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ON NATURALITY OF THE HELMHOLTZ OPERATOR

W. M. MIKULSKI
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We deduce that all natural operators of the type of the Helmholtz map

from the variational calculus in fibered manifolds are the constant multiples of the
Helmholtz operator.

0 Introduction

Given two fibered manifolds Z1 → M and Z2 → M over the same base M , we
denote by C∞

M (Z1, Z2) the space of all base preserving fibered manifold morphisms
of Z1 into Z2. In [2], Kolář and Vitolo studied the s-th order Helmholtz map of the
variational calculus on a fibered manifold p : Y →M , dimM = m, as a morphism
operator

H : C∞
Y (JsY, V ∗Y ⊗

m
∧

T ∗M) → C∞
JsY (J2sY, V ∗JsY ⊗ V ∗Y ⊗

m
∧

T ∗M) .

They also deduced that for s = 1, 2 all FMm,n-natural operators of this type
(in the sense of [1]) are of the form cH , c ∈ R. In the present paper we deduce
that the same result holds for arbitrary s. In other words we prove the following
theorem.

Theorem 1. Let m, n, s be natural numbers with n ≥ 2. Then any π2s
s -local and

FMm,n-natural (regular) operator

D : C∞
Y (JsY, V ∗Y ⊗

m
∧

T ∗M) → C∞
JsY (J2sY, V ∗JsY ⊗ V ∗Y ⊗

m
∧

T ∗M)

is of the form D = cH, c ∈ R, where π2s
s : J2sY → JsY is the jet projection.

From now on Rm,n is the trivial bundle Rm × Rn → Rm and x1, . . . , xm,
y1, . . . , yn are the usual coordinates on Rm,n.
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1 Proof of Theorem 1

Let D be an operator in question.
Since an FMm,n-map

(

x, y−σ(x)
)

sends j2s
0 (σ) into Θ = j2s

0 (0) ∈ J2s
0 (Rm,Rn)

= J2s
0 (Rm,n), J2s(Rm,n) is the FMm,n-orbit of Θ. ThenD is uniquely determined

by the evaluations

〈D(E)Θ, w ⊗ v〉 ∈

m
∧

T ∗
0 Rm

for all E ∈ C∞
Rm,n

(

Js(Rm,n), V ∗Rm,n ⊗
∧m

T ∗Rm
)

, w ∈ Vπ2s
s (Θ)J

s(Rm,n) and
v ∈ T0R

n = V(0,0)R
m,n.

Using the invariance ofD with respect to FMm,n-morphisms of the form idRm×
ψ for linear ψ (since n ≥ 2) we get thatD is uniquely determined by the evaluations

〈

D(E)Θ,
d

dt 0

(

tjs
0(f(x), 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

∈

m
∧

T ∗
0 Rm

for all E ∈ C∞
Rm,n

(

Js(Rm,n), V ∗Rm,n ⊗
∧m

T ∗Rm
)

and all f : Rm → R.

Using the invariance of D with respect to FMm,n-maps (x1, . . . , xm, y1 +
f(x)y1, y2, . . . , yn) preserving Θ we get that D is uniquely determined by the
evaluations

〈

D(E)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

∈

m
∧

T ∗
0 Rm

for all E ∈ C∞
Rm,n

(

Js(Rm,n), V ∗Rm,n ⊗
∧m

T ∗Rm
)

.

Let E ∈ C∞
Rm,n

(

Js(Rm,n), V ∗Rm,n ⊗
∧m

T ∗Rm
)

. Using the invariance of D

with respect to FMm,n-maps ψτ = (x1, . . . , xm, 1
τ1 y

1, . . . , 1
τn y

n) for τ j 6= 0 we get
the homogeneity condition

〈

D
(

(ψτ )∗E
)

Θ
,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= τ1τ2
〈

D(E)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

for τ = (τ1, . . . , τn). By Corollary 19.8 in [1] of the non-linear Peetre theorem
we can assume that E is a polynomial (with arbitrary degree). It is easily seen
that coordinates of polynomial (ψτ )∗E are the multiplication by monomials in
τ of respective coordinates of polynomial E. The regularity of D implies that
〈

D(E)Θ,
d
dt0

(

tjs
0(1, 0, . . . , 0)

)

⊗ ∂
∂y2

0

〉

is smooth with respect to the coordinates of

E. Then by the homogeneous function theorem (and the above type of homogene-
ity) we deduce that

〈

D(E)Θ,
d
dt0

(

tjs
0(1, 0, . . . , 0)

)

⊗ ∂
∂y2

0

〉

depends linearly on the

coordinates of E on all xβy1
αdy

2 ⊗ dxµ and xβy2dy1 ⊗ dxµ, it depends bilinearly
on the coordinates of E on all xρdy1⊗dxµ and xβdy2⊗dxµ, and it is independent
of the other coordinates of E, where (xi, yj

α) is the induced coordinate system on
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Js(Rm,n) and dxµ = dx1 ∧ · · · ∧ dxm. (Here and from now on α, ρ and β are
arbitrary m-tuples with |α| ≤ s).

In other words (and more precisely)
〈

D(E)Θ,
d
dt0

(

tjs
0(1, 0, . . . , 0)

)

⊗ ∂
∂y2

0

〉

is

determined by the values

〈

D(xβy2
αdy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

,

〈

D(xβy1
αdy

2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

,

〈

D(xρdy1 ⊗ dxµ + xβdy2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

.

Moreover
〈

D(E)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

is linear in E for E from the vector subspace (over R) spaned by all xβy1
αdy

2⊗dxµ

and xβy2
αdy

1 ⊗ dxµ,

〈

D(dy1 ⊗ dxµ +E)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

=
〈

D(E)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

(1)

forE from the vector subspace (over R) spaned by all xβy1
αdy

2⊗dxµ and xβy2
αdy

1⊗
dxµ, and

〈

D(axρdy1 ⊗ dxµ + bxβdy2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

=ab
〈

D(xρdy1 ⊗ dxµ + xβdy2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

(2)

for all real numbers a and b.
Then by the invariance of D with respect to (τ 1x1, . . . , τmxm, y1, . . . , yn) for

τ i 6= 0 we get

〈

D(xβy2
αdy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

=
〈

D(xβy1
αdy

2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= 0(3)

if only β 6= α, and

〈

D(xρdy1 ⊗ dxµ + xβdy2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= 0
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for all ρ and β.
Suppose α = (α1, . . . , αm) be an m-tuple with |α| ≤ s and αi 6= 0 for some i.

Then using the invariance of D with respect to locally defined FMm,n-map ψ =
(x1, . . . , xm, y1, y2 + xiy2 . . . , yn)−1 preserving x1, . . . , xm, y1, Θ, js

0(1, 0, . . . , 0)
and ∂

∂y2
0

and sending y2
α into y2

α + xiy2
α + y2

α−1i

(

as y2
α ◦ Jsψ−1(js

x0
σ) = ∂α(σ2 +

xiσ2)(x0) = ∂ασ
2(x0) + xi

0∂ασ
2(x0) + ∂α−1i

σ2(x0) = (y2
α + xiy2

α + y2
α−1i

)(js
x0
σ)

for js
x0
σ ∈ JsRm,n, where ∂α is the iterated partial derivative with erspect to the

index α multiplied by 1
α!

)

from

〈

D(xα−1iy2
αdy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= 0

(see (3)) we deduce that

〈

D(xαy2
αdy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= −
〈

D(xα−1iy2
α−1i

dy1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

.

Then for any m-tuple α with |α| ≤ s we have

〈

D(xαy2
αdy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= (−1)|α|
〈

D(y2
(0)dy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

.

By the same arguments (since ψ sends dy2 into dy2 + xidy2) from

〈

D(xα−1iy1
αdy

2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= 0

we obtain
〈

D(xαy1
αdy

2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= 0

if α 6= (0).

Using the invariance of D with respect to (locally defined) FMm,n-map

(x1, . . . , xm, y1 + y1y2, . . . , yn)−1 preserving Θ, js
0(1, 0, . . . , 0) and ∂

∂y2
0

from

〈

D(dy1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= 0

(see (2)) and (1) we deduce that

〈

D(y2
(0)dy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

= −
〈

D(y1
(0)dy

2 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

.
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Then D is uniquely determined by

〈

D(y2
(0)dy

1 ⊗ dxµ)Θ,
d

dt 0

(

tjs
0(1, 0, . . . , 0)

)

⊗
∂

∂y2
0

〉

∈

m
∧

T ∗
0 Rm = R .

Then the vector space of all D in question is of dimension less or equal to 1. That
is why D = cH for some c ∈ R. �
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