ARCHIVUM MATHEMATICUM (BRNO) Tomus 41 (2005), 135 – 143

A NOTE ON RAPID CONVERGENCE OF APPROXIMATE SOLUTIONS FOR SECOND ORDER PERIODIC BOUNDARY VALUE PROBLEMS

RAHMAT A. KHAN AND BASHIR AHMAD

ABSTRACT. In this paper, we develop a generalized quasilinearization technique for a nonlinear second order periodic boundary value problem and obtain a sequence of approximate solutions converging uniformly and quadratically to a solution of the problem. Then we improve the convergence of the sequence of approximate solutions by establishing the convergence of order k ($k \geq 2$).

1. INTRODUCTION

The technique of generalized quasilinearization developed by Lakshmikantham [1,2] has been found to be extremely useful to solve the nonlinear boundary value problems. A good number of examples can be seen in the text by Lakshmikantham and Vatsala [3] and in the references [4,5]. Recently, Mohapatra, Vajravelu and Yin [6] considered the periodic boundary value problem

$$-u''(x) = f(x, u(x)), \quad u(0) = u(\pi), \quad u'(0) = u'(\pi), \quad x \in [0, \pi],$$

with the assumption that $\frac{\partial f}{\partial u} < 0$ and $\frac{\partial^2 f}{\partial u^2} \leq 0$ (condition (iii) of Theorem 3.3 [6]). In this paper, we replace the convexity (concavity) condition by a condition of the form $f \in C^2([0,\pi] \times R^2)$ and obtain a sequence of approximate solutions converging monotonically and quadratically to a solution of the problem. Then we discuss the convergence of order $k \ (k \geq 2)$.

2. Preliminary results

We know that the homogeneous periodic boundary value problem

(2.1)
$$-u''(x) - \lambda u(x) = 0, \qquad x \in [0, \pi],$$
$$u(0) = u(\pi), \qquad u'(0) = u'(\pi),$$

¹⁹⁹¹ Mathematics Subject Classification: 34A37, 34C25.

Key words and phrases: generalized quasilinearization, periodic boundary value problems, rapid convergence.

Received May 28, 2001, revised March 2005.

has only the trivial solution if and only if $\lambda \neq 4n^2$ for all $n \in \{0, 1, 2, ...\}$. Consequently, for these values of λ and for any $\sigma(x) \in C([0, \pi])$, the non homogenous problem

(2.2)
$$-u''(x) - \lambda u(x) = \sigma(x), \quad x \in [0, \pi],$$
$$u(0) = u(\pi), \qquad u'(0) = u'(\pi).$$

has a unique solution

$$u(x) = \int_0^{\pi} G_{\lambda}(x, y) \sigma(y) dy \,,$$

where $G_{\lambda}(x, y)$ is the Green's function given by

$$G_{\lambda}(x,y) = \frac{-1}{2\sqrt{\lambda}\sin\sqrt{\lambda}\frac{\pi}{2}} \begin{cases} \cos\sqrt{\lambda}(\frac{\pi}{2} - (y - x)), & 0 \le x \le y \le \pi, \\ \cos\sqrt{\lambda}(\frac{\pi}{2} - (x - y)), & 0 \le y \le x \le \pi, \end{cases}$$

for $\lambda > 0$ and

$$G_{\lambda}(x,y) = \frac{1}{2\sqrt{-\lambda}\sinh\frac{\sqrt{-\lambda\pi}}{2}} \begin{cases} \cosh\sqrt{-\lambda}(\frac{\pi}{2} - (y-x)), & 0 \le x \le y \le \pi, \\ \cosh\sqrt{-\lambda}(\frac{\pi}{2} - (x-y)), & 0 \le y \le x \le \pi, \end{cases}$$

for $\lambda < 0$. Here, we note that $G_{\lambda}(x, y) \ge 0$ for $\lambda < 0$ and $G_{\lambda}(x, y) < 0$ for $\lambda > 0$. Now, consider the following nonlinear periodic boundary value problem

(2.3)
$$-u''(x) = f(x, u(x)), \quad x \in [0, \pi], u(0) = u(\pi), \quad u'(0) = u'(\pi),$$

where $f \in [0, \pi] \times R \to R$ is continuous.

We say that $\alpha \in C^2([0,\pi])$ is a lower solution of (2.3) if

(2.4)
$$-\alpha''(x) \le f(x,\alpha(x)), \qquad x \in [0,\pi],$$
$$\alpha(0) = \alpha(\pi), \qquad \alpha'(0) \ge \alpha'(\pi).$$

Similarly, $\beta \in C^2([0,\pi])$ is an upper solution of (2.3) if

(2.5)
$$-\beta''(x) \ge f(x,\beta(x)), \qquad x \in [0,\pi],$$
$$\beta(0) = \beta(\pi), \qquad \beta'(0) \le \beta'(\pi).$$

Now, we state some theorems without proof which are useful in the sequel (for the proof, see reference [3]).

Theorem 1. Suppose that $\alpha, \beta \in C^2([0, \pi], R)$ are lower and upper solutions of (2.3) respectively. If f(x, u) is strictly decreasing in u, then $\alpha(x) \leq \beta(x)$ on $[0, \pi]$.

Theorem 2. Suppose that $\alpha, \beta \in C^2([0, \pi], R)$ are lower and upper solutions of (2.3) respectively such that

$$\alpha(x) \le \beta(x), \qquad \forall \ x \in [0,\pi]$$

Then there exists at least one solution u(x) of (2.3) such that $\alpha(x) \leq u(x) \leq \beta(x)$ on $[0, \pi]$.

Now, we are in a position to present the main result.

3. Main result

Theorem 3. Assume that

- $(A_1) \ \alpha, \beta \in C^2([0,\pi], R)$ are lower and upper solutions of (2.3) such that $\alpha(x) \leq \beta(x)$ on $[0,\pi]$.
- $\begin{array}{ll} (A_2) \ f \in C^2([0,\pi] \times R^2) \ and \ \frac{\partial f}{\partial u}(x,u) < 0 \ for \ every \ (x,u) \in S, \ where \\ S = \left\{ (x,u) \in R^2 : x \in [0,\pi] \quad and \quad u \in [\alpha(x),\beta(x)] \right\}. \end{array}$

Then there exists a monotone sequence $\{q_n\}$ which converges uniformly and quadratically to a unique solution of (2.3).

Proof. In view of the assumption (A_2) and the mean value theorem, we have

$$f(x,u) \ge f(x,v) + \left[\frac{\partial}{\partial u}f(x,v) + 2mv\right](u-v) - m(u^2 - v^2), \qquad m > 0,$$

for every $x \in [0, \pi]$ and $u, v \in R$ such that $\alpha(x) \leq v \leq u \leq \beta(x)$ on $[0, \pi]$. In passing, we remark that we have used $\frac{\partial^2 f}{\partial u^2}(x, u) \geq -2m$, $(x, u) \in S$ here, which follows from (A_2) . We define the function g(x, u, v) as

$$g(x, u, v) = f(x, v) + \left[\frac{\partial}{\partial u}f(x, v) + 2mv\right](u - v) - m\left(u^2 - v^2\right).$$

Observe that

(3.1)
$$g(x, u, v) \le f(x, u), \qquad g(x, u, u) = f(x, u).$$

It follows from (A_2) and (3.1) that g(x, u, v) is strictly decreasing in u for each fixed $(x, v) \in [0, \pi] \times R$ and satisfies one sided Lipschitz condition

(3.2)
$$g(x, u_1, v) - g(x, u_2, v) \le L(u_1 - u_2), \quad L > 0.$$

Now, set $\alpha = q_0$ and consider the periodic boundary value problem

(3.3)
$$-u''(x) = g(x, u(x), q_0(x)), \quad x \in [0, \pi],$$
$$u(0) = u(\pi), \quad u'(0) = u'(\pi).$$

In view of (A_1) and (3.3), we have

$$-q_0''(x) \le f(x, q_0(x)) = g(x, q_0(x), q_0(x)), \quad x \in [0, \pi],$$

$$q_0(0) = q_0(\pi), \quad q_0'(0) \ge q_0'(\pi),$$

and

$$\begin{aligned} -\beta''(x) &\geq f(x,\beta(x)) \geq g(x,\beta(x),q_0(x)), \quad x \in [0,\pi], \\ \beta(0) &= \beta(\pi), \quad \beta'(0) \leq \beta'(\pi), \end{aligned}$$

which imply that $q_0(x)$ and $\beta(x)$ are lower and upper solutions of (3.3) respectively. Hence, by Theorem 2 and (3.2), there exists a unique solution $q_1(x)$ of (3.3) such that $q_1(x) \leq q_1(x) \leq \beta(x)$ on $[0, \pi]$

$$q_0(x) \le q_1(x) \le \beta(x)$$
 on $[0,\pi]$.

Next, consider the periodic boundary value problem

(3.4)
$$-u''(x) = g(x, u(x), q_1(x)), \quad x \in [0, \pi],$$
$$u(0) = u(\pi), \quad u'(0) = u'(\pi).$$

Using (A_1) and employing the fact that $q_1(x)$ is a solution of (3.3), we obtain

(3.5)
$$-q_1''(x) = g(x, q_1(x), q_0(x)) \le g(x, q_1(x), q_1(x)), \quad x \in [0, \pi],$$
$$q_1(0) = q_1(\pi), \quad q_1'(0) \ge q_1'(\pi),$$

and

(3.6)
$$-\beta''(x) \ge f(x,\beta) \ge g(x,\beta(x),q_1(x)), \quad x \in [0,\pi],$$
$$\beta(0) = \beta(\pi), \quad \beta'(0) \le \beta'(\pi).$$

From (3.5) and (3.6), we find that $q_1(x)$ and $\beta(x)$ are lower and upper solutions of (3.4) respectively. Again, by Theorem 2 and (3.2), there exists a unique solution $q_2(x)$ of (3.4) such that

$$q_1(x) \le q_2(x) \le \beta(x)$$
 on $[0,\pi]$.

This process can be continued successively to obtain a monotone sequence $\{q_n(x)\}$ satisfying

$$q_0(x) \le q_1(x) \le q_2(x) \le \dots \le q_{n-1}(x) \le q_n(x) \le \beta(x)$$
 on $[0,\pi]$

where the element $q_n(x)$ of the sequence $\{q_n(x)\}$ is a solution of the problem

$$-u''(x) = g(x, u(x), q_{n-1}(x)), \quad x \in [0, \pi]$$
$$u(0) = u(\pi), \quad u'(0) = u'(\pi).$$

Since the sequence $\{q_n\}$ is monotone, it follows that it has a pointwise limit q(x). To show that q(x) is in fact a solution of (2.3), we note that $q_n(x)$ is a solution of the following problem

(3.7)
$$-u''(x) - \lambda u(x) = \Psi_n(x), \quad x \in [0, \pi],$$
$$u(0) = u(\pi), \quad u'(0) = u'(\pi),$$

where $\Psi_n(x) = g(x, q_n(x), q_{n-1}(x)) - \lambda q_n(x)$ for every $x \in [0, \pi]$. Since g(x, u, v) is continuous on S and $\alpha(x) \leq q_n(x) \leq \beta(x)$ on $[0, \pi]$, it follows that $\{\Psi_n(x)\}$ is bounded in $C[0, \pi]$. Thus, $q_n(x)$, the solution of (3.7) can be written as

(3.8)
$$q_n(x) = \int_0^\pi G_\lambda(x, y) \Psi_n(y) \, dy \, .$$

This implies that $\{q_n(x)\}\$ is bounded in $C^2([0,\pi])$ and hence $\{q_n(x)\} \nearrow q(x)$ uniformly on $[0,\pi]$. Consequently, taking limit $n \to \infty$ of (3.8) yields

$$q(x) = \int_0^{\pi} G_{\lambda}(x, y) \big[f\big(y, q(y)\big) - \lambda q(y) \big] \, dy \,, \quad x \in [0, \pi] \,.$$

Thus, we have shown that q(x) is a solution of (2.3). Now, we prove that the convergence of the sequence is quadratic. For that, we define

(3.9)
$$F(x,u) = f(x,u) + mu^2.$$

In view of (A_2) we can find a constant C such that

(3.10)
$$0 \le \frac{\partial^2}{\partial u^2} F(x, u) \le C.$$

Letting $e_n(x) = q(x) - q_n(x), n = 1, 2, 3, ...,$ we have

$$-e_n''(x) = q_n''(x) - q''(x)$$

= $F(x, q(x)) - F(x, q_{n-1}(x)) - (q_n(x) - q_{n-1}(x)) \frac{\partial}{\partial u} F(x, q_{n-1}(x))$
 $- m(q^2(x) - q_{n-1}^2(x)),$
 $e_n(0) = e_n(\pi), \quad e_n'(0) = e_n'(\pi).$

Using the mean value theorem repeatedly, we obtain

$$-e_{n}''(x) = \left[\frac{\partial}{\partial u}F(x,\xi) - \frac{\partial}{\partial u}F(x,q_{n-1})\right](q(x) - q_{n-1}(x)) + \left[\frac{\partial}{\partial u}F(x,q_{n-1}(x))\right](q(x) - q_{n}(x)) - m(q^{2}(x) - q_{n-1}^{2}(x)) = \frac{\partial^{2}}{\partial u^{2}}F(x,\zeta(x))e_{n-1}(x)(\xi - q_{n-1}(x)) + \left[\frac{\partial}{\partial u}F(x,q_{n-1}(x)) - m(q(x) + q_{n}(x))\right]e_{n}(x), e_{n}(0) = e_{n}(\pi), \quad e_{n}'(0) = e_{n}'(\pi),$$

where $q_{n-1}(x) \leq \zeta \leq \xi \leq q(x)$ on $[0,\pi]$ (ζ and ξ also depend on $q_{n-1}(x)$ and q(x)). Substituting

$$\frac{\partial}{\partial u}F(x,q_{n-1}(x)) - m(q(x) + q_n(x)) = a_n(x),$$

$$\frac{\partial^2}{\partial u^2}F(x,\zeta(x))e_{n-1}(x)(\xi - q_{n-1}(x)) = Ce_{n-1}^2(x) + b_n(x),$$

in (3.11) gives $b_n(x) \leq 0$ on $[0, \pi]$ and

(3.12)
$$-e_n''(x) - e_n(x)a_n(x) = Ce_{n-1}^2(x) + b_n(x), \quad x \in [0,\pi], \\ e_n(0) = e_n(\pi), \quad e_n'(0) = e_n'(\pi).$$

Since $\lim_{n\to\infty} a_n(x) = \frac{\partial f}{\partial u}(x, q(x))$ and $\frac{\partial f}{\partial u}(x, q(x)) < 0$, therefore for $\lambda < 0$, there exist $n_0 \in N$ such that for $n \ge n_0$, we have $a_n(x) < \lambda < 0$, $x \in [0, \pi]$. Therefore, the error function $e_n(x)$ satisfies the following problem

$$-e_n''(x) - \lambda e_n(x) = \left(a_n(x) - \lambda\right)e_n(x) + Ce_{n-1}^2(x) + b_n(x), \quad x \in [0,\pi],$$

whose solution is

$$e_n(x) = \int_0^{\pi} G_{\lambda}(x, y) \left[\left(a_n(y) - \lambda \right) e_n(y) + C e_{n-1}^2(y) + b_n(y) \right] dy.$$

Since $a_n(y) - \lambda < 0$, $b_n(y) \le 0$, and $G_{\lambda}(x, y) \ge 0$ for $\lambda < 0$, therefore, it follows that

$$G_{\lambda}(x,y)[(a_n(y) - \lambda)e_n(y) + b_n(y) + Ce_{n-1}^2(y)] \le G_{\lambda}(x,y)Ce_{n-1}^2(y).$$

Thus, we obtain

$$0 \le e_n(x) \le C \int_0^{\pi} G_{\lambda}(x, y) e_{n-1}^2(y) \, dy$$

which can be expressed as

$$||e_n|| \le C_1 ||e_{n-1}||^2,$$

where $C_1 = C \max \int_0^{\pi} G_{\lambda}(x, y) \, dy$ and $||e_n|| = \max \{ |e_n| : x \in [0, \pi] \}$ is the usual uniform norm.

4. Rapid convergence

Theorem 4. Assume that

- (B₁) $\alpha, \beta \in C^2(\Omega)$ are lower and upper solutions of (2.3) respectively such that $\alpha(x) \leq \beta(x)$ on $[0, \pi]$.
- $\begin{array}{l} (B_2) \ f \in C^k([0,\pi] \times R^2) \ and \ \frac{\partial f}{\partial u}(x,u) < 0 \ for \ every \ (x,u) \in S, \ where \\ S = \{(x,u) \in R^2 : x \in [0,\pi] \ and \ u \in [\alpha(x),\beta(x)]\} \,. \end{array}$

Then there exists a monotone sequence $\{q_n(x)\}$ of solutions converging uniformly to a solution of (2.3) with the order of convergence $k \ (k \ge 2)$.

Proof. In view of the assumption (B_2) and generalized mean value theorem, we obtain

(4.1)
$$f(x,u) \ge \sum_{i=0}^{k-1} \frac{\partial^i f}{\partial u^i}(x,v) \frac{(u-v)^i}{i!} - m_k (u-v)^k, \quad m_k > 0,$$

for every $x \in [0, \pi]$ and $u, v \in R$ such that $\alpha(x) \leq v \leq u \leq \beta(x)$. In (4.1), we have used $\frac{\partial^k f}{\partial u^k}(x, u) \geq -k!m_k$, which follows from (B_2) . We define

(4.2)
$$g_r(x, u, v) = \sum_{i=0}^{k-1} \frac{\partial^i f}{\partial u^i}(x, v) \frac{(u-v)^i}{i!} - m_k (u-v)^k \,.$$

Observe that

(4.3) $g_r(x, u, v) \le f(x, u), \quad g_r(x, u, u) = f(x, u).$

In view of (B_2) and (4.3), we note that $g_r(x, u, v)$ satisfies one sided Lipschitz condition

(4.4)
$$g_r(x, u_1, v) - g_r(x, u_2, v) \le L(u_1 - u_2), \quad L > 0.$$

Now, set $\alpha(x) = q_0(x)$ and consider the periodic boundary value problem

(4.5)
$$-u''(x) = g_r(x, u(x), q_0(x)), \quad x \in [0, \pi],$$
$$u(0) = u(\pi), \quad u'(0) = u'(\pi).$$

From the assumption (B_1) and (4.3), we get

$$\begin{aligned} q_0''(x) &\leq f(x, q_0(x)) = g_r(x, q_0(x), q_0(x)), \quad x \in [0, \pi], \\ q_0(0) &= q_0(\pi), \quad q_0'(0) \geq q_0'(\pi), \end{aligned}$$

and

$$-\beta''(x) \ge f(x,\beta(x)) \ge g_r(x,\beta(x),q_0(x)), \quad x \in [0,\pi],$$

$$\beta(0) = \beta(\pi), \quad \beta'(0) \le \beta'(\pi),$$

which imply that $q_0(x)$ and $\beta(x)$ are lower and upper solutions of (4.5) respectively. Therefore, by Theorem 2 and (4.4), there exists a unique solution $q_1(x)$ of (4.5) such that

$$q_0(x) \leq q_1(x) \leq \beta(x) \quad \text{on} \quad [0,\pi]\,.$$
 Similarly, we conclude that the problem

$$-u''(x) = g_r(x, u(x), q_1(x)), \quad x \in [0, \pi]$$
$$u(0) = u(\pi), \quad u'(0) = u'(\pi),$$

has a unique solution $q_2(x)$ such that

$$q_1(x) \le q_2(x) \le \beta(x), \quad x \in [0,\pi].$$

Continuing this process successively, we obtain a monotone sequence $\{q_n(x)\}$ of solutions satisfying

$$q_0(x) \le q_1(x) \le q_2(x) \le \dots \le q_{n-1}(x) \le q_n(x) \le \beta(x)$$
 on $[0,\pi]$.

where the element $q_n(x)$ of the sequence $\{q_n(x)\}$ is a solution of the problem

(4.6)
$$-u''(x) - \lambda u(x) = g_r(x, q_n(x), q_{n-1}(x)) - \lambda q_n(x) = \Psi_n(x), \quad x \in [0, \pi],$$

 $u(0) = u(\pi), \quad u'(0) = u'(\pi).$

Since the sequence is monotone, it follows that it has a pointwise limit q(x). Employing the arguments used in section 3, we find that $\{q_n(x)\} \nearrow q(x)$, uniformly on $[0, \pi]$. On the other hand, the solution of (4.6) is given by

(4.7)
$$q_n(x) = \int_0^{\pi} G_{\lambda}(x, y) \Psi_n(y) \, dy \,, \quad x \in [0, \pi] \,,$$

which, on taking limit $n \to \infty$, becomes

$$q(x) = \int_0^{\pi} G_{\lambda}(x, y) \left[f\left(y, q(y)\right) - \lambda q(y) \right] dy \,, \quad x \in [0, \pi] \,.$$

Thus, q(x) is a solution of (2.3).

In order to prove the convergence of order k $(k \ge 2)$, we define $e_n(x) = q(x) - q_n(x)$ and $a_n(x) = q_{n+1}(x) - q_n(x)$. Clearly $a_n(x) \ge 0$ and $e_n(x) \ge 0$. Further, $a_n(x) \le 0$ $e_n(x), x \in [0, \pi]$, which implies that $a_n^k(x) \le e_n^k(x)$. By the generalized mean value theorem, we have

$$-e_{n+1}''(x) = q_{n+1}''(x) - q''(x)$$

= $\sum_{i=0}^{k-1} \frac{\partial^i f}{\partial u^i}(x, q_n(x)) \frac{e_n^i(x) - a_n^i(x)}{i!} - \frac{\partial^k f}{\partial u^k}(x, \xi) \frac{e_n^k(x)}{k!} + m_k a_n^k(x)$
 $\leq (e_n(x) - a_n(x)) P_n(x) + C e_n^k(x),$

 $e_{n+1}(0) = e_{n+1}(\pi), \quad e'_{n+1}(0) = e'_{n+1}(\pi),$

where $C = 2m_k$, $q_{n-1}(x) \le \xi \le q(x)$, and

$$P_n(x) = \sum_{i=0}^{k-1} \frac{\partial^i f}{\partial u^i}(x, q_n(x)) \frac{1}{i!} \sum_{j=0}^{i-1} e_n^{i-1-j}(x) a_n^j(x), \quad x \in [0, \pi].$$

Thus, for some $\tilde{w}(x) \leq 0$, the error function $e_{n+1}(x)$ satisfies the problem

$$-e_{n+1}''(x) - e_{n+1}(x)P_n(x) = Ce_n^k(x) + \tilde{w}(x), \quad x \in [0,\pi],$$
$$e_{n+1}(0) = e_{n+1}(\pi), \quad e_{n+1}'(0) = e_{n+1}'(\pi).$$

Since $\lim_{n\to\infty} P_n(x) = \frac{\partial f}{\partial u}(x, q(x)) < 0$, therefore, for $\lambda < 0$, there exists $n_0 \in N$ such that for $n \ge n_0$, we have $P_n(x) < \lambda < 0$, $x \in [0, \pi]$. Thus, we can write

$$-e_{n+1}'(x) - \lambda e_{n+1}(x) = (P_n(x) - \lambda)e_{n+1}(x) + Ce_n^k(x) + \tilde{w}(x), \quad x \in [0,\pi],$$
$$e_{n+1}(0) = e_{n+1}(\pi), \quad e_{n+1}'(0) = e_{n+1}'(\pi),$$

whose solution is given by

(4.8)
$$e_{n+1}(x) = \int_0^\pi G_\lambda(x,y) \left[(P_n(y) - \lambda) e_{n+1}(y) + C e_n^k(y) + \tilde{w}(y) \right] dy \,.$$

Since $P_n(y) - \lambda < 0$, $\tilde{w}(y) \le 0$ and $G_{\lambda}(x, y) \ge 0$ for $\lambda < 0$, therefore, it follows that

(4.9)
$$G_{\lambda}(x,y) \left[(P_n(y) - \lambda) e_{n+1}(y) + Ce_n^k(y) + \tilde{w}(y) \right] \le G_{\lambda}(x,y) Ce_n^k(y) .$$

Combining (4.8) and (4.9), we obtain

$$0 \le e_{n+1}(x) \le C \int_0^\pi G_\lambda(x,y) e_n^k(y) \, dy$$

Thus,

$$||e_n(x)|| \le C_1 ||e_{n-1}(x)||^k$$
,

where $C_1 = C \max \int_0^{\pi} G_{\lambda}(x, y) \, dy$.

Acknowledgement. The authors are grateful to the referee for his useful comments to improve the quality of the paper.

References

- Lakshmikantham, V., An extension of the method of quasilinearization, J. Optim. Theory Appl. 82 (1994), 315–321.
- [2] Lakshmikantham, V., Further improvement of generalized quasilinearization, Nonlinear Anal. 27 (1996), 315–321.
- [3] Lakshmikantham, V. and Vatsala, A. S., Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht (1998).
- [4] Nieto, J. J., Generalized quasilinearization method for a second order differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc. 125 (1997), 2599–2604.
- [5] Cabada, A., Nieto, J. J. and Pita-da-Veige, R., A note on rapid convergence of approximate solutions for an ordinary Dirichlet problem, Dynam. Contin. Discrete Impuls. Systems 4 (1998), 23–30.
- [6] Mohapatra, R. N., Vajravelu, K. and Yin, Y., Generalized quasilinearization method for second order boundary value problems, Nonlinear Anal. 36 (1999), 799–806.

DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY ISLAMABAD, PAKISTAN

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE KING ABDUL AZIZ UNIVERSITY, P. O. BOX 80203, JEDDAH-21589, SAUDI ARABIA *E-mail:* bashir_qau@yahoo.com