leq 0 \tag{2.4}
\end{equation*}
$$

Now, we can prove the following lemma:
Lemma 2.4. Let $M^{n} \rightarrow \bar{M}^{n+p}$ be a compact Riemannian immersion. Then we have

$$
\begin{align*}
& \int_{U M_{p}}(n+2)\left\langle A_{H} v, f(v)\right\rangle d v_{p} \tag{1}\\
& \quad=\int_{U M_{p}}\left\{2 \sum_{i=1}^{n}\left\langle A_{H} e_{i}, A_{\sigma\left(v, e_{i}\right)} v\right\rangle+T(H, \sigma(v, v))\right\} d v_{p}
\end{align*}
$$

$$
\begin{equation*}
\int_{U M_{p}}\left\langle A_{H} v, L v\right\rangle d v_{p}=\int_{U M_{p}} \sum_{i=1}^{n}\left\langle A_{H} e_{i}, A_{\sigma\left(v, e_{i}\right)} v\right\rangle d v_{p} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
\int_{U M_{p}}\left\langle A_{H} v, L v\right\rangle d v_{p} & =\frac{1}{n} \int_{U M_{p}} \sum_{i=1}^{n}\left\langle A_{H} e_{i}, L e_{i}\right\rangle d v_{p} \tag{3}\\
& =\frac{1}{n} \int_{U M_{p}}\langle H \cdot \xi\rangle d v_{p}
\end{align*}
$$

$$
\begin{equation*}
\int_{U M_{p}} T(H<\sigma(v, v)) d v_{p}=\int_{U M_{p}} T(H, H) d v_{p} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \int_{U M_{p}}(n+2) T(\sigma(v, v), \sigma(v, v)) d v_{p} \tag{5}\\
& \quad=\int_{U M_{p}}\left\{n T(H, \sigma(v, v))+2 \sum_{i=1}^{n} T\left(\sigma\left(v, e_{i}\right), \sigma\left(v, e_{i}\right)\right)\right\} d v_{p}
\end{align*}
$$

(6) $\int_{U M_{p}} \sum_{i=1}^{n} T\left(\sigma\left(v, e_{i}\right), \sigma\left(v, e_{i}\right)\right) d v_{p}=\frac{1}{n} \int_{U M_{p}} \sum_{i, j=1}^{n} T\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right) d v_{p}$

$$
\begin{equation*}
\int_{U M_{p}}\left\langle A_{H} v, f(v)\right\rangle d v_{p}=\int_{U M_{p}}\left\{\frac{1}{n+2} T(H, H)+\frac{2}{n(n+2)}\langle H, \xi\rangle\right\} d v_{p} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
\int_{U M_{p}} T(\sigma(v, v), \sigma(v, v)) d v_{p}= & \int_{U M_{p}}\left\{\frac{n}{n+2} T(H, H)\right. \tag{8}\\
& \left.+\frac{2}{n(n+2)} \sum_{i, j=1}^{n} T\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right)\right\} d v_{p}
\end{align*}
$$

$$
\begin{align*}
& \int_{U M_{p}}\left(2-\frac{b(n+4)}{4}\right)|f(v)|^{2} d v_{p} \tag{9}\\
& \quad \leq \int_{U M_{p}}\left\{\left(1+\frac{b}{4}+\frac{1}{b}\right) T(\sigma(v, v), \sigma(v, v))-\left(1+\frac{b}{2}\right) n\left\langle A_{H} v, f(v)\right\rangle\right\} d v_{p}
\end{align*}
$$

for each b.

Proof. By taking some proper 1-form on $U M_{p}$ respectively as above, we can obtain $(1) \sim(6)$ and then (7) and (8) as their corollaries. Using Lemma 2.3, (2.4) implies (9).

Remark. When $b(>0)$ is small, (9) gives a estimation of the upper bound of $|f(v)|^{2}$.

> §3. Totally real submanifolds with $T=k\langle$,$\rangle in complex projective spaces$

There are many submanifolds satisfying $T=k\langle$,$\rangle . Obviously, hypersurfaces$ represent a trivial case. In $C P^{n+p}(c)$, a Kaehler submanifold of order $\left\{k_{1}, k_{2}\right\}$ for
some natural numbers k_{1} and k_{2} is one submanifold of this type ([R3]). Let M^{n} be a totally real minimal submanifold with $T=k\langle$,$\rangle immersed in C P^{n+p}(c)$. Then

$$
\begin{align*}
P(\bar{R})= & \sum_{i=1}^{n} \bar{R}\left(e_{i}, v, \sigma\left(v, e_{i}\right), \sigma(v, v)\right)+2 \sum_{i=1}^{n} \bar{R}\left(e_{i}, v, v, A_{\sigma\left(v, e_{i}\right)} v\right) \\
= & \frac{c}{2}\langle L v, v\rangle-\frac{c}{2}|\sigma(v, v)|^{2}+\frac{c}{4} \sum_{i=1}^{n}\left\langle\sigma(v, v), J e_{i}\right\rangle^{2} \\
& -\frac{c}{4} \sum_{i=1}^{n}\left\langle J v, \sigma\left(e_{i}, e_{i}\right)\right\rangle\langle J v, \sigma(v, v)\rangle . \tag{3.1}
\end{align*}
$$

Now, we define a map $g^{1}: U M_{p} \rightarrow T_{p} M$ by

$$
g^{1}(v)=A_{\sigma(v, v)} v-L v
$$

By a direct computation, we have

$$
\left(-\triangle g^{1}\right)(v)=3(n+1) f(v)-(n+3) L v-2 n A_{H} v
$$

Here \triangle is the Laplacian of $U M_{p}$. Since $\int_{U M_{p}} g^{1}(v) d v_{p}=0$, we get

$$
\int_{U M_{p}}\left\langle\left(-\triangle g^{1}\right)(v), g^{1}(v)\right\rangle \geq(n-1) \int_{U M_{p}}\left|g^{1}(v)\right|^{2}
$$

Then, the above relation gives

$$
\begin{align*}
& \int_{U M_{p}}\left\{(2 n+4)|f(v)|^{2}-(2 n+8)\langle L v, f(v)\rangle\right. \\
& \left.\quad-2 n\left\langle f(v), A_{H} v\right\rangle+4|L v|^{2}+2 n\left\langle L v, A_{H} v\right\rangle\right\} d v_{p} \geq 0 \tag{3.2}
\end{align*}
$$

In a similar way, for the 1 -form $g^{2}(v)=f(v)+L v$, we have

$$
\begin{align*}
& \int_{U M_{p}}\left\{(2 n+4)|f(v)|^{2}-2 n\langle L v, f(v)\rangle\right. \\
& \left.\quad-2 n\left\langle f(v), A_{H} v\right\rangle-4|L v|^{2}-2 n\left\langle L v, A_{H} v\right\rangle\right\} d v_{p} \geq 0 \tag{3.3}
\end{align*}
$$

By (3.2) and (3.3), we get

$$
\begin{align*}
& \int_{U M_{p}}\left\{(2 n+4)|f(v)|^{2}-(2 k n+4 k+4)\langle L v, f(v)\rangle\right. \\
& \left.\quad-2 n\left\langle f(v), A_{H} v\right\rangle+4 k|L v|^{2}-2 n k\left\langle L v, A_{H} v\right\rangle\right\} d v_{p} \geq 0 \tag{3.4}
\end{align*}
$$

Since M is minimal, by (3.4) with $k=-\frac{2}{n+2}$, we have

$$
\int_{U M_{p}}|f(v)|^{2} d v_{p} \geq \frac{4}{(n+2)^{2}} \int_{U M_{p}}|L v|^{2} d v_{p}
$$

From this and Lemma 2.2 i) we get

$$
\begin{equation*}
\int_{U M_{p}}|f(v)|^{2} d v_{p} \geq \frac{2}{n+2} \int_{U M_{p}}\langle L v, f(v)\rangle d v_{p} . \tag{3.5}
\end{equation*}
$$

From (3.1),(3.5) and Lemma 2.1 we have

$$
\begin{align*}
0= & \int_{U M}\left\{\sum_{i=1}^{n}\left|(\nabla \sigma)\left(e_{i}, v, v\right)\right|^{2}+(n+4)|f(v)|^{2}\right. \\
& -4\langle L v, f(v)\rangle-2 T(\sigma(v, v), \sigma(v, v)) \\
& \left.+\left[\frac{c}{2}\langle L v, v\rangle-\frac{c}{2}|\sigma(v, v)|^{2}+\frac{c}{4} \sum_{i=1}^{n}\left\langle\sigma(v, v), J e_{i}\right\rangle^{2}\right]\right\} d v \\
\geq & \int_{U M}\left\{\sum_{i=1}^{n}\left|(\nabla \sigma)\left(e_{i}, v, v\right)\right|^{2}+\frac{n c}{4}|\sigma(v, v)|^{2}\right. \\
& \left.-n|f(v)|^{2}-2 T(\sigma(v, v), \sigma(v, v))\right\} d v \tag{3.6}
\end{align*}
$$

Assuming now that M is minimal, and putting $b=\frac{4}{n+4}$ in formula (9) of Lemma 2.4, we obtain

$$
\begin{equation*}
\int_{U M_{p}}|f(v)|^{2} d v_{p} \leq\left(1+\frac{1}{n+4}+\frac{n+4}{4}\right) \int_{U M_{p}} T(\sigma(v, v), \sigma(v, v)) d v_{p} \tag{3.7}
\end{equation*}
$$

By (3.6), (3.7) and the fact that $T=\frac{|\sigma|^{2}}{2 p+n} g$ we get

$$
\begin{aligned}
0 \geq & \int_{U M}\left\{\sum_{i=1}^{n}\left|(\nabla \sigma)\left(e_{i}, v, v\right)\right|^{2}\right. \\
& \left.+\left[\frac{n c}{4}-\frac{n\left(1+\frac{1}{n+4}+\frac{n+4}{4}\right)+2}{2 p+n}|\sigma|^{2}\right] \cdot|\sigma(v, v)|^{2}\right\} d v
\end{aligned}
$$

From this we immediately have
Theorem 3.1. Let M^{n} be a totally real minimal submanifold with $T=k\langle$,$\rangle in$ $C P^{n+p}(c)$. If

$$
\begin{equation*}
|\sigma|^{2}<\frac{n c(n+2 p)(n+4)}{4(n+2)(n+4)+n(n+4)^{2}+4 n} \tag{3.8}
\end{equation*}
$$

then M must be totally geodesic.
Remark. Xia [X] gave a pinching constant $\frac{n c}{6}$ without the assumption: $T=k\langle$,$\rangle .$ When $p>\frac{n(n+4)}{12}+\frac{2}{3}+\frac{n}{3(n+4)}-\frac{n}{6}$, our pinching constant is larger than Xia's.

Remark. When the target manifold is the quaternionic space form $Q P^{n+p}(c)$, we have also a corresponding result, i.e., changing the factor $n+2 p$ in (3.8) to $3 n+4 p$. So our result is better than that of [Sh1] in case when p is large enough.

Remark. B. Y. Chen and K. Ogiue ([CO]) had proved that, for a submanifold M of nonflat complex space form, M is curvature-invariant if and only if M is holomorphic or totally real submanifold. So we can use Lemma 2.1 in the proof of Theorem 3.1.

Acknowledgment. The authors would like to thank the referee for careful reading of the manuscript and very helpful suggestions.

References

[CO] Chen, B. Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1994), 257-266.
[LC] Li, Y. W and Chao, X. L., A modified version of Simons formula, preprint (2001).
[M1] Matsuyama, Y., Curvature pinching for totally real submanifolds of complex projective space, J. Math. Soc. Japan 52 (2000), 51-64.
[M2] Matsuyama, Y., On totally real submanifolds of a complex projective space, Nihonkai Math. J. 13 (2002), 153-157.
[MRU] Montiel, S., Ros, A. and Urbano, F., Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z. 191 (1986), 537-548.
[O] Ogiue, K., Recent topics of differential geometry, Mathematics: the publication of the Mathematical Society of Japan 39 (1987), 51-64.
[R1] Ros, A., A characterization of seven compact Kahler submanifolds by holomorphic pinching, Ann. Math. 121 (1985), 377-382.
[R2] Ros A., Eigenvalue inequalities for minimal submanifolds and P-manifolds, Math. Z. 187 (1984), 393-404.
[R3] Ros, A., On spectral geometry of Kaehlar submanifolds, J. Math. Soc. Japan 36 (1984), 433-448.
[Si] Simons, J., Minimal verieties in Riemannian manifolds, Ann. Math. 88 (1968), 62-65.
[Sh1] Shen, Y. B., Totally real minimal submanifolds in quaternionic projective space, Chin. Ann. Math. 14B (1993), 297-306.
[Sh2] Shen, Y. B., On scalar curvature of totally real minimal submanifolds, Chin. Ann. Math. 12A (1991), 573-577.
[Sh3] Shen, Y. B., On curvature pinching for minimal and Kahler submanifolds with isotropic second fundamental form, Chin. Ann. Math. 12B (1991), 454-463.
[Ub] Urbano F., Totally real submanifolds, Geometry and Topology of Submanifolds, Proceedings (1987), 198-208.
[X] Xia, C. Y., On the minimal submanifolds in $C P^{m}(c)$ and $S^{n}(1)$, Kodai Math. J. 15 (1992), 141-153.

Xiaoli Chao

Department of Mathematics, Southeast University
Nanjing 210096, P. R. China
Department of Mathematics, Nanjing Normal University
Nanjing 210097, P. R. China
E-mail: xlchao@seu.edu.cn
Yaowen Li
Department of Mathematics, Nanjing University
Nanjing 210093, P. R. China

[^0]: 2000 Mathematics Subject Classification: 53C40.
 Key words and phrases: totally real submanifolds, pinching, totally geodesic.
 This work is supported by National Natural Science Foundation of China (No. 10226001, 10301008) and Support program for outstanding young teachers of Southeast University.

 Received May 7, 2003.

