ASYMPTOTIC STABILITY FOR SETS OF POLYNOMIALS

THOMAS W. MÜLLER AND JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract

We introduce the concept of asymptotic stability for a set of complex functions analytic around the origin, implicitly contained in an earlier paper of the first mentioned author ("Finite group actions and asymptotic expansion of $e^{P(z)}$, Combinatorica 17 (1997), $\left.523-554\right)$. As a consequence of our main result we find that the collection of entire functions $\exp (\mathfrak{P})$ with \mathfrak{P} the set of all real polynomials $P(z)$ satisfying Hayman's condition $\left[z^{n}\right] \exp (P(z))>0\left(n \geq n_{0}\right)$ is asymptotically stable. This answers a question raised in loc. cit.

1. Asymptotic stability

Let \mathfrak{F} be a set of complex functions analytic in the origin, and for $f \in \mathfrak{F}$ let $f(z)=\sum_{n} \alpha_{n}^{f} z^{n}$ be the expansion of f around $0 . \mathfrak{F}$ is termed asymptotically stable, if
(i) $\forall f \in \mathfrak{F} \exists n_{f} \in \mathbb{N}_{0} \forall n \geq n_{f}: \alpha_{n}^{f} \neq 0$,
(ii) $\forall f, g \in \mathfrak{F}: \alpha_{n}^{f} \sim \alpha_{n}^{g} \rightarrow f=g$ in a neighbourhood of 0 .

Here, for arithmetic functions f and g, the notation $f(n) \sim g(n)$ is short for

$$
g(n)=f(n)(1+o(1)), \quad n \rightarrow \infty .
$$

A set of polynomials $\mathfrak{P} \subseteq \mathbb{C}[z]$ is called asymptotically stable, if the set of entire functions

$$
\mathfrak{F}=\exp (\mathfrak{P}):=\left\{e^{P(z)}: P(z) \in \mathfrak{P}\right\}
$$

is asymptotically stable. Define the degree of the zero polynomial to be -1 . For a polynomial $P(z)=\sum_{\delta=0}^{d} c_{\delta} z^{\delta}$ of exact degree $d \geq 1$ with real coefficients c_{δ} consider the following two conditions:
(G) $c_{\delta}=0$ for $d / 2<\delta<d$,
$(\mathcal{H}) \quad\left[z^{n}\right] e^{P(z)}>0$ for all sufficiently large n.

[^0]Here, $\left[z^{n}\right] f(z)$ denotes the coefficient of z^{n} in the expansion of $f(z)$ around the origin. Asymptotically stable sets of functions first appeared in [3], where it was shown among other things that the set of polynomials

$$
\mathfrak{P}_{0}=\{P(z) \in \mathbb{R}[z]: P(z) \text { satisfies }(\mathcal{G}) \text { and }(\mathcal{H})\}
$$

is asymptotically stable. Since for a finite group G we have ${ }^{1}$

$$
\sum_{n=0}^{\infty}\left|\operatorname{Hom}\left(G, S_{n}\right)\right| \frac{z^{n}}{n!}=\exp \left(\sum_{\nu}|\{U:(G: U)=\nu\}| \frac{z^{\nu}}{\nu}\right),
$$

asymptotic stability of \mathfrak{P}_{0} implies in particular the following curious phenomenon ("asymptotic stability" of finite groups):
If for two finite groups G and H we have $\left|\operatorname{Hom}\left(G, S_{n}\right)\right| \sim\left|\operatorname{Hom}\left(H, S_{n}\right)\right|$ as $n \rightarrow \infty$, then these arithmetic functions must in fact coincide.
Condition (\mathcal{H}) arises in the work of Hayman [2], where it is shown that for a real polynomial $P(z)$ of degree at least 1 the function $e^{P(z)}$ is admissible in the complex plane in the sense of [2, pp. 68-69] if and only if (\mathcal{H}) holds; cf. [2, Theorem X]. The gap condition (\mathcal{G}) has turned out to be an efficient way of exploiting the fact that polynomials $P(z)$ arising from enumerative problems very often have the property that

$$
\operatorname{supp}(P(z)) \subseteq\{\delta: \delta \mid \operatorname{deg}(P(z))\}
$$

In [3] the question was raised whether condition (\mathcal{G}) could be dropped while still maintaining asymptotic stability, i.e., whether the larger set of polynomials

$$
\begin{equation*}
\mathfrak{P}=\{P(z) \in \mathbb{R}[z]: P(z) \text { satisfies }(\mathcal{H})\} \tag{1}
\end{equation*}
$$

is asymptotically stable. The purpose of this note is to establish the following result, which in particular provides an affirmative answer to the latter question.
Theorem. Let $P_{1}(z), P_{2}(z) \in \mathbb{R}[z]$ satisfy Hayman's condition (\mathcal{H}), for $i=1,2$ let $\left\{\alpha_{n}^{(i)}\right\}_{n \geq 0}$ be the coefficients of $e^{P_{i}(z)}$, and put $\Delta(z):=P_{1}(z)-P_{2}(z)$ as well as $m:=\max \left(\operatorname{deg}\left(P_{1}(z)\right), \operatorname{deg}\left(P_{2}(z)\right)\right)$.
(i) Suppose that either $0 \leq \mu<m$, or $\mu=m$ and $\operatorname{deg}\left(P_{1}(z)\right)=\operatorname{deg}\left(P_{2}(z)\right)$. Then we have $\operatorname{deg}(\Delta(z))=\mu$ if and only if $\left|\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}\right| \asymp n^{\mu / m}$.
(ii) If $\operatorname{deg}\left(P_{1}(z)\right) \neq \operatorname{deg}\left(P_{2}(z)\right)$, then $\left|\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}\right| \asymp n \log n$.

Here, $f(n) \asymp g(n)$ means that $f(n)$ and $g(n)$ are of the same order of magnitude; that is, there exist positive constants c_{1}, c_{2} such that $c_{1} f(n) \leq g(n) \leq c_{2} f(n)$ for all n.

Corollary. The set of polynomials \mathfrak{P} defined in (1) is asymptotically stable.
Proof. If $P_{1}(z), P_{2}(z) \in \mathbb{R}[z]$ are polynomials satisfying condition (\mathcal{H}) as well as $\alpha_{n}^{(1)} \sim \alpha_{n}^{(2)}$, then $\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}=o(1)$. By our theorem, $\operatorname{deg}(\Delta(z)) \notin[0, m]$, and hence $P_{1}(z)=P_{2}(z)$.

[^1]
2. Proof of the theorem

For $i=1,2$ put $P_{i}(z)=\sum_{\delta=0}^{d_{i}} c_{\delta}^{(i)} z^{\delta}$ with $c_{d_{i}}^{(i)} \neq 0$. Our assumptions that $P_{1}(z)$ and $P_{2}(z)$ have real coefficients and satisfy (\mathcal{H}) ensure via [2, Theorem X] that the functions $\exp \left(P_{i}(z)\right)$ are admissible in the complex plane; in particular, in view of [2, formula (1.2)], we have $c_{d_{i}}^{(i)}>0$. By [2, Theorem I] we find that, for $i=1,2$,

$$
\alpha_{n}^{(i)} \sim \frac{\exp \left(P_{i}\left(\vartheta_{n}^{(i)}\right)\right)}{\left(\vartheta_{n}^{(i)}\right)^{n} \sqrt{2 \pi b_{i}\left(\vartheta_{n}^{(i)}\right)}} \quad(n \rightarrow \infty)
$$

where $\vartheta_{n}^{(i)}$ is the positive real root of the equation $\vartheta P_{i}^{\prime}(\vartheta)=n$, and $b_{i}(\vartheta)=$ $\vartheta P_{i}^{\prime}(\vartheta)+\vartheta^{2} P_{i}^{\prime \prime}(\vartheta)$. Since $c_{d_{i}}^{(i)}>0$, the root $\vartheta_{n}^{(i)}$ is well defined and increasing for sufficiently large n, and unbounded as $n \rightarrow \infty$. This gives $\vartheta_{n}^{(i)} \sim\left(\frac{n}{d_{i} c_{d_{i}}^{(i)}}\right)^{1 / d_{i}}$ and $b_{i}\left(\vartheta_{n}^{(i)}\right) \sim d_{i} n$, and hence

$$
\begin{equation*}
\alpha_{n}^{(i)} \sim \frac{\exp \left(P_{i}\left(\vartheta_{n}^{(i)}\right)\right)}{\left(\vartheta_{n}^{(i)}\right)^{n} \sqrt{2 \pi d_{i} n}} \quad(n \rightarrow \infty) \tag{2}
\end{equation*}
$$

Formula (2) implies that

$$
\begin{align*}
\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}=P_{1}\left(\vartheta_{n}^{(1)}\right) & -P_{2}\left(\vartheta_{n}^{(2)}\right)-n\left(\log \vartheta_{n}^{(1)}-\log \vartheta_{n}^{(2)}\right) \\
& -\frac{1}{2}\left(\log d_{1}-\log d_{2}\right)+o(1) \tag{3}
\end{align*}
$$

First consider case (ii), that is, the case when $d_{1} \neq d_{2}$. Then, by (3),

$$
\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}=\left(\frac{1}{d_{2}}-\frac{1}{d_{1}}\right) n \log n+\mathcal{O}(n)
$$

that is,

$$
\left|\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}\right| \asymp n \log n
$$

as claimed. ${ }^{2}$ Next suppose that $d_{1}=d_{2}$. Then the right-hand side of (3) becomes

$$
d_{1}^{-1} \log \left(c_{d_{1}}^{(1)} / c_{d_{2}}^{(2)}\right) n+o(n)
$$

in particular, we have $\operatorname{deg}(\Delta(z))=m$ if and only if $\left|\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}\right| \asymp n$, which proves the last part of (i). Thirdly, for $m=1$,

$$
\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}=c_{0}^{(1)}-c_{0}^{(2)}+n \log \left(c_{1}^{(1)} / c_{1}^{(2)}\right)+o(1),
$$

in particular, $\operatorname{deg}(\Delta(z))=0$ if and only if $\left|\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}\right| \asymp 1$. Hence, we may assume for the remainder of the argument that $m \geq 2$.

[^2]Now suppose that $0 \leq \mu:=\operatorname{deg}(\Delta(z))<m$. We want to show that in this case $\left|\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)}\right| \asymp n^{\mu / m}$. We have

$$
\begin{align*}
n-\vartheta_{n}^{(1)} P_{2}^{\prime}\left(\vartheta_{n}^{(1)}\right) & =\vartheta_{n}^{(1)}\left[P_{1}^{\prime}\left(\vartheta_{n}^{(1)}\right)-P_{2}^{\prime}\left(\vartheta_{n}^{(1)}\right)\right] \\
& =\vartheta_{n}^{(1)} \Delta^{\prime}\left(\vartheta_{n}^{(1)}\right) \tag{4}\\
& =a \mu\left(\vartheta_{n}^{(1)}\right)^{\mu}+o\left(n^{\mu / m}\right)
\end{align*}
$$

where a is the leading coefficient of $\Delta(z)$, which we may suppose without loss of generality to be positive. Expanding $\vartheta P_{2}^{\prime}(\vartheta)$ as Taylor series around $\vartheta_{n}^{(1)}$, we find that

$$
\begin{align*}
\vartheta P_{2}^{\prime}(\vartheta)-\vartheta_{n}^{(1)} P_{2}^{\prime}\left(\vartheta_{n}^{(1)}\right)= & \left(c_{m}^{(2)} m^{2}\left(\vartheta_{n}^{(1)}\right)^{m-1}+\mathcal{O}\left(n^{\frac{m-2}{m}}\right)\right)\left(\vartheta-\vartheta_{n}^{(1)}\right) \\
& +\mathcal{O}\left(n^{\frac{m-2}{m}}\left(\vartheta-\vartheta_{n}^{(1)}\right)^{2}+\left(\vartheta-\vartheta_{n}^{(1)}\right)^{m}\right) \tag{5}
\end{align*}
$$

If ϑ runs through the interval

$$
I=\left[\vartheta_{n}^{(1)}-\frac{2 a \mu}{m^{2} c_{m}^{(1)}}, \vartheta_{n}^{(1)}+\frac{2 a \mu}{m^{2} c_{m}^{(1)}}\right]
$$

the right-hand side of (5) covers a range containing the interval

$$
\left[-(2-\varepsilon) a \mu\left(\vartheta_{n}^{(1)}\right)^{m-1},(2-\varepsilon) a \mu\left(\vartheta_{n}^{(1)}\right)^{m-1}\right]
$$

for every given $\varepsilon>0$ and sufficiently large n depending on ε. Combining this observation with (4), we find that $n-\vartheta P_{2}^{\prime}(\vartheta)$ changes sign in I, that is, $\vartheta_{n}^{(2)} \in I$ for large n; in particular we have $\vartheta_{n}^{(2)}-\vartheta_{n}^{(1)}=\mathcal{O}(1)$. Since $m \geq 2$, setting $\vartheta=\vartheta_{n}^{(2)}$ in (5) and rewriting the left-hand side via (4) now gives
(6) $\quad a \mu\left(\vartheta_{n}^{(1)}\right)^{\mu}=\left(c_{m}^{(1)} m^{2}\left(\vartheta_{n}^{(1)}\right)^{m-1}+\mathcal{O}\left(n^{\frac{m-2}{m}}\right)\right)\left(\vartheta_{n}^{(2)}-\vartheta_{n}^{(1)}\right)+o\left(n^{\mu / m}\right)$.

For x, y real, $x \rightarrow \infty$, and $x-y=\mathcal{O}(1)$,

$$
P_{2}(x)-P_{2}(y)=(x-y) P_{2}^{\prime}(x)+\mathcal{O}\left((x-y) x^{m-2}\right)
$$

Hence, applying (6), we have as $n \rightarrow \infty$

$$
\begin{aligned}
P_{1}\left(\vartheta_{n}^{(1)}\right)-P_{2}\left(\vartheta_{n}^{(2)}\right) & =\Delta\left(\vartheta_{n}^{(1)}\right)+P_{2}\left(\vartheta_{n}^{(1)}\right)-P_{2}\left(\vartheta_{n}^{(2)}\right) \\
& =\Delta\left(\vartheta_{n}^{(1)}\right)+\left(\vartheta_{n}^{(1)}-\vartheta_{n}^{(2)}\right) P_{2}^{\prime}\left(\vartheta_{n}^{(1)}\right)+\mathcal{O}\left(\left(\vartheta_{n}^{(1)}-\vartheta_{n}^{(2)}\right)\left(\vartheta_{n}^{(1)}\right)^{m-2}\right) \\
& =a\left(1-\frac{\mu}{m}\right)\left(\frac{n}{m c_{m}^{(1)}}\right)^{\mu / m}+o\left(n^{\mu / m}\right) .
\end{aligned}
$$

Moreover, using (6) again,

$$
\begin{aligned}
\log \vartheta_{n}^{(2)}-\log \vartheta_{n}^{(1)} & =\log \left(1+\frac{\vartheta_{n}^{(2)}-\vartheta_{n}^{(1)}}{\vartheta_{n}^{(1)}}\right) \\
& =\frac{\vartheta_{n}^{(2)}-\vartheta_{n}^{(1)}}{\vartheta_{n}^{(1)}}+o\left(\frac{\vartheta_{n}^{(2)}-\vartheta_{n}^{(1)}}{\vartheta_{n}^{(1)}}\right) \\
& =\frac{a \mu}{m} n^{-1}\left(\frac{n}{m c_{m}^{(1)}}\right)^{\mu / m}+o\left(n^{\frac{\mu-m}{m}}\right)
\end{aligned}
$$

Inserting these estimates in (3) now yields

$$
\begin{aligned}
\log \alpha_{n}^{(1)}-\log \alpha_{n}^{(2)} & =a\left(1-\frac{\mu}{m}\right)\left(\frac{n}{m c_{m}^{(1)}}\right)^{\mu / m}+\frac{a \mu}{m}\left(\frac{n}{m c_{m}^{(1)}}\right)^{\mu / m}+o\left(n^{\mu / m}\right) \\
& =a\left(\frac{n}{m c_{m}^{(1)}}\right)^{\mu / m}+o\left(n^{\mu / m}\right) \asymp n^{\mu / m}
\end{aligned}
$$

and our theorem is proven.

References

[1] Dress, A. and Müller, T., Decomposable functors and the exponential principle, Adv. in Math. 129 (1997), 188-221.
[2] Hayman, W., A generalisation of Stirling's formula, J. Reine u. Angew. Math. 196 (1956), 67-95.
[3] Müller, T., Finite group actions and asymptotic expansion of $e^{P(z)}$, Combinatorica 17 (1997), 523-554.
[4] Stanley, R. P., Enumerative Combinatorics vol. 2, Cambridge University Press, 1999.

Thomas W. Müller
School of Mathematical Sciences, Queen Mary and Westrield College
Mile End Road, London E1 4NS, England
E-mail: T.W.Muller@qmul.ac.uk
Jan-Christoph Schlage-Puchta
Mathematisches Institut, Universität Freiburg
Eckerstrasse 1, 79104 Freiburg, Germany
E-mail: jcp@mathematik.uni-freiburg.de

[^0]: 1991 Mathematics Subject Classification: 30B10.
 Key words and phrases: power series, coefficients, asymptotic expansion.
 Received May 21, 2003, revised August 2004.

[^1]: ${ }^{1}$ Cf. for instance [1, Prop. 1] or [4, Exercise 5.13].

[^2]: ${ }^{2}$ Here, as well as in certain other places below, a more precise estimate than the one stated is obtained, but not needed in the argument.

