ARCHIVUM MATHEMATICUM (BRNO) Tomus 41 (2005), 145 – 149

ON NATURALITY OF THE HELMHOLTZ OPERATOR

W. M. MIKULSKI

ABSTRACT. We deduce that all natural operators of the type of the Helmholtz map from the variational calculus in fibered manifolds are the constant multiples of the Helmholtz operator.

0 Introduction

Given two fibered manifolds $Z_1 \to M$ and $Z_2 \to M$ over the same base M, we denote by $\mathcal{C}^{\infty}_M(Z_1, Z_2)$ the space of all base preserving fibered manifold morphisms of Z_1 into Z_2 . In [2], Kolář and Vitolo studied the *s*-th order Helmholtz map of the variational calculus on a fibered manifold $p: Y \to M$, dim M = m, as a morphism operator

$$H: \mathcal{C}_Y^{\infty}(J^sY, V^*Y \otimes \bigwedge^m T^*M) \to \mathcal{C}_{J^sY}^{\infty}(J^{2s}Y, V^*J^sY \otimes V^*Y \otimes \bigwedge^m T^*M).$$

They also deduced that for s = 1, 2 all $\mathcal{FM}_{m,n}$ -natural operators of this type (in the sense of [1]) are of the form cH, $c \in \mathbb{R}$. In the present paper we deduce that the same result holds for arbitrary s. In other words we prove the following theorem.

Theorem 1. Let m, n, s be natural numbers with $n \ge 2$. Then any π_s^{2s} -local and $\mathcal{FM}_{m,n}$ -natural (regular) operator

$$D: \mathcal{C}^{\infty}_{Y}(J^{s}Y, V^{*}Y \otimes \bigwedge^{m} T^{*}M) \to \mathcal{C}^{\infty}_{J^{s}Y}(J^{2s}Y, V^{*}J^{s}Y \otimes V^{*}Y \otimes \bigwedge^{m} T^{*}M)$$

is of the form D = cH, $c \in \mathbf{R}$, where $\pi_s^{2s} : J^{2s}Y \to J^sY$ is the jet projection.

From now on $\mathbf{R}^{m,n}$ is the trivial bundle $\mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^m$ and $x^1, \ldots, x^m, y^1, \ldots, y^n$ are the usual coordinates on $\mathbf{R}^{m,n}$.

²⁰⁰⁰ Mathematics Subject Classification: 58A20.

Key words and phrases: natural operator, Euler morphism, Helmholtz operator. Received May 15, 2003.

1 Proof of Theorem 1

Let D be an operator in question.

Since an $\mathcal{FM}_{m,n}$ -map $(x, y - \sigma(x))$ sends $j_0^{2s}(\sigma)$ into $\Theta = j_0^{2s}(0) \in J_0^{2s}(\mathbf{R}^m, \mathbf{R}^n)$ $= J_0^{2s}(\mathbf{R}^{m,n}), J^{2s}(\mathbf{R}^{m,n})$ is the $\mathcal{FM}_{m,n}$ -orbit of Θ . Then D is uniquely determined by the evaluations

$$\langle D(E)_{\Theta}, w \otimes v \rangle \in \bigwedge^m T_0^* \mathbf{R}^m$$

for all $E \in \mathcal{C}^{\infty}_{\mathbf{R}^{m,n}}(J^s(\mathbf{R}^{m,n}), V^*\mathbf{R}^{m,n} \otimes \bigwedge^m T^*\mathbf{R}^m), w \in V_{\pi^{2s}_s(\Theta)}J^s(\mathbf{R}^{m,n})$ and $v \in T_0\mathbf{R}^n = V_{(0,0)}\mathbf{R}^{m,n}$.

Using the invariance of D with respect to $\mathcal{FM}_{m,n}$ -morphisms of the form $id_{\mathbf{R}^m} \times$ ψ for linear ψ (since $n \geq 2$) we get that D is uniquely determined by the evaluations

$$\left\langle D(E)_{\Theta}, \frac{d}{dt_0} (tj_0^s(f(x), 0, \dots, 0)) \otimes \frac{\partial}{\partial y^2}_0 \right\rangle \in \bigwedge^m T_0^* \mathbf{R}^m$$

for all $E \in \mathcal{C}^{\infty}_{\mathbf{R}^{m,n}}(J^{s}(\mathbf{R}^{m,n}), V^{*}\mathbf{R}^{m,n} \otimes \bigwedge^{m} T^{*}\mathbf{R}^{m})$ and all $f : \mathbf{R}^{m} \to \mathbf{R}$.

Using the invariance of D with respect to $\mathcal{FM}_{m,n}$ -maps $(x^1,\ldots,x^m,y^1+$ $f(x)y^1, y^2, \ldots, y^n$) preserving Θ we get that D is uniquely determined by the evaluations

$$\left\langle D(E)_{\Theta}, \frac{d}{dt_0} (tj_0^s(1, 0, \dots, 0)) \otimes \frac{\partial}{\partial y^2}_0 \right\rangle \in \bigwedge^m T_0^* \mathbf{R}^m$$

for all $E \in \mathcal{C}^{\infty}_{\mathbf{R}^{m,n}}(J^{s}(\mathbf{R}^{m,n}), V^{*}\mathbf{R}^{m,n} \otimes \bigwedge^{m} T^{*}\mathbf{R}^{m}).$ Let $E \in \mathcal{C}^{\infty}_{\mathbf{R}^{m,n}}(J^{s}(\mathbf{R}^{m,n}), V^{*}\mathbf{R}^{m,n} \otimes \bigwedge^{m} T^{*}\mathbf{R}^{m}).$ Using the invariance of Dwith respect to $\mathcal{FM}_{m,n}$ -maps $\psi_{\tau} = (x^1, \dots, x^m, \frac{1}{\tau^1}y^1, \dots, \frac{1}{\tau^n}y^n)$ for $\tau^j \neq 0$ we get the homogeneity condition

$$\left\langle D\left((\psi_{\tau})_{*}E\right)_{\Theta}, \frac{d}{dt_{0}}\left(tj_{0}^{s}(1,0,\ldots,0)\right) \otimes \frac{\partial}{\partial y^{2}_{0}}\right\rangle$$
$$= \tau^{1}\tau^{2}\left\langle D(E)_{\Theta}, \frac{d}{dt_{0}}\left(tj_{0}^{s}(1,0,\ldots,0)\right) \otimes \frac{\partial}{\partial y^{2}_{0}}\right\rangle$$

for $\tau = (\tau^1, \ldots, \tau^n)$. By Corollary 19.8 in [1] of the non-linear Peetre theorem we can assume that E is a polynomial (with arbitrary degree). It is easily seen that coordinates of polynomial $(\psi_{\tau})_*E$ are the multiplication by monomials in τ of respective coordinates of polynomial E.~ The regularity of D implies that $\langle D(E)_{\Theta}, \frac{d}{dt_0} (tj_0^s(1, 0, \dots, 0)) \otimes \frac{\partial}{\partial y^2_0} \rangle$ is smooth with respect to the coordinates of ${\cal E}.$ Then by the homogeneous function theorem (and the above type of homogeneous ity) we deduce that $\langle D(E)_{\Theta}, \frac{d}{dt_0}(tj_0^s(1,0,\ldots,0)) \otimes \frac{\partial}{\partial y^2_0} \rangle$ depends linearly on the coordinates of E on all $x^{\beta}y^{1}_{\alpha}dy^{2} \otimes dx^{\mu}$ and $x^{\beta}y^{2}dy^{1} \otimes dx^{\mu}$, it depends bilinearly on the coordinates of E on all $x^{\rho}dy^{1} \otimes dx^{\mu}$ and $x^{\beta}dy^{2} \otimes dx^{\mu}$, and it is independent of the other coordinates of E, where (x^i, y^j_{α}) is the induced coordinate system on

 $J^{s}(\mathbf{R}^{m,n})$ and $dx^{\mu} = dx^{1} \wedge \cdots \wedge dx^{m}$. (Here and from now on α , ρ and β are arbitrary *m*-tuples with $|\alpha| \leq s$).

In other words (and more precisely) $\langle D(E)_{\Theta}, \frac{d}{dt_0}(tj_0^s(1,0,\ldots,0)) \otimes \frac{\partial}{\partial y^2_0} \rangle$ is determined by the values

$$\left\langle D(x^{\beta}y_{\alpha}^{2}dy^{1}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}\left(tj_{0}^{s}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle, \\ \left\langle D(x^{\beta}y_{\alpha}^{1}dy^{2}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}\left(tj_{0}^{s}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle, \\ \left\langle D(x^{\rho}dy^{1}\otimes dx^{\mu}+x^{\beta}dy^{2}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}\left(tj_{0}^{s}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle.$$

Moreover

$$\left\langle D(E)_{\Theta}, \frac{d}{dt_0} (tj_0^s(1, 0, \dots, 0)) \otimes \frac{\partial}{\partial y^2}_0 \right\rangle$$

is linear in E for E from the vector subspace (over **R**) spaned by all $x^{\beta}y^{1}_{\alpha}dy^{2} \otimes dx^{\mu}$ and $x^{\beta}y^{2}_{\alpha}dy^{1} \otimes dx^{\mu}$,

(1)
$$\left\langle D(dy^{1} \otimes dx^{\mu} + E)_{\Theta}, \frac{d}{dt_{0}} (tj_{0}^{s}(1, 0, \dots, 0)) \otimes \frac{\partial}{\partial y^{2}_{0}} \right\rangle$$
$$= \left\langle D(E)_{\Theta}, \frac{d}{dt_{0}} (tj_{0}^{s}(1, 0, \dots, 0)) \otimes \frac{\partial}{\partial y^{2}_{0}} \right\rangle$$

for E from the vector subspace (over **R**) spaned by all $x^{\beta}y^1_{\alpha}dy^2 \otimes dx^{\mu}$ and $x^{\beta}y^2_{\alpha}dy^1 \otimes dx^{\mu}$, and

$$\left\langle D(ax^{\rho}dy^{1}\otimes dx^{\mu} + bx^{\beta}dy^{2}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}(tj_{0}^{s}(1,0,\ldots,0))\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle$$

$$(2) = ab\left\langle D(x^{\rho}dy^{1}\otimes dx^{\mu} + x^{\beta}dy^{2}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}(tj_{0}^{s}(1,0,\ldots,0))\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle$$

for all real numbers a and b.

Then by the invariance of D with respect to $(\tau^1 x^1, \ldots, \tau^m x^m, y^1, \ldots, y^n)$ for $\tau^i \neq 0$ we get

$$\left\langle D(x^{\beta}y_{\alpha}^{2}dy^{1}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt}_{0}\left(tj_{0}^{s}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle$$

$$=\left\langle D(x^{\beta}y_{\alpha}^{1}dy^{2}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt}_{0}\left(tj_{0}^{s}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle = 0$$

if only $\beta \neq \alpha$, and

$$\left\langle D(x^{\rho}dy^{1}\otimes dx^{\mu} + x^{\beta}dy^{2}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt}_{0}(tj_{0}^{s}(1,0,\ldots,0))\otimes \frac{\partial}{\partial y^{2}}_{0}\right\rangle = 0$$

for all ρ and β .

Suppose $\alpha = (\alpha_1, \ldots, \alpha_m)$ be an *m*-tuple with $|\alpha| \leq s$ and $\alpha_i \neq 0$ for some *i*. Then using the invariance of *D* with respect to locally defined $\mathcal{FM}_{m,n}$ -map $\psi = (x^1, \ldots, x^m, y^1, y^2 + x^i y^2 \ldots, y^n)^{-1}$ preserving $x^1, \ldots, x^m, y^1, \Theta, j_0^s(1, 0, \ldots, 0)$ and $\frac{\partial}{\partial y^2_0}$ and sending y_{α}^2 into $y_{\alpha}^2 + x^i y_{\alpha}^2 + y_{\alpha-1_i}^2$ (as $y_{\alpha}^2 \circ J^s \psi^{-1}(j_{x_0}^s \sigma) = \partial_{\alpha}(\sigma^2 + x^i \sigma^2)(x_0) = \partial_{\alpha}\sigma^2(x_0) + x_0^i \partial_{\alpha}\sigma^2(x_0) + \partial_{\alpha-1_i}\sigma^2(x_0) = (y_{\alpha}^2 + x^i y_{\alpha}^2 + y_{\alpha-1_i}^2)(j_{x_0}^s \sigma)$ for $j_{x_0}^s \sigma \in J^s \mathbf{R}^{m,n}$, where $\partial \alpha$ is the iterated partial derivative with erspect to the index α multiplied by $\frac{1}{\alpha!}$) from

$$\left\langle D(x^{\alpha-1_i}y^2_{\alpha}dy^1\otimes dx^{\mu})_{\Theta}, \frac{d}{dt}_0(tj^s_0(1,0,\ldots,0))\otimes \frac{\partial}{\partial y^2}_0\right\rangle = 0$$

(see (3)) we deduce that

$$\left\langle D(x^{\alpha}y_{\alpha}^{2}dy^{1}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}\left(tj_{0}^{s}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle$$
$$= -\left\langle D(x^{\alpha-1_{i}}y_{\alpha-1_{i}}^{2}dy^{1}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}\left(tj_{0}^{s}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle.$$

Then for any *m*-tuple α with $|\alpha| \leq s$ we have

$$\left\langle D(x^{\alpha}y_{\alpha}^{2}dy^{1}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}(tj_{0}^{s}(1,0,\ldots,0))\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle$$
$$= (-1)^{|\alpha|}\left\langle D(y_{(0)}^{2}dy^{1}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt_{0}}(tj_{0}^{s}(1,0,\ldots,0))\otimes\frac{\partial}{\partial y^{2}_{0}}\right\rangle.$$

By the same arguments (since ψ sends dy_2 into $dy^2 + x^i dy^2$) from

$$\left\langle D(x^{\alpha-1_i}y^1_{\alpha}dy^2\otimes dx^{\mu})_{\Theta}, \frac{d}{dt}_0(tj^s_0(1,0,\ldots,0))\otimes \frac{\partial}{\partial y^2}_0\right\rangle = 0$$

we obtain

$$\left\langle D(x^{\alpha}y^{1}_{\alpha}dy^{2}\otimes dx^{\mu})_{\Theta}, \frac{d}{dt}_{0}\left(tj^{s}_{0}(1,0,\ldots,0)\right)\otimes\frac{\partial}{\partial y^{2}}_{0}\right\rangle = 0$$

if $\alpha \neq (0)$.

Using the invariance of D with respect to (locally defined) $\mathcal{FM}_{m,n}$ -map $(x^1, \ldots, x^m, y^1 + y^1 y^2, \ldots, y^n)^{-1}$ preserving Θ , $j_0^s(1, 0, \ldots, 0)$ and $\frac{\partial}{\partial y^2_0}$ from

$$\left\langle D(dy^1 \otimes dx^{\mu})_{\Theta}, \frac{d}{dt}_0(tj_0^s(1,0,\ldots,0)) \otimes \frac{\partial}{\partial y^2}_0 \right\rangle = 0$$

(see (2)) and (1) we deduce that

$$\left\langle D(y_{(0)}^2 dy^1 \otimes dx^{\mu})_{\Theta}, \frac{d}{dt_0} (tj_0^s(1,0,\ldots,0)) \otimes \frac{\partial}{\partial y^2}_0 \right\rangle$$
$$= -\left\langle D(y_{(0)}^1 dy^2 \otimes dx^{\mu})_{\Theta}, \frac{d}{dt_0} (tj_0^s(1,0,\ldots,0)) \otimes \frac{\partial}{\partial y^2}_0 \right\rangle.$$

Then D is uniquely determined by

$$\left\langle D(y_{(0)}^2 dy^1 \otimes dx^\mu)_{\Theta}, \frac{d}{dt_0} (tj_0^s(1,0,\ldots,0)) \otimes \frac{\partial}{\partial y^2}_0 \right\rangle \in \bigwedge^m T_0^* \mathbf{R}^m = \mathbf{R}.$$

Then the vector space of all D in question is of dimension less or equal to 1. That is why D = cH for some $c \in \mathbf{R}$.

Acknowledgements. The author acknowledges Prof. I. Kolář for suggesting the problem and for several useful comments.

References

- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer--Verlag Berlin 1993.
- [2] Kolář, I., Vitolo, R., On the Helmholtz operator for Euler morphisms, Math. Proc. Camb. Phil. Soc. 135 (2003), 277–299.

Institute of Mathematics, Jagiellonian University Reymonta 4, Kraków, Poland *E-mail:* mikulski@im.uj.edu.pl