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A NOTE ON RAPID CONVERGENCE OF APPROXIMATE

SOLUTIONS FOR SECOND ORDER PERIODIC BOUNDARY

VALUE PROBLEMS

RAHMAT A. KHAN AND BASHIR AHMAD

Abstract. In this paper, we develop a generalized quasilinearization tech-
nique for a nonlinear second order periodic boundary value problem and ob-
tain a sequence of approximate solutions converging uniformly and quadrat-
ically to a solution of the problem. Then we improve the convergence of the
sequence of approximate solutions by establishing the convergence of order k

(k ≥ 2).

1. Introduction

The technique of generalized quasilinearization developed by Lakshmikantham
[1,2] has been found to be extremely useful to solve the nonlinear boundary value
problems. A good number of examples can be seen in the text by Lakshmikantham
and Vatsala [3] and in the references [4,5]. Recently, Mohapatra, Vajravelu and
Yin [6] considered the periodic boundary value problem

−u′′(x) = f(x, u(x)) , u(0) = u(π) , u′(0) = u′(π) , x ∈ [0, π] ,

with the assumption that ∂f
∂u

< 0 and ∂2f
∂u2 ≤ 0 (condition (iii) of Theorem 3.3

[6]). In this paper, we replace the convexity (concavity) condition by a condition
of the form f ∈ C2([0, π] × R2) and obtain a sequence of approximate solutions
converging monotonically and quadratically to a solution of the problem. Then
we discuss the convergence of order k (k ≥ 2).

2. Preliminary results

We know that the homogeneous periodic boundary value problem

−u′′(x) − λu(x) = 0 , x ∈ [0, π] ,(2.1)

u(0) = u(π) , u′(0) = u′(π) ,
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has only the trivial solution if and only if λ 6= 4n2 for all n ∈ {0, 1, 2, . . .}. Con-
sequently, for these values of λ and for any σ(x) ∈ C([0, π]), the non homogenous
problem

−u′′(x) − λu(x) = σ(x) , x ∈ [0, π] ,(2.2)

u(0) = u(π) , u′(0) = u′(π) ,

has a unique solution

u(x) =

∫ π

0

Gλ(x, y)σ(y)dy ,

where Gλ(x, y) is the Green’s function given by

Gλ(x, y) =
−1

2
√

λ sin
√

λπ
2

{

cos
√

λ(π
2
− (y − x)) , 0 ≤ x ≤ y ≤ π ,

cos
√

λ(π
2
− (x − y)) , 0 ≤ y ≤ x ≤ π ,

for λ > 0 and

Gλ(x, y) =
1

2
√
−λ sinh

√
−λπ
2

{

cosh
√
−λ(π

2
− (y − x)) , 0 ≤ x ≤ y ≤ π ,

cosh
√
−λ(π

2
− (x − y)) , 0 ≤ y ≤ x ≤ π ,

for λ < 0. Here, we note that Gλ(x, y) ≥ 0 for λ < 0 and Gλ(x, y) < 0 for λ > 0.
Now, consider the following nonlinear periodic boundary value problem

−u′′(x) = f(x, u(x)) , x ∈ [0, π] ,(2.3)

u(0) = u(π) , u′(0) = u′(π) ,

where f ∈ [0, π] × R → R is continuous.
We say that α ∈ C2([0, π]) is a lower solution of (2.3) if

−α′′(x) ≤ f(x, α(x)) , x ∈ [0, π] ,(2.4)

α(0) = α(π) , α′(0) ≥ α′(π) .

Similarly, β ∈ C2([0, π]) is an upper solution of (2.3) if

−β′′(x) ≥ f(x, β(x)) , x ∈ [0, π] ,(2.5)

β(0) = β(π) , β′(0) ≤ β′(π) .

Now, we state some theorems without proof which are useful in the sequel (for the
proof, see reference [3]).

Theorem 1. Suppose that α, β ∈ C2([0, π], R) are lower and upper solutions of

(2.3) respectively. If f(x, u) is strictly decreasing in u, then α(x) ≤ β(x) on [0, π].

Theorem 2. Suppose that α, β ∈ C2([0, π], R) are lower and upper solutions of

(2.3) respectively such that

α(x) ≤ β(x) , ∀ x ∈ [0, π] .

Then there exists at least one solution u(x) of (2.3) such that α(x) ≤ u(x) ≤ β(x)
on [0, π].
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Now, we are in a position to present the main result.

3. Main result

Theorem 3. Assume that

(A1) α, β ∈ C2([0, π], R) are lower and upper solutions of (2.3) such that α(x) ≤
β(x) on [0, π].

(A2) f ∈ C2([0, π] × R2) and ∂f
∂u

(x, u) < 0 for every (x, u) ∈ S, where

S = {(x, u) ∈ R2 : x ∈ [0, π] and u ∈ [α(x), β(x)]} .

Then there exists a monotone sequence {qn} which converges uniformly and quadrat-

ically to a unique solution of (2.3).

Proof. In view of the assumption (A2) and the mean value theorem, we have

f(x, u) ≥ f(x, v) +
[ ∂

∂u
f(x, v) + 2mv

]

(u − v) − m(u2 − v2) , m > 0 ,

for every x ∈ [0, π] and u, v ∈ R such that α(x) ≤ v ≤ u ≤ β(x) on [0, π]. In

passing, we remark that we have used ∂2f
∂u2 (x, u) ≥ −2m, (x, u) ∈ S here, which

follows from (A2). We define the function g(x, u, v) as

g(x, u, v) = f(x, v) +
[ ∂

∂u
f(x, v) + 2mv

]

(u − v) − m
(

u2 − v2
)

.

Observe that

(3.1) g(x, u, v) ≤ f(x, u) , g(x, u, u) = f(x, u) .

It follows from (A2) and (3.1) that g(x, u, v) is strictly decreasing in u for each
fixed (x, v) ∈ [0, π] × R and satisfies one sided Lipschitz condition

(3.2) g(x, u1, v) − g(x, u2, v) ≤ L(u1 − u2) , L > 0 .

Now, set α = q0 and consider the periodic boundary value problem

−u′′(x) = g(x, u(x), q0(x)) , x ∈ [0, π] ,(3.3)

u(0) = u(π) , u′(0) = u′(π) .

In view of (A1) and (3.3), we have

−q′′0 (x) ≤ f(x, q0(x)) = g(x, q0(x), q0(x)) , x ∈ [0, π] ,

q0(0) = q0(π) , q′0(0) ≥ q′0(π) ,

and

−β′′(x) ≥ f(x, β(x)) ≥ g(x, β(x), q0(x)) , x ∈ [0, π] ,

β(0) = β(π) , β′(0) ≤ β′(π) ,

which imply that q0(x) and β(x) are lower and upper solutions of (3.3) respectively.
Hence, by Theorem 2 and (3.2), there exists a unique solution q1(x) of (3.3) such
that

q0(x) ≤ q1(x) ≤ β(x) on [0, π] .
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Next, consider the periodic boundary value problem

−u′′(x) = g(x, u(x), q1(x)) , x ∈ [0, π] ,(3.4)

u(0) = u(π) , u′(0) = u′(π) .

Using (A1) and employing the fact that q1(x) is a solution of (3.3), we obtain

−q′′1 (x) = g
(

x, q1(x), q0(x)
)

≤ g
(

x, q1(x), q1(x)
)

, x ∈ [0, π] ,(3.5)

q1(0) = q1(π) , q′1(0) ≥ q′1(π) ,

and

−β′′(x) ≥ f(x, β) ≥ g(x, β(x), q1(x)) , x ∈ [0, π] ,(3.6)

β(0) = β(π) , β′(0) ≤ β′(π) .

From (3.5) and (3.6), we find that q1(x) and β(x) are lower and upper solutions of
(3.4) respectively. Again, by Theorem 2 and (3.2), there exists a unique solution
q2(x) of (3.4) such that

q1(x) ≤ q2(x) ≤ β(x) on [0, π] .

This process can be continued successively to obtain a monotone sequence {qn(x)}
satisfying

q0(x) ≤ q1(x) ≤ q2(x) ≤ · · · ≤ qn−1(x) ≤ qn(x) ≤ β(x) on [0, π] ,

where the element qn(x) of the sequence {qn(x)} is a solution of the problem

−u′′(x) = g(x, u(x), qn−1(x)) , x ∈ [0, π] ,

u(0) = u(π) , u′(0) = u′(π) .

Since the sequence {qn} is monotone, it follows that it has a pointwise limit q(x).
To show that q(x) is in fact a solution of (2.3), we note that qn(x) is a solution of
the following problem

−u′′(x) − λu(x) = Ψn(x) , x ∈ [0, π] ,(3.7)

u(0) = u(π) , u′(0) = u′(π) ,

where Ψn(x) = g
(

x, qn(x), qn−1(x)
)

− λqn(x) for every x ∈ [0, π]. Since g(x, u, v)
is continuous on S and α(x) ≤ qn(x) ≤ β(x) on [0, π], it follows that {Ψn(x)} is
bounded in C[0, π]. Thus, qn(x), the solution of (3.7) can be written as

(3.8) qn(x) =

∫ π

0

Gλ(x, y)Ψn(y) dy .

This implies that {qn(x)} is bounded in C2([0, π]) and hence {qn(x)} ↗ q(x)
uniformly on [0, π]. Consequently, taking limit n → ∞ of (3.8) yields

q(x) =

∫ π

0

Gλ(x, y)
[

f
(

y, q(y)
)

− λq(y)
]

dy , x ∈ [0, π] .
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Thus, we have shown that q(x) is a solution of (2.3).
Now, we prove that the convergence of the sequence is quadratic. For that, we
define

(3.9) F (x, u) = f(x, u) + mu2 .

In view of (A2) we can find a constant C such that

(3.10) 0 ≤ ∂2

∂u2
F (x, u) ≤ C .

Letting en(x) = q(x) − qn(x), n = 1, 2, 3, . . . , we have

−e′′n(x) = q′′n(x) − q′′(x)

= F
(

x, q(x)
)

− F
(

x, qn−1(x)
)

−
(

qn(x) − qn−1(x)
) ∂

∂u
F

(

x, qn−1(x)
)

− m
(

q2(x) − q2
n−1(x)

)

,

en(0) = en(π) , e′n(0) = e′n(π) .

Using the mean value theorem repeatedly, we obtain

(3.11)

−e′′n(x) =
[ ∂

∂u
F (x, ξ) − ∂

∂u
F (x, qn−1)

]

(

q(x) − qn−1(x)
)

+
[ ∂

∂u
F

(

x, qn−1(x)
)

]

(

q(x) − qn(x)
)

− m
(

q2(x) − q2
n−1(x)

)

=
∂2

∂u2
F

(

x, ζ(x)
)

en−1(x)
(

ξ − qn−1(x)
)

+
[ ∂

∂u
F

(

x, qn−1(x)
)

− m
(

q(x) + qn(x)
)

]

en(x) ,

en(0) = en(π) , e′n(0) = e′n(π) ,

where qn−1(x) ≤ ζ ≤ ξ ≤ q(x) on [0, π] (ζ and ξ also depend on qn−1(x) and q(x)).
Substituting

∂

∂u
F

(

x, qn−1(x)
)

− m
(

q(x) + qn(x)
)

= an(x) ,

∂2

∂u2
F

(

x, ζ(x)
)

en−1(x)
(

ξ − qn−1(x)
)

= Ce2
n−1(x) + bn(x) ,

in (3.11) gives bn(x) ≤ 0 on [0, π] and

(3.12)
−e′′n(x) − en(x)an(x) = Ce2

n−1(x) + bn(x) , x ∈ [0, π] ,

en(0) = en(π) , e′n(0) = e′n(π) .

Since limn→∞ an(x) = ∂f
∂u

(

x, q(x)
)

and ∂f
∂u

(

x, q(x)
)

< 0, therefore for λ < 0, there
exist n0 ∈ N such that for n ≥ n0, we have an(x) < λ < 0, x ∈ [0, π]. Therefore,
the error function en(x) satisfies the following problem

−e′′n(x) − λen(x) =
(

an(x) − λ
)

en(x) + Ce2
n−1(x) + bn(x) , x ∈ [0, π] ,
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whose solution is

en(x) =

∫ π

0

Gλ(x, y)
[(

an(y) − λ
)

en(y) + Ce2
n−1(y) + bn(y)

]

dy .

Since an(y) − λ < 0, bn(y) ≤ 0, and Gλ(x, y) ≥ 0 for λ < 0, therefore, it follows
that

Gλ(x, y)[(an(y) − λ)en(y) + bn(y) + Ce2
n−1(y)] ≤ Gλ(x, y)Ce2

n−1(y) .

Thus, we obtain

0 ≤ en(x) ≤ C

∫ π

0

Gλ(x, y)e2
n−1(y) dy ,

which can be expressed as

‖en‖ ≤ C1‖en−1‖2 ,

where C1 = C max
∫ π

0
Gλ(x, y) dy and ‖en‖ = max

{

|en| : x ∈ [0, π]
}

is the usual
uniform norm.

4. Rapid convergence

Theorem 4. Assume that

(B1) α, β ∈ C2(Ω) are lower and upper solutions of (2.3) respectively such that

α(x) ≤ β(x) on [0, π].

(B2) f ∈ Ck([0, π] × R2) and ∂f
∂u

(x, u) < 0 for every (x, u) ∈ S, where

S = {(x, u) ∈ R2 : x ∈ [0, π] and u ∈ [α(x), β(x)]} .

Then there exists a monotone sequence {qn(x)} of solutions converging uniformly

to a solution of (2.3) with the order of convergence k (k ≥ 2).

Proof. In view of the assumption (B2) and generalized mean value theorem, we
obtain

(4.1) f(x, u) ≥
k−1
∑

i=0

∂if

∂ui
(x, v)

(u − v)i

i!
− mk(u − v)k , mk > 0 ,

for every x ∈ [0, π] and u, v ∈ R such that α(x) ≤ v ≤ u ≤ β(x). In (4.1), we have

used ∂kf
∂uk (x, u) ≥ −k!mk, which follows from (B2). We define

(4.2) gr(x, u, v) =

k−1
∑

i=0

∂if

∂ui
(x, v)

(u − v)i

i!
− mk(u − v)k .

Observe that

(4.3) gr(x, u, v) ≤ f(x, u) , gr(x, u, u) = f(x, u) .

In view of (B2) and (4.3), we note that gr(x, u, v) satisfies one sided Lipschitz
condition

(4.4) gr(x, u1, v) − gr(x, u2, v) ≤ L(u1 − u2) , L > 0 .
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Now, set α(x) = q0(x) and consider the periodic boundary value problem

−u′′(x) = gr(x, u(x), q0(x)) , x ∈ [0, π] ,(4.5)

u(0) = u(π) , u′(0) = u′(π) .

From the assumption (B1) and (4.3), we get

−q′′0 (x) ≤ f(x, q0(x)) = gr(x, q0(x), q0(x)) , x ∈ [0, π] ,

q0(0) = q0(π) , q′0(0) ≥ q′0(π) ,

and

−β′′(x) ≥ f
(

x, β(x)
)

≥ gr

(

x, β(x), q0(x)
)

, x ∈ [0, π] ,

β(0) = β(π) , β′(0) ≤ β′(π) ,

which imply that q0(x) and β(x) are lower and upper solutions of (4.5) respectively.
Therefore, by Theorem 2 and (4.4), there exists a unique solution q1(x) of (4.5)
such that

q0(x) ≤ q1(x) ≤ β(x) on [0, π] .

Similarly, we conclude that the problem

−u′′(x) = gr(x, u(x), q1(x)) , x ∈ [0, π] ,

u(0) = u(π) , u′(0) = u′(π) ,

has a unique solution q2(x) such that

q1(x) ≤ q2(x) ≤ β(x) , x ∈ [0, π] .

Continuing this process successively, we obtain a monotone sequence {qn(x)} of
solutions satisfying

q0(x) ≤ q1(x) ≤ q2(x) ≤ · · · ≤ qn−1(x) ≤ qn(x) ≤ β(x) on [0, π] ,

where the element qn(x) of the sequence {qn(x)} is a solution of the problem

−u′′(x) − λu(x) = gr(x, qn(x), qn−1(x)) − λqn(x) = Ψn(x) , x ∈ [0, π] ,(4.6)

u(0) = u(π) , u′(0) = u′(π) .

Since the sequence is monotone, it follows that it has a pointwise limit q(x).
Employing the arguments used in section 3, we find that {qn(x)} ↗ q(x), uniformly
on [0, π]. On the other hand, the solution of (4.6) is given by

(4.7) qn(x) =

∫ π

0

Gλ(x, y)Ψn(y) dy , x ∈ [0, π] ,

which, on taking limit n → ∞, becomes

q(x) =

∫ π

0

Gλ(x, y)
[

f
(

y, q(y)
)

− λq(y)
]

dy , x ∈ [0, π] .

Thus, q(x) is a solution of (2.3).
In order to prove the convergence of order k (k ≥ 2), we define en(x) = q(x)−qn(x)
and an(x) = qn+1(x) − qn(x). Clearly an(x) ≥ 0 and en(x) ≥ 0. Further, an(x) ≤
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en(x), x ∈ [0, π], which implies that ak
n(x) ≤ ek

n(x). By the generalized mean value
theorem, we have

−e′′n+1(x) = q′′n+1(x) − q′′(x)

=
k−1
∑

i=0

∂if

∂ui

(

x, qn(x)
)ei

n(x) − ai
n(x)

i!
− ∂kf

∂uk
(x, ξ)

ek
n(x)

k!
+ mkak

n(x)

≤
(

en(x) − an(x)
)

Pn(x) + Cek
n(x) ,

en+1(0) = en+1(π) , e′n+1(0) = e′n+1(π) ,

where C = 2mk, qn−1(x) ≤ ξ ≤ q(x), and

Pn(x) =

k−1
∑

i=0

∂if

∂ui

(

x, qn(x)
) 1

i!

i−1
∑

j=0

ei−1−j
n (x)aj

n(x) , x ∈ [0, π] .

Thus, for some w̃(x) ≤ 0, the error function en+1(x) satisfies the problem

−e′′n+1(x) − en+1(x)Pn(x) = Cek
n(x) + w̃(x) , x ∈ [0, π] ,

en+1(0) = en+1(π) , e′n+1(0) = e′n+1(π) .

Since limn→∞ Pn(x) = ∂f
∂u

(

x, q(x)
)

< 0, therefore, for λ < 0, there exists n0 ∈ N

such that for n ≥ n0, we have Pn(x) < λ < 0, x ∈ [0, π]. Thus, we can write

−e′′n+1(x) − λen+1(x) = (Pn(x) − λ)en+1(x) + Cek
n(x) + w̃(x) , x ∈ [0, π] ,

en+1(0) = en+1(π) , e′n+1(0) = e′n+1(π) ,

whose solution is given by

en+1(x) =

∫ π

0

Gλ(x, y)
[

(Pn(y) − λ)en+1(y) + Cek
n(y) + w̃(y)

]

dy .(4.8)

Since Pn(y) − λ < 0, w̃(y) ≤ 0 and Gλ(x, y) ≥ 0 for λ < 0, therefore, it follows
that

(4.9) Gλ(x, y)
[

(Pn(y) − λ)en+1(y) + Cek
n(y) + w̃(y)

]

≤ Gλ(x, y)Cek
n(y) .

Combining (4.8) and (4.9), we obtain

0 ≤ en+1(x) ≤ C

∫ π

0

Gλ(x, y)ek
n(y) dy .

Thus,

‖en(x)‖ ≤ C1‖en−1(x)‖k ,

where C1 = C max
∫ π

0
Gλ(x, y) dy.
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