SINGULAR SOLUTIONS FOR THE DIFFERENTIAL EQUATION WITH p-LAPLACIAN

MIROSLAV BARTUŠEK

Abstract

In the paper a sufficient condition for all solutions of the differential equation with p-Laplacian to be proper. Examples of super-half-linear and sub-half-linear equations $\left(\left|y^{\prime}\right|^{p-1} y^{\prime}\right)^{\prime}+r(t)|y|^{\lambda} \operatorname{sgn} y=0, r>0$ are given for which singular solutions exist (for any $p>0, \lambda>0, p \neq \lambda$).

Consider the differential equation with p-Laplacian

$$
\begin{equation*}
\left(a(t)\left|y^{\prime}\right|^{p-1} y^{\prime}\right)^{\prime}+r(t) f(y)=0 \tag{1}
\end{equation*}
$$

where $p>0, a \in C^{0}\left(R_{+}\right), r \in C^{0}\left(R_{+}\right), f \in C^{0}(R), R_{+}=[0, \infty), R=(-\infty, \infty)$ and

$$
\begin{equation*}
a>0, r \geq 0 \quad \text { on } \quad R_{+}, f(x) x \geq 0 \quad \text { on } \quad R . \tag{2}
\end{equation*}
$$

A solution y of (1) is called proper if it is defined on R_{+}and $\sup _{t \in[\tau, \infty)}|y(t)|>0$ for every $\tau \in(0, \infty)$. It is called singular of the first kind if it is defined on R_{+}, there exists $\tau \in(0, \infty)$ such that $y \equiv 0$ on $[\tau, \infty)$ and $\sup _{T<t<\tau}|y(t)|>0$ for every $T \in[0, \tau)$. It is called singular of the second kind if it is defined on $[0, \tau), \tau<\infty$ and $\sup _{0 \leq t<\tau}\left|y^{\prime}(t)\right|=\infty$. A singular solution y is called oscillatory if there exists a sequence of its zeros $\left\{t_{k}\right\}_{1}^{\infty}, t_{k} \in[0, \tau)$ tending to τ.

Eq. (1) and its special case

$$
\begin{equation*}
\left(a(t)\left|y^{\prime}\right|^{p-1} y^{\prime}\right)^{\prime}+r(t)|y|^{\lambda} \operatorname{sgn} y=0 \tag{3}
\end{equation*}
$$

where $\lambda>0$ is studied by many authors now, see e.g. [5, 6, 8] and the references therein.

One important problem is the existence of proper and singular solutions, respectively. It is known that all solutions of (3) are defined on R_{+}if $\lambda \leq p$ and there exists no singular solution of the first kind if $\lambda \geq p$ (see Theorem 1 bellow); hence in case of half-linear equations, $\lambda=p$, all solutions are proper. But the set of Eqs. (3) with solutions to be proper is larger, Mirzov [8] proved that all solutions of (3) are proper if the functions a and $r>0$ are locally absolute continuous on R_{+}. In the present paper we generalize these results to (1). Other results for

[^0]the nonexistence of singular solutions of the second order differential equations (1) with $a \equiv 1$ and $p=1$ see e.g. in [2], [4] and [9].

Our second goal is to generalize results of [3] and [7] concerning to the second order equation ($p \equiv 1, a \equiv 1$). We prove that for $\lambda \neq p, a \equiv 1$ there exist equations of the form (3) with singular solutions.

The following theorem is a special case of Theorems 1.1 and 1.2 in [8]; the equivalent expression of results is also given in [5].
Theorem 1. Let $M \in(0, \infty)$ and $M_{1} \in(0, \infty)$.
(i) If $|f(x)| \leq M_{1}|x|^{p}$ for $|x| \leq M$, then there exists no singular solution of the 1-st kind of (1).
(ii) If $|f(x)| \leq M_{1}|x|^{p}$ for $|x| \geq M$, then there exists no singular solution of the 2-nd kind of (1).

Theorem 2. Let the function $a^{\frac{1}{p}} r$ be locally absolute continuous on R_{+}and $\frac{1}{r} \in L_{\mathrm{loc}}\left(R_{+}\right)$. Then every nontrivial solution y of (1) is proper. Moreover, if $a^{\frac{1}{p}}(t) r(t)=r_{0}(t)-r_{1}(t), t \in R_{+}$and

$$
\begin{equation*}
\rho(t)=a^{\frac{p+1}{p}}(t)\left|y^{\prime}(t)\right|^{p+1}+\frac{p+1}{p} a^{\frac{1}{p}}(t) r(t) \int_{0}^{y(t)} f(s) d s \tag{4}
\end{equation*}
$$

where r_{0} and r_{1} are nonnegative,nondecreasing and continuous functions, then for $0 \leq s<t<\infty$

$$
\begin{equation*}
\rho(s) \exp \left\{-\int_{s}^{t} \frac{r_{1}^{\prime}(\sigma)}{a^{\frac{1}{p}}(\sigma) r(\sigma)} d \sigma\right\} \leq \rho(t) \leq \rho(s) \exp \left\{\int_{s}^{t} \frac{r_{0}^{\prime}(\sigma)}{a^{\frac{1}{p}}(\sigma) r(\sigma)} d \sigma\right\} \tag{5}
\end{equation*}
$$

Proof. As $a^{\frac{1}{p}} r$ has locally bounded variation, the continuous nondecreasing functions r_{0} and r_{1} exist such that $a^{\frac{1}{p}} r=r_{0}-r_{1}$ and they can be chosen to be nonnegative on R_{+}. Moreover, $r_{0} \in L_{\mathrm{loc}}\left(R_{+}\right), r_{1} \in L_{\mathrm{loc}}\left(R_{+}\right)$. Let y be a solution of (1) defined on $[s, t]$. Then

$$
\rho^{\prime}(\tau)=\left.\frac{p+1}{p}\left[a^{\frac{1}{p}}(t) r(t)\right]\right|_{t=\tau} ^{\prime} \int_{0}^{y(\tau)} f(\sigma) d \sigma, \quad \tau \in[s, t] \quad \text { a.e. }
$$

Let $\varepsilon>0$ be arbitrary. Then

$$
\begin{aligned}
\frac{\rho^{\prime}(\tau)}{\rho(\tau)+\varepsilon}= & \frac{p+1}{p} \frac{a^{\frac{1}{p}}(\tau) r(\tau)}{\rho(\tau)+\varepsilon} \int_{0}^{y(\tau)} f(\sigma) d \sigma \frac{r_{0}^{\prime}(\tau)-r_{1}^{\prime}(\tau)}{a^{\frac{1}{p}}(\tau) r(\tau)} \\
& -\frac{r_{1}^{\prime}(\tau)}{a^{\frac{1}{p}}(\tau) r(\tau)} \leq \frac{\rho^{\prime}(\tau)}{\rho(\tau)+\varepsilon} \leq \frac{r_{0}^{\prime}(\tau)}{a^{\frac{1}{p}}(\tau) r(\tau)}, \quad \text { a.e. on } \quad[s, t]
\end{aligned}
$$

and the integration and (4) yield

$$
\exp \left\{-\int_{s}^{t} \frac{r_{1}^{\prime}(\sigma) d \sigma}{a^{\frac{1}{p}}(\sigma) r(\sigma)}\right\} \leq \frac{\rho(t)+\varepsilon}{\rho(s)+\varepsilon} \leq \exp \left\{\int_{s}^{t} \frac{r_{0}^{\prime}(\sigma)}{a^{\frac{1}{p}}(\sigma) r(\sigma)} d \sigma\right\}
$$

As $\varepsilon>0$ is arbitrary, (5) holds and due to $r^{-1} \in L_{\mathrm{loc}}\left(R_{+}\right), y$ is proper.

Remark 1. The assumption $\frac{1}{r} \in L_{\mathrm{loc}}\left(R_{+}\right)$holds e.g. if $r>0$ on R_{+}.
Theorem 3. Let the assumption of Theorem 2 be valid with $r>0$ on R_{+}and let

$$
\rho_{1}(t)=\frac{a(t)}{r(t)}\left|y^{\prime}(t)\right|^{p+1}+\frac{p+1}{p} \int_{0}^{y(t)} f(s) d s .
$$

Then for $0 \leq s<t<\infty$ we have

$$
\rho_{1}(s) \exp \left\{-\int_{s}^{t} \frac{r_{0}^{\prime}(\sigma) d \sigma}{a^{\frac{1}{p}}(\sigma) r(\sigma)}\right\} \leq \rho_{1}(t) \leq \rho_{1}(s) \exp \left\{\int_{s}^{t} \frac{r_{1}^{\prime}(\sigma)}{a^{\frac{1}{p}}(\sigma) r(\sigma)} d \sigma\right\}
$$

Proof. It is similar to one of Theorem 2 as

$$
\rho_{1}^{\prime}(t)=\left[\frac{\left(a(t)\left|y^{\prime}(t)\right|^{p}\right)^{\frac{p+1}{p}}}{a^{\frac{1}{p}}(t) r(t)}+\frac{p+1}{p} \int_{0}^{y(t)} f(s) d s\right]^{\prime}=-\frac{\left[a^{\frac{1}{p}}(t) r(t)\right]^{\prime}}{a^{\frac{1}{p}}(t) r(t)} \frac{a(t)\left|y^{\prime}(t)\right|^{p+1}}{r(t)} .
$$

Remark 2. For $p=1, a \equiv 1$ and $r>0$ on R_{+}Theorems 1 and 2 are proved in [9], Th. 17.1 and Cor. 17.2; for Eq. (3), if a and $r>0$ are locally absolutely continuous they are proved in [8], Th. 9.4.

In [1] there is an example of Eq. (3) with $a \equiv 1,0<\lambda<1$ and $p=1$ for which there exists a solution y with infinitely many accumulation points of zeros. The following corollary gives a sufficient condition under which every solution of (1) has no accumulation points of zeros in R_{+}.
Corollary 1. If the assumptions of Th. 1 are fulfilled, there every nontrivial solution of (1) has only finite number of zeros on a finite interval and it has no double zeros.

Proof. Let $\tau \in R_{+}$be an accumulation point of zeros or a double zero of a solution y of (1). As y is proper, $y(\tau)=y^{\prime}(\tau)=0$ and (1) has a solution \bar{y} such that $\bar{y}=y$ for $t \leq \tau$ and $\bar{y} \equiv 0$ on (τ, ∞). Hence \bar{y} is singular of the first kind that contradicts Th. 1.

The following theorem shows that singular solutions exist. It enlarges the same results for the second order differential equation, obtained in [3] and [7], to (3).

Lemma 1. For an arbitrary integer k there exists $q_{k} \in C[0,1]$ such that

$$
\begin{align*}
q_{k}(0) & =q_{k}(1)=0 \tag{6}\\
\lim _{k \rightarrow \infty} q_{k}(t) & =0 \quad \text { uniformly on } \quad[0,1] \tag{7}
\end{align*}
$$

and the equation

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{p-1} u^{\prime}\right)^{\prime}+\left(C+q_{k}(t)\right)|u|^{\lambda} \operatorname{sgn} u=0 \tag{8}
\end{equation*}
$$

has a solution u_{k} fulfilling

$$
\begin{equation*}
u_{k}(0)=1, \quad u_{k}(1)=\left(\frac{k+1}{k}\right)^{\frac{2(p+1)}{\lambda-p}}, \quad u_{k}^{\prime}(0)=u_{k}^{\prime}(1)=0 \tag{9}
\end{equation*}
$$

where C is a suitable positive constant. Moreover, $C+q_{k}(t)>0$ on $[0,1]$.
Proof. Consider a solution w of the problem

$$
\left(|\dot{w}|^{p-1} \dot{w}\right)^{\cdot}+|w|^{\lambda} \operatorname{sgn} w=0, \quad w(0)=1, \quad w^{\prime}(0)=0, \quad \frac{d}{d x}=
$$

Then $|\dot{w}(x)|^{p+1}+\frac{p+1}{p(\lambda+1)}|w(x)|^{\lambda+1} \equiv \frac{p+1}{p(\lambda+1)}$ on the definition interval and it is clear that w is a periodic function with period $T>0$ with the local maximum at $x=T$. Transformation $x=t T$ yields the existence of a solution Z of the problem
(10) $\quad\left(\left|Z^{\prime}\right|^{p-1} Z^{\prime}\right)^{\prime}+C|Z|^{\lambda} \operatorname{sgn} Z=0, \quad Z(0)=Z(1)=1, \quad Z^{\prime}(0)=Z^{\prime}(1)=0$
where $C=T^{p+1}>0$. Note that $Z^{\prime}>0$ in a left neighbourhood of $t=1$.
Let $t_{0} \in(0,1)$ be such that

$$
\begin{equation*}
Z(t)>0 \quad \text { and } \quad Z^{\prime}(t)>0 \quad \text { for } \quad t_{0} \leq t<1 \tag{11}
\end{equation*}
$$

and put
(12) $\quad u_{k}(t)= \begin{cases}Z(t) & \text { for } t \in\left[0, t_{0}\right], \\ \left(\frac{k+1}{k}\right)^{\frac{2(p+1)}{\lambda-p}}-1+Z(t) & \\ +\int_{t}^{1} Z^{\prime}(s)\left[\alpha_{k}\left(s-t_{0}\right)^{3}+\beta_{k}\left(s-T_{0}\right)^{2}\right] d s & \text { for } t \in\left(t_{0}, 1\right]\end{cases}$
where α_{k} and β_{k} fulfil the system

$$
\begin{gather*}
\alpha_{k} \int_{t_{0}}^{1} Z^{\prime}(s)\left(s-t_{0}\right)^{3} d s+\beta_{k} \int_{t_{0}}^{1} Z^{\prime}(s)\left(s-t_{0}\right)^{2} d s=1-\left(\frac{k+1}{k}\right)^{\frac{2(p+1)}{\lambda-p}} \tag{13}\\
\alpha_{k}\left(1-t_{0}\right)^{3}+\beta_{k}\left(1-t_{0}\right)^{2}=1-\left(\frac{k+1}{k}\right)^{\frac{2(p+1) \lambda}{(\lambda-p) p}} \tag{14}
\end{gather*}
$$

Note that the determinant of the system is negative, as due to $Z^{\prime}>0$ we have

$$
\left(1-t_{0}\right)^{2} \int_{t_{0}}^{1} Z^{\prime}(s)\left(s-t_{0}\right)^{3} d s-\left(1-t_{0}\right)^{3} \int_{t_{0}}^{1} Z^{\prime}(s)\left(s-t_{0}\right)^{2} d s<0
$$

and it is clear that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \alpha_{k}=0, \quad \lim _{k \rightarrow \infty} \beta_{k}=0 . \tag{15}
\end{equation*}
$$

As

$$
\begin{equation*}
u_{k}^{\prime}(t)=Z^{\prime}(t)\left[1-\alpha_{k}\left(t-t_{0}\right)^{3}-\beta_{k}\left(t-t_{0}\right)^{2}\right], \quad t \in\left(t_{0}, 1\right] \tag{16}
\end{equation*}
$$

(13) yields $u_{k} \in C^{1}[0,1]$ and according to (15) there exists k_{0} such that

$$
\begin{equation*}
u_{k}(t)>0, u_{k}^{\prime}(t) \geq 0 \quad \text { on } \quad\left[t_{0}, 1\right] \quad \text { for } \quad k \geq k_{0} \tag{17}
\end{equation*}
$$

Further, from this

$$
\begin{aligned}
\left(\left|u_{k}^{\prime}(t)\right|^{p-1} u_{k}^{\prime}(t)\right)^{\prime}= & \left(Z^{\prime}(t)^{p}\left[1-\alpha_{k}\left(t-t_{0}\right)^{3}-\beta_{k}\left(t-t_{0}\right)^{2}\right]^{p}\right)^{\prime} \\
= & -C Z^{\lambda}(t)\left(1-\alpha_{k}\left(t-t_{0}\right)^{3}-\beta_{k}\left(t-t_{0}\right)^{2}\right)^{p} \\
& -p Z^{\prime}(t)^{p}\left(1-\alpha_{k}\left(t-t_{0}\right)^{3}-\beta_{k}\left(t-t_{0}\right)^{2}\right)^{p-1} \\
& \times\left[3 \alpha_{k}\left(t-t_{0}\right)^{2}+2 \beta_{k}\left(t-t_{0}\right)\right] .
\end{aligned}
$$

Hence, (11) and (12) yield

$$
\begin{equation*}
\left|u_{k}^{\prime}(t)\right|^{p-1} u_{k}^{\prime}(t) \in C^{1}[0,1], \quad\left(\left|u_{k}^{\prime}(t)\right|^{p-1} u_{k}^{\prime}(t)\right)^{\prime}<0 \tag{18}
\end{equation*}
$$

on $\left[t_{0}, 1\right]$ for large k, say, $k \geq k_{1} \geq k_{0}$.
Define q_{k} by

$$
q_{k}(t)=\left\{\begin{array}{lll}
0 & \text { for } t \in\left[0, t_{0}\right] \tag{19}\\
C+\left[u_{k}(t)\right]^{-\lambda}\left(\left|u_{k}^{\prime}(t)\right|^{p-1} u_{k}^{\prime}(t)\right)^{\prime} & \text { for } \quad t \in\left(t_{0}, 1\right]
\end{array}\right.
$$

Then $q \in C[0,1]$ and (14) yields (6) be valid; it is clear that u_{k} is a solution of (8) on $[0,1]$ and according to (10), (12), (16), the relation (9) holds. As according to (12) and (15) $\lim _{k \rightarrow \infty} \frac{u_{k}(t)}{Z(t)}=1$ uniformly on $\left[t_{0}, 1\right]$, then (15) and (19) yield (7). Note that according to (17), (18) and (19) $C+q_{k}(t)>0$ on $[0,1]$ for $k \geq k_{1}$.
Theorem 4. Let $a \equiv 1$ and $p>\lambda(p<\lambda)$. Then there exists a positive continuous function r such that Eq. (3) has a singular solution of the first (second) kind.

Proof. Consider the sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $t_{1}=0, t_{k}=\sum_{i=1}^{k-1} \frac{1}{i^{2}}, k=$ $2,3, \ldots$ Then $\lim _{k \rightarrow \infty} t_{k}=\frac{\pi^{2}}{6}$. Let r and y be functions defined by
(20) $\quad r(t)=\left(C+q_{k}\left(k^{2}\left(t-t_{k}\right)\right)\right), \quad y(t)=k^{\frac{2(p+1)}{\lambda-p}} u_{k}\left(k^{2}\left(t-t_{k}\right)\right.$

$$
\text { for } \quad t \in\left[t_{k}, t_{k+1}\right), \quad k=1,2, \ldots
$$

where q_{k} and u_{k} are given by Lemma 1 .
Let $k \in\{1,2, \ldots\}$ be fixed. The transformation

$$
\begin{equation*}
t=t_{k}+\frac{x}{k^{2}}, \quad x \in[0,1], \quad y(t)=k^{\frac{2(p+1)}{\lambda-p}} u_{k}(x) \tag{21}
\end{equation*}
$$

shows that y is a solution of (3) on $\left[t_{k}, t_{k+1}\right]$ and
(22) $y_{+}\left(t_{k}\right)=k^{\frac{2(p+1)}{\lambda-p}}, \quad y_{-}\left(t_{k+1}\right)=(k+1)^{\frac{2(p+1)}{\lambda-p}}, \quad y_{+}^{\prime}\left(t_{k}\right)=y_{-}^{\prime}\left(t_{k+1}\right)=0$, $r_{+}\left(t_{k}\right)=r_{-}\left(t_{k+1}\right)=C$; here $h_{+}(\bar{t}) \quad\left(h_{-}(\bar{t})\right)$ denote the right-hand side (left-hand side) limit of a function h. Hence function r is continuous on $\left[0, \frac{\pi^{2}}{6}\right.$) and (7) yields $\lim _{t \rightarrow \frac{\pi^{2}}{6}} r(t)=C$. Similarly the function y, defined by (20) fulfils $y \in C^{1}\left[0, \frac{\pi^{2}}{6}\right)$ and it is a solution of (3) on $\left[0, \frac{\pi^{2}}{6}\right.$). Moreover, according to (12), (16), (21) and (22)

$$
\lim _{t \rightarrow \frac{\pi^{2}}{6}} y(t)=\lim _{t \rightarrow \frac{\pi^{2}}{6}} y^{\prime}(t)=0 \quad \text { if } \quad \lambda<p
$$

and

$$
\limsup _{t \rightarrow \frac{\pi^{2}}{6}}|y(t)|=\infty
$$

If we put $r(t)=C$ for $t \geq \frac{\pi^{2}}{6}$ then y is the singular solution of the second kind if $\lambda>p$ and

$$
y(t)= \begin{cases}k^{\frac{2(p+1)}{\lambda-p}} u_{k}\left(k^{2}\left(t-t_{k}\right)\right), & t_{k} \leq t<t_{k+1}, k=1,2, \ldots \\ 0, & t \geq \frac{\pi^{2}}{6}\end{cases}
$$

is the singular solution of the first kind if $\lambda<p$. It is clear that $r>0$ on R_{+}.

References

[1] Bartušek, M., Asymptotic properties of oscillatory solutions of differential equations of n-th order, Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 1992.
[2] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., Global monotonicity and oscillation for second order differential equation, Czechoslovak Math. J., to appear.
[3] Coffman, C. V., Ullrich, D. F., On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. B 71 (1967), 385-392.
[4] Coffman, C. V., Wong, J. S. W., Oscillation and nonoscillation theorems for second order differential equations, Funkcial. Ekvac. 15 (1972), 119-130.
[5] Cecchi, M., Došlá, Z., Marini, M., On nonoscillatory solutions of differential equations with p-Laplacian, Adv. Math. Sci. Appl. 11 (2001), 419-436.
[6] Došlý, O., Qualitative theory of half-linear second order differential equations, Math. Bohem. 127 (2002), 181-195.
[7] Heidel, J. W., Uniqueness, continuation and nonoscillation for a second order differential equation, Pacific J. Math. 32 (1970), 715-721.
[8] Mirzov, D., Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations, Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 142004.
[9] Kiguradze, I., Chanturia, T., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer, Dordrecht 1993.

Faculty of Sciences, Masaryk University
Department of Mathematics
Janáčkovo nám. 2A, 66295 Brno, Czech Republic
E-mail: bartusek@math.muni.cz

[^0]: 2000 Mathematics Subject Classification: 34C10, 34C15, 34D05.
 Key words and phrases: singular solutions, noncontinuable solutions, second order equations. Received June 10, 2003.

