A NOTE ON RAPID CONVERGENCE OF APPROXIMATE SOLUTIONS FOR SECOND ORDER PERIODIC BOUNDARY VALUE PROBLEMS

RAHMAT A. KHAN AND BASHIR AHMAD

Abstract

In this paper, we develop a generalized quasilinearization technique for a nonlinear second order periodic boundary value problem and obtain a sequence of approximate solutions converging uniformly and quadratically to a solution of the problem. Then we improve the convergence of the sequence of approximate solutions by establishing the convergence of order k ($k \geq 2$).

1. Introduction

The technique of generalized quasilinearization developed by Lakshmikantham $[1,2]$ has been found to be extremely useful to solve the nonlinear boundary value problems. A good number of examples can be seen in the text by Lakshmikantham and Vatsala [3] and in the references [4,5]. Recently, Mohapatra, Vajravelu and Yin [6] considered the periodic boundary value problem

$$
-u^{\prime \prime}(x)=f(x, u(x)), \quad u(0)=u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi), \quad x \in[0, \pi],
$$

with the assumption that $\frac{\partial f}{\partial u}<0$ and $\frac{\partial^{2} f}{\partial u^{2}} \leq 0$ (condition (iii) of Theorem 3.3 [6]). In this paper, we replace the convexity (concavity) condition by a condition of the form $f \in C^{2}\left([0, \pi] \times R^{2}\right)$ and obtain a sequence of approximate solutions converging monotonically and quadratically to a solution of the problem. Then we discuss the convergence of order $k(k \geq 2)$.

2. Preliminary Results

We know that the homogeneous periodic boundary value problem

$$
\begin{align*}
-u^{\prime \prime}(x)-\lambda u(x) & =0, \quad x \in[0, \pi] \tag{2.1}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi),
\end{align*}
$$

[^0]has only the trivial solution if and only if $\lambda \neq 4 n^{2}$ for all $n \in\{0,1,2, \ldots\}$. Consequently, for these values of λ and for any $\sigma(x) \in C([0, \pi])$, the non homogenous problem
\[

$$
\begin{align*}
-u^{\prime \prime}(x)-\lambda u(x) & =\sigma(x), \quad x \in[0, \pi] \tag{2.2}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi),
\end{align*}
$$
\]

has a unique solution

$$
u(x)=\int_{0}^{\pi} G_{\lambda}(x, y) \sigma(y) d y
$$

where $G_{\lambda}(x, y)$ is the Green's function given by

$$
G_{\lambda}(x, y)=\frac{-1}{2 \sqrt{\lambda} \sin \sqrt{\lambda} \frac{\pi}{2}} \begin{cases}\cos \sqrt{\lambda}\left(\frac{\pi}{2}-(y-x)\right), & 0 \leq x \leq y \leq \pi \\ \cos \sqrt{\lambda}\left(\frac{\pi}{2}-(x-y)\right), & 0 \leq y \leq x \leq \pi\end{cases}
$$

for $\lambda>0$ and

$$
G_{\lambda}(x, y)=\frac{1}{2 \sqrt{-\lambda} \sinh \frac{\sqrt{-\lambda} \pi}{2}} \begin{cases}\cosh \sqrt{-\lambda}\left(\frac{\pi}{2}-(y-x)\right), & 0 \leq x \leq y \leq \pi \\ \cosh \sqrt{-\lambda}\left(\frac{\pi}{2}-(x-y)\right), & 0 \leq y \leq x \leq \pi\end{cases}
$$

for $\lambda<0$. Here, we note that $G_{\lambda}(x, y) \geq 0$ for $\lambda<0$ and $G_{\lambda}(x, y)<0$ for $\lambda>0$.
Now, consider the following nonlinear periodic boundary value problem

$$
\begin{align*}
-u^{\prime \prime}(x) & =f(x, u(x)), \quad x \in[0, \pi] \tag{2.3}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi)
\end{align*}
$$

where $f \in[0, \pi] \times R \rightarrow R$ is continuous.
We say that $\alpha \in C^{2}([0, \pi])$ is a lower solution of (2.3) if

$$
\begin{align*}
-\alpha^{\prime \prime}(x) & \leq f(x, \alpha(x)), \quad x \in[0, \pi] \tag{2.4}\\
\alpha(0) & =\alpha(\pi), \quad \alpha^{\prime}(0) \geq \alpha^{\prime}(\pi)
\end{align*}
$$

Similarly, $\beta \in C^{2}([0, \pi])$ is an upper solution of (2.3) if

$$
\begin{align*}
-\beta^{\prime \prime}(x) & \geq f(x, \beta(x)), \quad x \in[0, \pi] \tag{2.5}\\
\beta(0) & =\beta(\pi), \quad \beta^{\prime}(0) \leq \beta^{\prime}(\pi)
\end{align*}
$$

Now, we state some theorems without proof which are useful in the sequel (for the proof, see reference [3]).
Theorem 1. Suppose that $\alpha, \beta \in C^{2}([0, \pi], R)$ are lower and upper solutions of (2.3) respectively. If $f(x, u)$ is strictly decreasing in u, then $\alpha(x) \leq \beta(x)$ on $[0, \pi]$.

Theorem 2. Suppose that $\alpha, \beta \in C^{2}([0, \pi], R)$ are lower and upper solutions of (2.3) respectively such that

$$
\alpha(x) \leq \beta(x), \quad \forall x \in[0, \pi] .
$$

Then there exists at least one solution $u(x)$ of (2.3) such that $\alpha(x) \leq u(x) \leq \beta(x)$ on $[0, \pi]$.

Now, we are in a position to present the main result.

3. Main Result

Theorem 3. Assume that
$\left(A_{1}\right) \alpha, \beta \in C^{2}([0, \pi], R)$ are lower and upper solutions of (2.3) such that $\alpha(x) \leq$ $\beta(x)$ on $[0, \pi]$.
$\left(A_{2}\right) f \in C^{2}\left([0, \pi] \times R^{2}\right)$ and $\frac{\partial f}{\partial u}(x, u)<0$ for every $(x, u) \in S$, where

$$
S=\left\{(x, u) \in R^{2}: x \in[0, \pi] \quad \text { and } \quad u \in[\alpha(x), \beta(x)]\right\} .
$$

Then there exists a monotone sequence $\left\{q_{n}\right\}$ which converges uniformly and quadratically to a unique solution of (2.3).

Proof. In view of the assumption $\left(A_{2}\right)$ and the mean value theorem, we have

$$
f(x, u) \geq f(x, v)+\left[\frac{\partial}{\partial u} f(x, v)+2 m v\right](u-v)-m\left(u^{2}-v^{2}\right), \quad m>0
$$

for every $x \in[0, \pi]$ and $u, v \in R$ such that $\alpha(x) \leq v \leq u \leq \beta(x)$ on [0, π]. In passing, we remark that we have used $\frac{\partial^{2} f}{\partial u^{2}}(x, u) \geq-2 m,(x, u) \in S$ here, which follows from $\left(A_{2}\right)$. We define the function $g(x, u, v)$ as

$$
g(x, u, v)=f(x, v)+\left[\frac{\partial}{\partial u} f(x, v)+2 m v\right](u-v)-m\left(u^{2}-v^{2}\right) .
$$

Observe that

$$
\begin{equation*}
g(x, u, v) \leq f(x, u), \quad g(x, u, u)=f(x, u) \tag{3.1}
\end{equation*}
$$

It follows from $\left(A_{2}\right)$ and (3.1) that $g(x, u, v)$ is strictly decreasing in u for each fixed $(x, v) \in[0, \pi] \times R$ and satisfies one sided Lipschitz condition

$$
\begin{equation*}
g\left(x, u_{1}, v\right)-g\left(x, u_{2}, v\right) \leq L\left(u_{1}-u_{2}\right), \quad L>0 \tag{3.2}
\end{equation*}
$$

Now, set $\alpha=q_{0}$ and consider the periodic boundary value problem

$$
\begin{align*}
-u^{\prime \prime}(x) & =g\left(x, u(x), q_{0}(x)\right), \quad x \in[0, \pi] \tag{3.3}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi)
\end{align*}
$$

In view of $\left(\mathrm{A}_{1}\right)$ and (3.3), we have

$$
\begin{aligned}
-q_{0}^{\prime \prime}(x) & \leq f\left(x, q_{0}(x)\right)=g\left(x, q_{0}(x), q_{0}(x)\right), \quad x \in[0, \pi] \\
q_{0}(0) & =q_{0}(\pi), \quad q_{0}^{\prime}(0) \geq q_{0}^{\prime}(\pi)
\end{aligned}
$$

and

$$
\begin{aligned}
-\beta^{\prime \prime}(x) & \geq f(x, \beta(x)) \geq g\left(x, \beta(x), q_{0}(x)\right), \quad x \in[0, \pi] \\
\beta(0) & =\beta(\pi), \quad \beta^{\prime}(0) \leq \beta^{\prime}(\pi),
\end{aligned}
$$

which imply that $q_{0}(x)$ and $\beta(x)$ are lower and upper solutions of (3.3) respectively. Hence, by Theorem 2 and (3.2), there exists a unique solution $q_{1}(x)$ of (3.3) such that

$$
q_{0}(x) \leq q_{1}(x) \leq \beta(x) \quad \text { on } \quad[0, \pi] .
$$

Next, consider the periodic boundary value problem

$$
\begin{align*}
-u^{\prime \prime}(x) & =g\left(x, u(x), q_{1}(x)\right), \quad x \in[0, \pi] \tag{3.4}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi)
\end{align*}
$$

Using $\left(A_{1}\right)$ and employing the fact that $q_{1}(x)$ is a solution of (3.3), we obtain

$$
\begin{align*}
-q_{1}^{\prime \prime}(x) & =g\left(x, q_{1}(x), q_{0}(x)\right) \leq g\left(x, q_{1}(x), q_{1}(x)\right), \quad x \in[0, \pi] \tag{3.5}\\
q_{1}(0) & =q_{1}(\pi), \quad q_{1}^{\prime}(0) \geq q_{1}^{\prime}(\pi)
\end{align*}
$$

and

$$
\begin{align*}
-\beta^{\prime \prime}(x) & \geq f(x, \beta) \geq g\left(x, \beta(x), q_{1}(x)\right), \quad x \in[0, \pi] \tag{3.6}\\
\beta(0) & =\beta(\pi), \quad \beta^{\prime}(0) \leq \beta^{\prime}(\pi)
\end{align*}
$$

From (3.5) and (3.6), we find that $q_{1}(x)$ and $\beta(x)$ are lower and upper solutions of (3.4) respectively. Again, by Theorem 2 and (3.2), there exists a unique solution $q_{2}(x)$ of (3.4) such that

$$
q_{1}(x) \leq q_{2}(x) \leq \beta(x) \quad \text { on } \quad[0, \pi]
$$

This process can be continued successively to obtain a monotone sequence $\left\{q_{n}(x)\right\}$ satisfying

$$
q_{0}(x) \leq q_{1}(x) \leq q_{2}(x) \leq \cdots \leq q_{n-1}(x) \leq q_{n}(x) \leq \beta(x) \quad \text { on } \quad[0, \pi]
$$

where the element $q_{n}(x)$ of the sequence $\left\{q_{n}(x)\right\}$ is a solution of the problem

$$
\begin{aligned}
-u^{\prime \prime}(x) & =g\left(x, u(x), q_{n-1}(x)\right), \quad x \in[0, \pi] \\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi)
\end{aligned}
$$

Since the sequence $\left\{q_{n}\right\}$ is monotone, it follows that it has a pointwise limit $q(x)$. To show that $q(x)$ is in fact a solution of (2.3), we note that $q_{n}(x)$ is a solution of the following problem

$$
\begin{align*}
-u^{\prime \prime}(x)-\lambda u(x) & =\Psi_{n}(x), \quad x \in[0, \pi] \tag{3.7}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi)
\end{align*}
$$

where $\Psi_{n}(x)=g\left(x, q_{n}(x), q_{n-1}(x)\right)-\lambda q_{n}(x)$ for every $x \in[0, \pi]$. Since $g(x, u, v)$ is continuous on S and $\alpha(x) \leq q_{n}(x) \leq \beta(x)$ on $[0, \pi]$, it follows that $\left\{\Psi_{n}(x)\right\}$ is bounded in $C[0, \pi]$. Thus, $q_{n}(x)$, the solution of (3.7) can be written as

$$
\begin{equation*}
q_{n}(x)=\int_{0}^{\pi} G_{\lambda}(x, y) \Psi_{n}(y) d y \tag{3.8}
\end{equation*}
$$

This implies that $\left\{q_{n}(x)\right\}$ is bounded in $C^{2}([0, \pi])$ and hence $\left\{q_{n}(x)\right\} \nearrow q(x)$ uniformly on $[0, \pi]$. Consequently, taking limit $n \rightarrow \infty$ of (3.8) yields

$$
q(x)=\int_{0}^{\pi} G_{\lambda}(x, y)[f(y, q(y))-\lambda q(y)] d y, \quad x \in[0, \pi]
$$

Thus, we have shown that $q(x)$ is a solution of (2.3).
Now, we prove that the convergence of the sequence is quadratic. For that, we define

$$
\begin{equation*}
F(x, u)=f(x, u)+m u^{2} . \tag{3.9}
\end{equation*}
$$

In view of $\left(A_{2}\right)$ we can find a constant C such that

$$
\begin{equation*}
0 \leq \frac{\partial^{2}}{\partial u^{2}} F(x, u) \leq C \tag{3.10}
\end{equation*}
$$

Letting $e_{n}(x)=q(x)-q_{n}(x), n=1,2,3, \ldots$, we have

$$
\begin{aligned}
-e_{n}^{\prime \prime}(x)= & q_{n}^{\prime \prime}(x)-q^{\prime \prime}(x) \\
= & F(x, q(x))-F\left(x, q_{n-1}(x)\right)-\left(q_{n}(x)-q_{n-1}(x)\right) \frac{\partial}{\partial u} F\left(x, q_{n-1}(x)\right) \\
& -m\left(q^{2}(x)-q_{n-1}^{2}(x)\right), \\
e_{n}(0)= & e_{n}(\pi), \quad e_{n}^{\prime}(0)=e_{n}^{\prime}(\pi)
\end{aligned}
$$

Using the mean value theorem repeatedly, we obtain

$$
\begin{align*}
-e_{n}^{\prime \prime}(x)= & {\left[\frac{\partial}{\partial u} F(x, \xi)-\frac{\partial}{\partial u} F\left(x, q_{n-1}\right)\right]\left(q(x)-q_{n-1}(x)\right) } \\
& +\left[\frac{\partial}{\partial u} F\left(x, q_{n-1}(x)\right)\right]\left(q(x)-q_{n}(x)\right)-m\left(q^{2}(x)-q_{n-1}^{2}(x)\right) \\
= & \frac{\partial^{2}}{\partial u^{2}} F(x, \zeta(x)) e_{n-1}(x)\left(\xi-q_{n-1}(x)\right) \tag{3.11}\\
& +\left[\frac{\partial}{\partial u} F\left(x, q_{n-1}(x)\right)-m\left(q(x)+q_{n}(x)\right)\right] e_{n}(x) \\
e_{n}(0)= & e_{n}(\pi), \quad e_{n}^{\prime}(0)=e_{n}^{\prime}(\pi)
\end{align*}
$$

where $q_{n-1}(x) \leq \zeta \leq \xi \leq q(x)$ on $[0, \pi]$ (ζ and ξ also depend on $q_{n-1}(x)$ and $q(x)$). Substituting

$$
\begin{aligned}
\frac{\partial}{\partial u} F\left(x, q_{n-1}(x)\right)-m\left(q(x)+q_{n}(x)\right) & =a_{n}(x) \\
\frac{\partial^{2}}{\partial u^{2}} F(x, \zeta(x)) e_{n-1}(x)\left(\xi-q_{n-1}(x)\right) & =C e_{n-1}^{2}(x)+b_{n}(x)
\end{aligned}
$$

in (3.11) gives $b_{n}(x) \leq 0$ on $[0, \pi]$ and

$$
\begin{align*}
-e_{n}^{\prime \prime}(x)-e_{n}(x) a_{n}(x) & =C e_{n-1}^{2}(x)+b_{n}(x), \quad x \in[0, \pi] \tag{3.12}\\
e_{n}(0) & =e_{n}(\pi), \quad e_{n}^{\prime}(0)=e_{n}^{\prime}(\pi)
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} a_{n}(x)=\frac{\partial f}{\partial u}(x, q(x))$ and $\frac{\partial f}{\partial u}(x, q(x))<0$, therefore for $\lambda<0$, there exist $n_{0} \in N$ such that for $n \geq n_{0}$, we have $a_{n}(x)<\lambda<0, x \in[0, \pi]$. Therefore, the error function $e_{n}(x)$ satisfies the following problem

$$
-e_{n}^{\prime \prime}(x)-\lambda e_{n}(x)=\left(a_{n}(x)-\lambda\right) e_{n}(x)+C e_{n-1}^{2}(x)+b_{n}(x), \quad x \in[0, \pi]
$$

whose solution is

$$
e_{n}(x)=\int_{0}^{\pi} G_{\lambda}(x, y)\left[\left(a_{n}(y)-\lambda\right) e_{n}(y)+C e_{n-1}^{2}(y)+b_{n}(y)\right] d y
$$

Since $a_{n}(y)-\lambda<0, b_{n}(y) \leq 0$, and $G_{\lambda}(x, y) \geq 0$ for $\lambda<0$, therefore, it follows that

$$
G_{\lambda}(x, y)\left[\left(a_{n}(y)-\lambda\right) e_{n}(y)+b_{n}(y)+C e_{n-1}^{2}(y)\right] \leq G_{\lambda}(x, y) C e_{n-1}^{2}(y)
$$

Thus, we obtain

$$
0 \leq e_{n}(x) \leq C \int_{0}^{\pi} G_{\lambda}(x, y) e_{n-1}^{2}(y) d y
$$

which can be expressed as

$$
\left\|e_{n}\right\| \leq C_{1}\left\|e_{n-1}\right\|^{2}
$$

where $C_{1}=C \max \int_{0}^{\pi} G_{\lambda}(x, y) d y$ and $\left\|e_{n}\right\|=\max \left\{\left|e_{n}\right|: x \in[0, \pi]\right\}$ is the usual uniform norm.

4. RAPID CONVERGENCE

Theorem 4. Assume that
$\left(B_{1}\right) \alpha, \beta \in C^{2}(\Omega)$ are lower and upper solutions of (2.3) respectively such that $\alpha(x) \leq \beta(x)$ on $[0, \pi]$.
$\left(B_{2}\right) f \in C^{k}\left([0, \pi] \times R^{2}\right)$ and $\frac{\partial f}{\partial u}(x, u)<0$ for every $(x, u) \in S$, where

$$
S=\left\{(x, u) \in R^{2}: x \in[0, \pi] \text { and } u \in[\alpha(x), \beta(x)]\right\}
$$

Then there exists a monotone sequence $\left\{q_{n}(x)\right\}$ of solutions converging uniformly to a solution of (2.3) with the order of convergence $k(k \geq 2)$.

Proof. In view of the assumption $\left(B_{2}\right)$ and generalized mean value theorem, we obtain

$$
\begin{equation*}
f(x, u) \geq \sum_{i=0}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}(x, v) \frac{(u-v)^{i}}{i!}-m_{k}(u-v)^{k}, \quad m_{k}>0 \tag{4.1}
\end{equation*}
$$

for every $x \in[0, \pi]$ and $u, v \in R$ such that $\alpha(x) \leq v \leq u \leq \beta(x)$. In (4.1), we have used $\frac{\partial^{k} f}{\partial u^{k}}(x, u) \geq-k!m_{k}$, which follows from $\left(B_{2}\right)$. We define

$$
\begin{equation*}
g_{r}(x, u, v)=\sum_{i=0}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}(x, v) \frac{(u-v)^{i}}{i!}-m_{k}(u-v)^{k} \tag{4.2}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
g_{r}(x, u, v) \leq f(x, u), \quad g_{r}(x, u, u)=f(x, u) \tag{4.3}
\end{equation*}
$$

In view of $\left(B_{2}\right)$ and (4.3), we note that $g_{r}(x, u, v)$ satisfies one sided Lipschitz condition

$$
\begin{equation*}
g_{r}\left(x, u_{1}, v\right)-g_{r}\left(x, u_{2}, v\right) \leq L\left(u_{1}-u_{2}\right), \quad L>0 \tag{4.4}
\end{equation*}
$$

Now, set $\alpha(x)=q_{0}(x)$ and consider the periodic boundary value problem

$$
\begin{align*}
-u^{\prime \prime}(x) & =g_{r}\left(x, u(x), q_{0}(x)\right), \quad x \in[0, \pi], \tag{4.5}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi) .
\end{align*}
$$

From the assumption $\left(B_{1}\right)$ and (4.3), we get

$$
\begin{aligned}
-q_{0}^{\prime \prime}(x) & \leq f\left(x, q_{0}(x)\right)=g_{r}\left(x, q_{0}(x), q_{0}(x)\right), \quad x \in[0, \pi], \\
q_{0}(0) & =q_{0}(\pi), \quad q_{0}^{\prime}(0) \geq q_{0}^{\prime}(\pi),
\end{aligned}
$$

and

$$
\begin{aligned}
-\beta^{\prime \prime}(x) & \geq f(x, \beta(x)) \geq g_{r}\left(x, \beta(x), q_{0}(x)\right), \quad x \in[0, \pi] \\
\beta(0) & =\beta(\pi), \quad \beta^{\prime}(0) \leq \beta^{\prime}(\pi)
\end{aligned}
$$

which imply that $q_{0}(x)$ and $\beta(x)$ are lower and upper solutions of (4.5) respectively. Therefore, by Theorem 2 and (4.4), there exists a unique solution $q_{1}(x)$ of (4.5) such that

$$
q_{0}(x) \leq q_{1}(x) \leq \beta(x) \quad \text { on } \quad[0, \pi] .
$$

Similarly, we conclude that the problem

$$
\begin{aligned}
-u^{\prime \prime}(x) & =g_{r}\left(x, u(x), q_{1}(x)\right), \quad x \in[0, \pi], \\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi),
\end{aligned}
$$

has a unique solution $q_{2}(x)$ such that

$$
q_{1}(x) \leq q_{2}(x) \leq \beta(x), \quad x \in[0, \pi] .
$$

Continuing this process successively, we obtain a monotone sequence $\left\{q_{n}(x)\right\}$ of solutions satisfying

$$
q_{0}(x) \leq q_{1}(x) \leq q_{2}(x) \leq \cdots \leq q_{n-1}(x) \leq q_{n}(x) \leq \beta(x) \quad \text { on } \quad[0, \pi]
$$

where the element $q_{n}(x)$ of the sequence $\left\{q_{n}(x)\right\}$ is a solution of the problem

$$
\begin{align*}
-u^{\prime \prime}(x)-\lambda u(x) & =g_{r}\left(x, q_{n}(x), q_{n-1}(x)\right)-\lambda q_{n}(x)=\Psi_{n}(x), \quad x \in[0, \pi] \tag{4.6}\\
u(0) & =u(\pi), \quad u^{\prime}(0)=u^{\prime}(\pi)
\end{align*}
$$

Since the sequence is monotone, it follows that it has a pointwise limit $q(x)$. Employing the arguments used in section 3, we find that $\left\{q_{n}(x)\right\} \nearrow q(x)$, uniformly on $[0, \pi]$. On the other hand, the solution of (4.6) is given by

$$
\begin{equation*}
q_{n}(x)=\int_{0}^{\pi} G_{\lambda}(x, y) \Psi_{n}(y) d y, \quad x \in[0, \pi] \tag{4.7}
\end{equation*}
$$

which, on taking limit $n \rightarrow \infty$, becomes

$$
q(x)=\int_{0}^{\pi} G_{\lambda}(x, y)[f(y, q(y))-\lambda q(y)] d y, \quad x \in[0, \pi] .
$$

Thus, $q(x)$ is a solution of (2.3).
In order to prove the convergence of order $k(k \geq 2)$, we define $e_{n}(x)=q(x)-q_{n}(x)$ and $a_{n}(x)=q_{n+1}(x)-q_{n}(x)$. Clearly $a_{n}(x) \geq 0$ and $e_{n}(x) \geq 0$. Further, $a_{n}(x) \leq$
$e_{n}(x), x \in[0, \pi]$, which implies that $a_{n}^{k}(x) \leq e_{n}^{k}(x)$. By the generalized mean value theorem, we have

$$
\begin{aligned}
-e_{n+1}^{\prime \prime}(x)= & q_{n+1}^{\prime \prime}(x)-q^{\prime \prime}(x) \\
= & \sum_{i=0}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}\left(x, q_{n}(x)\right) \frac{e_{n}^{i}(x)-a_{n}^{i}(x)}{i!}-\frac{\partial^{k} f}{\partial u^{k}}(x, \xi) \frac{e_{n}^{k}(x)}{k!}+m_{k} a_{n}^{k}(x) \\
& \leq\left(e_{n}(x)-a_{n}(x)\right) P_{n}(x)+C e_{n}^{k}(x) \\
e_{n+1}(0)= & e_{n+1}(\pi), \quad e_{n+1}^{\prime}(0)=e_{n+1}^{\prime}(\pi),
\end{aligned}
$$

where $C=2 m_{k}, q_{n-1}(x) \leq \xi \leq q(x)$, and

$$
P_{n}(x)=\sum_{i=0}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}\left(x, q_{n}(x)\right) \frac{1}{i!} \sum_{j=0}^{i-1} e_{n}^{i-1-j}(x) a_{n}^{j}(x), \quad x \in[0, \pi] .
$$

Thus, for some $\tilde{w}(x) \leq 0$, the error function $e_{n+1}(x)$ satisfies the problem

$$
\begin{aligned}
-e_{n+1}^{\prime \prime}(x)-e_{n+1}(x) P_{n}(x) & =C e_{n}^{k}(x)+\tilde{w}(x), \quad x \in[0, \pi] \\
e_{n+1}(0) & =e_{n+1}(\pi), \quad e_{n+1}^{\prime}(0)=e_{n+1}^{\prime}(\pi)
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} P_{n}(x)=\frac{\partial f}{\partial u}(x, q(x))<0$, therefore, for $\lambda<0$, there exists $n_{0} \in N$ such that for $n \geq n_{0}$, we have $P_{n}(x)<\lambda<0, x \in[0, \pi]$. Thus, we can write

$$
\begin{aligned}
-e_{n+1}^{\prime \prime}(x)-\lambda e_{n+1}(x) & =\left(P_{n}(x)-\lambda\right) e_{n+1}(x)+C e_{n}^{k}(x)+\tilde{w}(x), \quad x \in[0, \pi] \\
e_{n+1}(0) & =e_{n+1}(\pi), \quad e_{n+1}^{\prime}(0)=e_{n+1}^{\prime}(\pi),
\end{aligned}
$$

whose solution is given by

$$
\begin{equation*}
e_{n+1}(x)=\int_{0}^{\pi} G_{\lambda}(x, y)\left[\left(P_{n}(y)-\lambda\right) e_{n+1}(y)+C e_{n}^{k}(y)+\tilde{w}(y)\right] d y \tag{4.8}
\end{equation*}
$$

Since $P_{n}(y)-\lambda<0, \tilde{w}(y) \leq 0$ and $G_{\lambda}(x, y) \geq 0$ for $\lambda<0$, therefore, it follows that

$$
\begin{equation*}
G_{\lambda}(x, y)\left[\left(P_{n}(y)-\lambda\right) e_{n+1}(y)+C e_{n}^{k}(y)+\tilde{w}(y)\right] \leq G_{\lambda}(x, y) C e_{n}^{k}(y) \tag{4.9}
\end{equation*}
$$

Combining (4.8) and (4.9), we obtain

$$
0 \leq e_{n+1}(x) \leq C \int_{0}^{\pi} G_{\lambda}(x, y) e_{n}^{k}(y) d y
$$

Thus,

$$
\left\|e_{n}(x)\right\| \leq C_{1}\left\|e_{n-1}(x)\right\|^{k}
$$

where $C_{1}=C \max \int_{0}^{\pi} G_{\lambda}(x, y) d y$.
Acknowledgement. The authors are grateful to the referee for his useful comments to improve the quality of the paper.

References

[1] Lakshmikantham, V., An extension of the method of quasilinearization, J. Optim. Theory Appl. 82 (1994), 315-321.
[2] Lakshmikantham, V., Further improvement of generalized quasilinearization, Nonlinear Anal. 27 (1996), 315-321.
[3] Lakshmikantham, V. and Vatsala, A. S., Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht (1998).
[4] Nieto, J. J., Generalized quasilinearization method for a second order differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc. 125 (1997), 2599-2604.
[5] Cabada, A., Nieto, J. J. and Pita-da-Veige, R., A note on rapid convergence of approximate solutions for an ordinary Dirichlet problem, Dynam. Contin. Discrete Impuls. Systems 4 (1998), 23-30.
[6] Mohapatra, R. N., Vajravelu, K. and Yin, Y., Generalized quasilinearization method for second order boundary value problems, Nonlinear Anal. 36 (1999), 799-806.

Department of Mathematics, Quaid-i-Azam University
Islamabad, Pakistan
Department of Mathematics, Faculty of Science
King Abdul Aziz University,
P. O. Box 80203, Jeddah-21589, Saudi Arabia

E-mail: bashir_qau@yahoo.com

[^0]: 1991 Mathematics Subject Classification: 34A37, 34C25.
 Key words and phrases: generalized quasilinearization, periodic boundary value problems, rapid convergence.

 Received May 28, 2001, revised March 2005.

