ARCHIVUM MATHEMATICUM (BRNO) Tomus 41 (2005), 117 – 122

FIXED POINTS THEOREMS OF NON-EXPANDING FUZZY MULTIFUNCTIONS

ABDELKADER STOUTI

ABSTRACT. We prove the existence of a fixed point of non-expanding fuzzy multifunctions in α -fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in α -fuzzy ordered sets.

1. INTRODUCTION

In [19], Zadeh introduced the notion of fuzzy order and similarity, which was investigated by several authors (see [1, 3, 7, 13]). During the last few decades many authors have established the existence of a lots of fixed point theorems in fuzzy setting: Beg [2, 4], Bose and Sahani [6], Fang [8], Hadzic [9], Heilpern [10], Kaleva [11] and the present author [13, 14, 15, 16]. The aim of this paper is to study the existence of fixed points of non-expanding fuzzy multifunctions in α -fuzzy setting.

Let X be a nonempty crisp set, with generic element of X denoted by x. A fuzzy subset A of X is characterized by its membership function $\mu_A : X \to [0, 1]$ and $\mu_A(x)$ is interpreted as the degree of membership of element x in fuzzy subset A for each $x \in X$. Let A and B be two fuzzy subsets of X. We say that A is included in B and we write $A \subseteq B$ if $\mu_A(x) \leq \mu_B(x)$, for all $x \in X$. In particular, if $x \in X$ and $\mu_A(x) = 1$, then $\{x\} \subseteq A$.

Let X be a nonempty crisp set and $\alpha \in [0, 1]$. An α -fuzzy preorder relation on X is a fuzzy subset r_{α} of $X \times X$ satisfying the following two properties:

(i) for all $x \in X$, $r_{\alpha}(x, x) = \alpha$,

(ii) for all $x, y \in X$, $r_{\alpha}(x, y) + r_{\alpha}(y, x) > \alpha$ implies x = y.

A nonempty set X with an α -fuzzy preorder r_{α} defined on it, is called an α -fuzzy preorder and we denote it by (X, r_{α}) .

An α -fuzzy preordered set (X, r_{α}) is called an α -fuzzy ordered set (see [14]) if (iii) for all $x, z \in X, r_{\alpha}(x, z) \ge \sup_{y \in X} [\inf\{r_{\alpha}(x, y), r_{\alpha}(y, z)\}].$

²⁰⁰⁰ Mathematics Subject Classification: 04A72, 03E72, 06A06, 47H10.

Key words and phrases: fuzzy set, α -fuzzy preorder relation, α -fuzzy order relation, nonexpanding fuzzy multifunction, fixed point.

Received May 19, 2003.

Let (X, r_{α}) be a nonempty α -fuzzy preordered set. A fuzzy multifunction $T : X \to [0, 1]^X \setminus \{\emptyset\}$ is called non-expanding if for every $x \in X$ there exists $y \in X$ such that $\{y\} \subseteq T(x)$ and $r_{\alpha}(y, x) > \frac{\alpha}{2}$.

In the third section of this paper, we first prove the following result (Theorem 3.1): if (X, r_{α}) is a nonempty α -fuzzy preordered complete set and $T : X \rightarrow [0, 1]^X \setminus \{\emptyset\}$ is a non-expanding fuzzy multifunction, then T has a fixed point.

Secondly, we establish the existence of least and minimal fixed points of nonexpanding fuzzy multifunctions in α -fuzzy ordered sets (Theorems 3.3 and 3.5). As consequences we obtain some fixed point theorems for non-expanding maps.

2. Preliminaries

In order to establish our main results, we give some concepts and results.

Definition 2.1. Let (X, r_{α}) be an α -fuzzy preordered set. Then

(a) The α -fuzzy preorder r_{α} is said to be total if for all $x \neq y$ we have either $r_{\alpha}(x,y) > \frac{\alpha}{2}$ or $r_{\alpha}(y,x) > \frac{\alpha}{2}$. An α -fuzzy ordered set on which fuzzy order is total is called r_{α} -fuzzy chain.

(b) Let A be a subset of X. An element $l \in X$ is a r_{α} -lower bound of A if $r_{\alpha}(l, y) > \frac{\alpha}{2}$ for all $y \in A$. If l is a r_{α} -lower bound of A and $l \in A$, then l is called a least element of A. Similarly, we can define r_{α} -upper bounds and greatest elements of A.

(c) An element m of A is called a minimal element of A if $r_{\alpha}(y,m) > \frac{\alpha}{2}$ for some $y \in A$, then y = m. Maximal elements are defined analogously.

Let A be a nonempty subset of X. Then,

$$\sup_{r_{\alpha}}(A) =$$
 the least element of r_{α} -upper bounds of A (if it exists)

and

 $\inf(A) =$ the greatest element of r_{α} -lower bounds of A (if it exists).

Definition 2.2. Let (X, r_{α}) be a nonempty α -fuzzy preordered set. A map $f : X \to X$ is called non-expanding if for every $x \in X$, $r_{\alpha}(f(x), x) > \frac{\alpha}{2}$.

An element x of X is called a fixed point of a map $f: X \to X$ if f(x) = x. We denote by Fix (f) the set of all fixed points of f.

Definition 2.3. Let (X, r_{α}) be a nonempty α -fuzzy preordered set and let (x_{β}) be a family of X. We say that (x_{β}) is an α -fuzzy decreasing family if $r_{\alpha}(x_{\beta+1}, x_{\beta}) > \frac{\alpha}{2}$.

Definition 2.4. A nonempty α -fuzzy preordered set (X, r_{α}) is said to be an α -fuzzy ordered complete set if r_{α} is total and for every decreasing family (x_{β}) of X, $\inf_{r_{\alpha}}(x_{\beta})$ exists in X.

Let X be a nonempty crisp set. A fuzzy multifunction is any map $T: X \to [0,1]^X \setminus \{\emptyset\}$ such that for every $x \in X$, T(x) is a nonempty fuzzy subset of X.

An element x of X is called a fixed point of a fuzzy multifunction $T : X \to [0,1]^X \setminus \{\emptyset\}$ if $\{x\} \subseteq T(x)$. We denote by \mathcal{F}_T the set of all fixed points of T.

118

Definition 2.5 ([13]). Let (X, r_{α}) be an α -fuzzy ordered set. The inverse fuzzy relation s_{α} of r_{α} is defined by $s_{\alpha}(x, y) = r_{\alpha}(y, x)$, for all $x, y \in X$.

In [13], we established the following results.

Lemma 2.6 ([13, Lem. 3.6]). Let (X, r_{α}) be a nonempty α -fuzzy ordered set. If every nonempty r_{α} -fuzzy chain has a r_{α} -upper bound, then X has a maximal element.

Lemma 2.7 ([13, Prop. 3.6]). Let (X, r_{α}) be a nonempty α -fuzzy ordered set and let s_{α} be the inverse α -fuzzy relation of r_{α} . Then,

(i) The α -fuzzy relation s_{α} is an α -fuzzy order on X.

(ii) If every nonempty r_{α} -fuzzy chain has a r_{α} -infimum, then every nonempty s_{α} -fuzzy chain has a r_{α} -supremum.

3. Main results

We begin this section by proving the existence of fixed point of non-expanding fuzzy multifunctions. More precisely, we shall show the following:

Theorem 3.1. Let (X, r_{α}) be a nonempty α -fuzzy preordered complete set and let $T: X \to [0, 1]^X \setminus \{\emptyset\}$ be a non-expanding fuzzy multifunction. Then, T has a fixed point.

Proof. Let (X, r_{α}) be a nonempty α -fuzzy preordered complete set and let $T : X \to [0, 1]^X \setminus \{\emptyset\}$ be an expanding fuzzy multifunction. Assume that T has no fixed point and let x_0 be a given element of X.

Next, we shall produce an α -fuzzy decreasing family (x_{β}) of X where β is an ordinal as follows:

(i) First case: if $\beta = 0$, then the element x_0 is given by our hypothesis.

(ii) Second case: β is a nonzero non limit ordinal. Since T is an expanding fuzzy multifunction and r_{α} is total, then for $x_{\beta-1}$ there is $x_{\beta} \in X$ such that

$$\begin{cases} \{x_{\beta}\} \subseteq T(x_{\beta-1})\\ \alpha > r_{\alpha}(x_{\beta}, x_{\beta-1}) > \frac{\alpha}{2} \end{cases}$$

(iii) Third case: β is a limit ordinal. As (X, r_{α}) is an α -fuzzy ordered complete set, hence we have

$$x_{\beta} = \inf_{r} \{ x_{\gamma} : \gamma < \beta \} \,.$$

It follows that if β and γ are two ordinals with $\beta \neq \gamma$, then we have $x_{\beta} \neq x_{\gamma}$. Now, we shall defining an ordinal valued function G by assign to every $x \in X$, an ordinal G(x) as follows:

$$G(x) = \begin{cases} \beta & \text{if } x = x_{\beta} \\ 0 & \text{otherwise }. \end{cases}$$

Therefore, the range of G is the set of all ordinals. From ZF Axioms of substitution [12, page 261], we conclude that the range of G is a set. That is a contradiction. Therefore, T has a fixed point.

As an application of Theorem 3.1, we obtain the following:

Corollary 3.2. Let (X, r_{α}) be a nonempty α -fuzzy preordered complete set and let $f: X \to X$ be a non-expanding map. Then, f has a fixed point.

For the existence of the least fixed point of non-expanding fuzzy multifunctions, we shall show the following:

Theorem 3.3. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with a least element l and let $T: X \to [0, 1]^X \setminus \{\emptyset\}$ be a non-expanding fuzzy multifunction. Then the set \mathcal{F}_T of all fixed points of T is nonempty and l is the least element of \mathcal{F}_T .

Proof. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with a least element land let $T : X \to [0,1]^X \setminus \{\emptyset\}$ be a non-expanding fuzzy multifunction. Since T is an non-expanding fuzzy multifunction, there exists an element x of X such that $\{x\} \subseteq T(l)$ and $r_{\alpha}(x,l) > \frac{\alpha}{2}$. As $l = \inf_{r_{\alpha}}(X)$, then $r_{\alpha}(l,x) > \frac{\alpha}{2}$. Hence, $r_{\alpha}(x,l) + r_{\alpha}(l,x) > \alpha$. Therefore, x = l. So l is fixed point of T. On the other hand, l is the least element of X. Therefore, we deduce that l is the least fixed point of T.

As a consequence of Theorem 3.3, we have:

Corollary 3.4. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with a least element l and $f: X \to X$ be a non-expanding map. Then, the set Fix(f) of all fixed points of f is nonempty and l is the least element of Fix(f).

Next, we shall establish the existence of a minimal fixed point of non-expanding fuzzy multifunctions.

Theorem 3.5. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with the property that every nonempty r_{α} -fuzzy chain has a r_{α} -infimum. Let $T: X \to [0, 1]^X \setminus \{\emptyset\}$ be a non-expanding r_{α} -fuzzy multifunction. Then, the set \mathcal{F}_T of all fixed points of T is nonempty and has a minimal element.

To prove Theorem 3.5, we shall need the following lemma.

Lemma 3.6. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with the property that every nonempty r_{α} -fuzzy chain has a r_{α} -infimum. Then, X has a minimal element.

Proof. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with the property that every nonempty r_{α} -fuzzy chain has a r_{α} -infimum. Let s_{α} be the α -fuzzy inverse order relation of r_{α} . From Lemma 2.7, every nonempty r_{α} -fuzzy chain has a s_{α} supremum. Then, by Lemma 2.6, X has a maximal element m (say) in (X, s_{α}) . Let x be an element of X such that $r_{\alpha}(x,m) > \frac{\alpha}{2}$. Then, $s_{\alpha}(m,x) > \frac{\alpha}{2}$. Since mis a maximal element in (X, s_{α}) , hence x = m. Therefore, m is a minimal element in (X, r_{α}) .

Now we are ready to give the proof of Theorem 3.5.

Proof of Theorem 3.5. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with the property that every nonempty r_{α} -fuzzy chain has a r_{α} -infimum and let

120

 $T: X \to [0,1]^X \setminus \{\emptyset\}$ be a non-expanding fuzzy multifunction. By using Lemma 3.6, we deduce that X has a minimal element m (say). As T is a non-expanding fuzzy multifunction, so there is an element x of X such that $\{x\} \subseteq T(m)$ and $r_{\alpha}(x,m) > \frac{\alpha}{2}$. Since m is a minimal element of X, then x = m. Thus, m is a fixed point of T. Using the fact that m is a minimal element of X, we conclude that m is a minimal fixed point of T.

By using Theorem 3.5, we get:

Corollary 3.7. Let (X, r_{α}) be a nonempty α -fuzzy ordered set with the property that every nonempty r_{α} -fuzzy chain has a r_{α} -infimum and let $f : X \to X$ be a non-expanding map. Then, the set of all fixed points of f is nonempty and has a minimal element.

References

- [1] Beg, I. and Islam, M., Fuzzy order linear spaces, J. Fuzzy Math. 3 (3) (1995), 659–670.
- Beg, I., Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets, J. Fuzzy Math. 6 (1) (1998), 127–131.
- [3] Beg, I., On fuzzy Zorn's lemma, Fuzzy Sets and Systems 101 (1999), 181-183.
- [4] Beg, I., Fixed points of expansive mappings on fuzzy preordered sets, J. Fuzzy Math., 7(2)(1999), 397-400.
- [5] Beg, I., Fixed points of fuzzy monotone maps, Arch. Math. (Brno) 35 (1999), 141–144.
- [6] Bose, B. K. and Sahani, D., Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21 (1987), 53–58.
- [7] Billot, A., *Economic theory of fuzzy equilibria*, Lecture Notes in Econom. and Math. Systems 373 Springer-Verlag, Berlin 1992.
- [8] Fang, J. X., On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107–113.
- [9] Hadzic, O., Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces, Fuzzy Sets and Systems 29 (1989), 115–125.
- [10] Heilpern, S., Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83 (1981), 566–569.
- [11] Kaleva, O., A note on fixed points for fuzzy mappings, Fuzzy Sets and Systems 15 (1985), 99–100.
- [12] Negoita, C. V. and Ralescu, D. A., Applications of fuzzy sets to systems analysis, Fuzzy Sets and Systems 1 (1978), 155–167.
- [13] Stouti, A., Fixed point theory for fuzzy monotone multifunctions, J. Fuzzy Math. 11 (2) (2003), 455–466.
- [14] Stouti, A., Fixed points of fuzzy monotone multifunctions, Arch. Math. (Brno) 39 (2003), 209–212.
- [15] Stouti, A., A fuzzy version of Tarski's fixpoint Theorem, Arch. Math. (Brno) 40 (2004), 273–279.
- [16] Stouti, A., Fixed points of expanding fuzzy multifunctions, J. Fuzzy Math. 12(4) (2004), 1542–1546.
- [17] Venugopalan, P., Fuzzy ordered sets, Fuzzy Sets and Systems 46 (1992), 221–226.
- [18] Zadeh, L. A., Fuzzy sets, Information and Control 8 (1965), 338–353.
- [19] Zadeh, L. A., Similarity and fuzzy ordering, Information Sciences 3 (1971), 177-200.

A. STOUTI

UNITÉ DE RECHERCHE: MATHÉMATIQUES ET APPLICATIONS FACULTÉ DES SCIENCES ET TECHNIQUES BENI-MELLAL B. P. 523, 23000 BENI-MELLAL, MOROCCO *E-mail*: stouti@yahoo.com

122