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ASYMPTOTIC STABILITY FOR SETS OF POLYNOMIALS

THOMAS W. MÜLLER AND JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. We introduce the concept of asymptotic stability for a set of com-
plex functions analytic around the origin, implicitly contained in an earlier
paper of the first mentioned author (“Finite group actions and asymptotic

expansion of eP (z)”, Combinatorica 17 (1997), 523 – 554). As a consequence
of our main result we find that the collection of entire functions exp(P)
with P the set of all real polynomials P (z) satisfying Hayman’s condition
[zn] exp(P (z)) > 0 (n ≥ n0) is asymptotically stable. This answers a ques-
tion raised in loc. cit.

1. Asymptotic stability

Let F be a set of complex functions analytic in the origin, and for f ∈ F let
f(z) =

∑

n αf
n zn be the expansion of f around 0. F is termed asymptotically

stable, if

(i) ∀ f ∈ F ∃nf ∈ N0 ∀n ≥ nf : αf
n 6= 0,

(ii) ∀ f, g ∈ F : αf
n ∼ αg

n → f = g in a neighbourhood of 0.

Here, for arithmetic functions f and g, the notation f(n) ∼ g(n) is short for

g(n) = f(n)
(

1 + o(1)
)

, n → ∞.

A set of polynomials P ⊆ C[z] is called asymptotically stable, if the set of entire
functions

F = exp(P) :=
{

eP (z) : P (z) ∈ P
}

is asymptotically stable. Define the degree of the zero polynomial to be −1. For

a polynomial P (z) =
∑d

δ=0 cδz
δ of exact degree d ≥ 1 with real coefficients cδ

consider the following two conditions:

(G) cδ = 0 for d/2 < δ < d,

(H) [zn]eP (z) > 0 for all sufficiently large n.
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Here, [zn]f(z) denotes the coefficient of zn in the expansion of f(z) around the
origin. Asymptotically stable sets of functions first appeared in [3], where it was
shown among other things that the set of polynomials

P0 =
{

P (z) ∈ R[z] : P (z) satisfies (G) and (H)
}

is asymptotically stable. Since for a finite group G we have1

∞
∑

n=0

|Hom (G, Sn)| zn

n!
= exp

(

∑

ν

|{U : (G : U) = ν}| zν

ν

)

,

asymptotic stability of P0 implies in particular the following curious phenomenon
(“asymptotic stability” of finite groups):

If for two finite groups G and H we have |Hom(G, Sn)| ∼ |Hom(H, Sn)| as n → ∞,
then these arithmetic functions must in fact coincide.

Condition (H) arises in the work of Hayman [2], where it is shown that for a real
polynomial P (z) of degree at least 1 the function eP (z) is admissible in the complex
plane in the sense of [2, pp. 68 - 69] if and only if (H) holds; cf. [2, Theorem X].
The gap condition (G) has turned out to be an efficient way of exploiting the
fact that polynomials P (z) arising from enumerative problems very often have the
property that

supp (P (z)) ⊆
{

δ : δ | deg (P (z))
}

.

In [3] the question was raised whether condition (G) could be dropped while still
maintaining asymptotic stability, i.e., whether the larger set of polynomials

(1) P =
{

P (z) ∈ R[z] : P (z) satisfies (H)
}

is asymptotically stable. The purpose of this note is to establish the following
result, which in particular provides an affirmative answer to the latter question.

Theorem. Let P1(z), P2(z) ∈ R[z] satisfy Hayman’s condition (H), for i = 1, 2

let {α(i)
n }n≥0 be the coefficients of ePi(z), and put ∆(z) := P1(z) − P2(z) as well

as m := max
(

deg (P1(z)), deg (P2(z))
)

.

(i) Suppose that either 0 ≤ µ < m, or µ = m and deg (P1(z)) = deg (P2(z)).

Then we have deg (∆(z)) = µ if and only if | log α
(1)
n − log α

(2)
n | � nµ/m.

(ii) If deg (P1(z)) 6= deg (P2(z)), then | log α
(1)
n − log α

(2)
n | � n log n.

Here, f(n) � g(n) means that f(n) and g(n) are of the same order of magnitude;
that is, there exist positive constants c1, c2 such that c1f(n) ≤ g(n) ≤ c2f(n) for
all n.

Corollary. The set of polynomials P defined in (1) is asymptotically stable.

Proof. If P1(z), P2(z) ∈ R[z] are polynomials satisfying condition (H) as well as

α
(1)
n ∼ α

(2)
n , then log α

(1)
n − log α

(2)
n = o(1). By our theorem, deg

(

∆(z)
)

6∈ [0, m],
and hence P1(z) = P2(z). �

1Cf. for instance [1, Prop. 1] or [4, Exercise 5.13].
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2. Proof of the theorem

For i = 1, 2 put Pi(z) =
∑di

δ=0 c
(i)
δ zδ with c

(i)
di

6= 0. Our assumptions that P1(z)
and P2(z) have real coefficients and satisfy (H) ensure via [2, Theorem X] that the
functions exp(Pi(z)) are admissible in the complex plane; in particular, in view of

[2, formula (1.2)], we have c
(i)
di

> 0. By [2, Theorem I] we find that, for i = 1, 2,

α(i)
n ∼ exp (Pi(ϑ

(i)
n ))

(

ϑ
(i)
n

)n
√

2πbi(ϑ
(i)
n )

(n → ∞) ,

where ϑ
(i)
n is the positive real root of the equation ϑP ′

i (ϑ) = n, and bi(ϑ) =

ϑP ′
i (ϑ) + ϑ2P ′′

i (ϑ). Since c
(i)
di

> 0, the root ϑ
(i)
n is well defined and increasing for

sufficiently large n, and unbounded as n → ∞. This gives ϑ
(i)
n ∼

(

n

dic
(i)
di

)1/di
and

bi(ϑ
(i)
n ) ∼ di n, and hence

(2) α(i)
n ∼ exp(Pi(ϑ

(i)
n ))

(

ϑ
(i)
n

)n √
2πdin

(n → ∞) .

Formula (2) implies that

log α(1)
n − log α(2)

n = P1(ϑ
(1)
n ) − P2(ϑ

(2)
n ) − n

(

log ϑ(1)
n − log ϑ(2)

n

)

− 1

2

(

log d1 − log d2

)

+ o(1) .(3)

First consider case (ii), that is, the case when d1 6= d2. Then, by (3),

log α(1)
n − log α(2)

n =
( 1

d2
− 1

d1

)

n log n + O(n) ,

that is,
∣

∣ log α(1)
n − log α(2)

n

∣

∣ � n log n

as claimed.2 Next suppose that d1 = d2. Then the right–hand side of (3) becomes

d−1
1 log(c

(1)
d1

/c
(2)
d2

) n + o(n) ;

in particular, we have deg
(

∆(z)
)

= m if and only if | log α
(1)
n − log α

(2)
n | � n, which

proves the last part of (i). Thirdly, for m = 1,

log α(1)
n − log α(2)

n = c
(1)
0 − c

(2)
0 + n log(c

(1)
1 /c

(2)
1 ) + o(1) ,

in particular, deg (∆(z)) = 0 if and only if | log α
(1)
n − log α

(2)
n | � 1. Hence, we may

assume for the remainder of the argument that m ≥ 2.

2Here, as well as in certain other places below, a more precise estimate than the one stated
is obtained, but not needed in the argument.
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Now suppose that 0 ≤ µ := deg (∆(z)) < m. We want to show that in this case

| log α
(1)
n − log α

(2)
n | � nµ/m. We have

n − ϑ(1)
n P ′

2(ϑ
(1)
n ) = ϑ(1)

n

[

P ′
1(ϑ

(1)
n ) − P ′

2(ϑ
(1)
n )

]

= ϑ(1)
n ∆′(ϑ(1)

n )

= aµ
(

ϑ(1)
n

)µ
+ o(nµ/m) ,

(4)

where a is the leading coefficient of ∆(z), which we may suppose without loss of

generality to be positive. Expanding ϑP ′
2(ϑ) as Taylor series around ϑ

(1)
n , we find

that

ϑP ′
2(ϑ) − ϑ(1)

n P ′
2(ϑ

(1)
n ) =

(

c(2)
m m2

(

ϑ(1)
n

)m−1
+ O

(

n
m−2

m

)

)

(

ϑ − ϑ(1)
n

)

+ O
(

n
m−2

m

(

ϑ − ϑ(1)
n

)2
+

(

ϑ − ϑ(1)
n

)m
)

.(5)

If ϑ runs through the interval

I =

[

ϑ(1)
n − 2aµ

m2 c
(1)
m

, ϑ(1)
n +

2aµ

m2 c
(1)
m

]

,

the right–hand side of (5) covers a range containing the interval

[

− (2 − ε)aµ
(

ϑ(1)
n

)m−1
, (2 − ε)aµ

(

ϑ(1)
n

)m−1
]

for every given ε > 0 and sufficiently large n depending on ε. Combining this

observation with (4), we find that n − ϑP ′
2(ϑ) changes sign in I , that is, ϑ

(2)
n ∈ I

for large n; in particular we have ϑ
(2)
n −ϑ

(1)
n = O(1). Since m ≥ 2, setting ϑ = ϑ

(2)
n

in (5) and rewriting the left-hand side via (4) now gives

(6) aµ
(

ϑ(1)
n

)µ
=

(

c(1)
m m2

(

ϑ(1)
n

)m−1
+ O

(

n
m−2

m

)

)

(

ϑ(2)
n − ϑ(1)

n

)

+ o(nµ/m) .

For x, y real, x → ∞, and x − y = O(1),

P2(x) − P2(y) = (x − y) P ′
2(x) + O

(

(x − y) xm−2
)

.

Hence, applying (6), we have as n → ∞

P1(ϑ
(1)
n ) − P2(ϑ

(2)
n ) = ∆(ϑ(1)

n ) + P2(ϑ
(1)
n ) − P2(ϑ

(2)
n )

= ∆(ϑ(1)
n ) + (ϑ(1)

n − ϑ(2)
n )P ′

2(ϑ
(1)
n ) + O

(

(ϑ(1)
n − ϑ(2)

n )(ϑ(1)
n )m−2

)

= a
(

1 − µ

m

)( n

m c
(1)
m

)µ/m

+ o(nµ/m) .
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Moreover, using (6) again,

log ϑ(2)
n − log ϑ(1)

n = log
(

1 +
ϑ

(2)
n − ϑ

(1)
n

ϑ
(1)
n

)

=
ϑ

(2)
n − ϑ

(1)
n

ϑ
(1)
n

+ o
(ϑ

(2)
n − ϑ

(1)
n

ϑ
(1)
n

)

=
aµ

m
n−1

( n

m c
(1)
m

)µ/m

+ o(n
µ−m

m ) .

Inserting these estimates in (3) now yields

log α(1)
n − log α(2)

n = a
(

1 − µ

m

)( n

m c
(1)
m

)µ/m

+
aµ

m

( n

m c
(1)
m

)µ/m

+ o(nµ/m)

= a
( n

m c
(1)
m

)µ/m

+ o(nµ/m) � nµ/m ,

and our theorem is proven.
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