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ON LEFT (θ, φ)-DERIVATIONS OF PRIME RINGS

MOHAMMAD ASHRAF

Abstract. Let R be a 2-torsion free prime ring. Suppose that θ, φ are au-
tomorphisms of R. In the present paper it is established that if R admits a
nonzero Jordan left (θ, θ)-derivation, then R is commutative. Further, as an
application of this resul it is shown that every Jordan left (θ, θ)-derivation
on R is a left (θ, θ)-derivation on R. Finally, in case of an arbitrary prime
ring it is proved that if R admits a left (θ, φ)-derivation which acts also as
a homomorphism (resp. anti-homomorphism) on a nonzero ideal of R, then
d = 0 on R.

1. Introduction

Throughout the present paper R will denote an associative ring with centre
Z(R). Recall that R is prime if aRb = {0} implies that a = 0 or b = 0. As
usual [x, y] will denote the commutator xy − yx. An additive subgroup U of R

is said to be a Lie ideal of R if [u, r] ∈ U for all u ∈ U , r ∈ R. Suppose that
θ, φ are endomorphisms of R. An additive mapping d : R −→ R is called a
(θ, φ)-derivation (resp. Jordan (θ, φ)-derivation) if d(xy) = d(x)φ(y) + θ(x)d(y),
(resp. d(x2) = d(x)φ(x) + θ(x)d(x)) holds for all x, y ∈ R. Of course, every
(1, 1)-derivation (resp. Jordan (1, 1)- derivation), where 1 is the identity map-
ping on R is a derivation (resp. Jordan derivation) on R. An additive mapping
d : R → R is called a left (θ, φ)-derivation (resp. Jordan left (θ, φ)-derivation)
if d(xy) = θ(x)d(y) + φ(y)d(x) (resp. d(x2) = θ(x)d(x) + φ(x)d(x)) holds for all
x, y ∈ R. Clearly, every left (1, 1)-derivation (resp. Jordan left (1, 1)-derivation) is a
left derivation (resp. Jordan left derivation) on R. Obviously, every left derivation
is a Jordan left derivation but the converse need not be true in general. Recently
the author together with Nadeem [1] proved that the converse statement is true in
the case when the underlying ring is prime and 2-torsion free. In the present paper
we shall show that if a 2-torsion free prime ring R admits an additive mapping
satisfying d(u2) = 2θ(u)d(u) for all u ∈ U , then either d(U) = {0} or U ⊆ Z(R)
where U is a Lie ideal of R with u2 ∈ U for all u ∈ U and θ is an automorphism
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of R. In fact this result generalizes the main theorem proved in [4]. Further, some
more related results are also obtained. Final section of the present paper deals
with the study of left (θ, φ)-derivation which acts also as a homomorphism of the
ring.

2. Preliminaries

We shall make use of the following results, all but one of which are known.

Lemma 2.1 ([9, Lemma 2]). If U 6⊆ Z(R) is a Lie ideal of a 2-torsion free prime

ring R and a, b ∈ R such that aUb = {0}, then a = 0 or b = 0.

Lemma 2.2 ([11, Lemma 4]). Let G and H be additive groups and let R be a

2-torsion free ring. Let f : G×G → H and g : G×G → R be biadditive mappings.

Suppose that for each pair a, b ∈ G either f(a, b) = 0 or g(a, b)2 = 0. In this case

either f = 0 or g(a, b)2 = 0 for all a, b ∈ G respectively.

Lemma 2.3 ([13, Theorem 4]). Let R be a 2-torsion free prime ring and U a Lie

ideal of R. If R admits a derivation d such that d(u)n = 0 for all u ∈ U , where

n ≥ 1 is a fixed integer, then d(u) = 0 for all u ∈ U .

Lemma 2.4 ([16, Lemma 1.3]). Let R be a 2-torsion free semiprime ring. If U is

a commutative Lie ideal of R, then U ⊆ Z(R).

Now we shall prove the following

Lemma 2.5. Let R be a 2-torsion free ring and let U be a Lie ideal of R such

that u2 ∈ U for all u ∈ U . Suppose that θ is an endomorphism of R. If d : R → R

is an additive mapping satisfying d(u2) = 2θ(u)d(u) for all u, v ∈ U then

(i) d(uvu) = θ(u2)d(v) + 3θ(u)θ(v)d(u) − θ(v)θ(u)d(u) for all u, v ∈ U .

(ii) [θ(u), θ(v)]θ(u)d(u) = θ(u)[θ(u), θ(v)]d(u) for all u, v ∈ U .

(iii) [θ(u), θ(v)]d([u, v]) = 0 for all u, v ∈ U .

(iv) d(vu2) = θ(u2)d(v) + (3θ(v)θ(u) − θ(u)θ(v))d(u) − θ(u)d([u, v]) for all

u, v ∈ U .

Proof. (i) Since uv + vu = (u + v)2 − u2 − v2, we find that uv + vu ∈ U for all
u, v ∈ U . Hence by linearizing d(u2) = 2θ(u)d(u) on u, we get

(2.1) d(uv + vu) = 2θ(u)d(v) + 2θ(v)d(u) for all u, v ∈ U .

Further, replacing v by uv + vu in (2.1), we get

(2.2) d(u(uv + vu) + (uv + vu)u) = 4θ(u2)d(v) + 6θ(u)θ(v)d(u) + 2θ(v)θ(u)d(u) .

On the other hand,

d(u(uv + vu) + (uv + vu)u) = d(u2v + vu2) + 2d(uvu)

= 2θ(u2)d(v) + 4θ(v)θ(u)d(u) + 2d(uvu) .
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Combining the above equation with (2.2), we get (i).

(ii) By linearizing (i) on u, we get

d((u + w)v(u + w)) = θ(u2)d(v) + θ(w2)d(v) + {θ(u)θ(w) + θ(w)θ(u)}d(v)

+ 3θ(u)θ(v)d(w) + 3θ(u)θ(v)d(u) + 3θ(w)θ(v)d(w)

+ 3θ(w)θ(v)d(u) − θ(v)θ(u)d(u) − θ(v)θ(u)d(w)

− θ(v)θ(w)d(u) − θ(v)θ(w)d(w) .(2.3)

On the other hand,

d((u + w)v(u + w)) = d(uvu) + d(wvw) + d(uvw + wvu)

= θ(u2)d(v) + 3θ(u)θ(v)d(u) − θ(v)θ(u)d(u) + θ(w2)d(v)

+ 3θ(w)θ(v)d(w) − θ(v)θ(w)d(w) + d(uvw + wvu) .(2.4)

Combining (2.3) and (2.4), we arrive at

d(uvw + wvu) ={θ(u)θ(w) + θ(w)θ(u)}d(v) + 3θ(u)θ(v)d(w) + 3θ(w)θ(v)d(u)

− θ(v)θ(u)d(w) − θ(v)θ(w)d(u) for all u, v ∈ U .(2.5)

Since uv + vu and uv− vu both belong to U we find that 2uv ∈ U for all u, v ∈ U .
Hence, by our hypothesis we find that d((2uv)2) = 2θ(2uv)d((2uv)) i.e., 4d(uv)2 =
8θ(uv)d(uv). Since charR 6= 2, we have d(uv)2 = 2θ(u)θ(v)d(uv). Replace w by
2uv in (2.5), and use the fact that char R 6= 2, to get

d(uv(uv) + (uv)vu) = {θ(u2)θ(v) + θ(u)θ(v)θ(u)}d(v) + 3θ(u)θ(v)d(uv)

+ 3θ(u)θ(v2)d(u) − θ(v)θ(u)d(uv)

− θ(v)θ(u)θ(v)d(u) .(2.6)

On the other hand,

d((uv)2 + uv2u) = 2θ(u)θ(v)d(uv) + 2θ(u2)θ(v)d(v)

+ 3θ(u)θ(v2)d(u) − θ(v2)θ(u)d(u) .(2.7)

Combining (2.6) and (2.7), we get

(2.8) [θ(u), θ(v)]d(uv) = θ(u)[θ(u), θ(v)]d(v) + θ(v)[θ(u), θ(v)]d(u)

Replacing u + v for v in (2.8), we have

2[θ(u), θ(v)]θ(u)d(u) + [θ(u), θ(v)]d(uv) = 2θ(u)[θ(u), θ(v)]d(u)

+ θ(u)[θ(u), θ(v)]d(v) + θ(v)[θ(u), θ(v)]d(u) .

Now application of (2.8) yields (ii).
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(iii) Linearize (ii) on u, to get

[θ(u), θ(v)]θ(u)d(u) + [θ(u), θ(v)]θ(v)d(v) + [θ(u), θ(v)]θ(u)d(v)

+ [θ(u), θ(v)]θ(v)d(u) = θ(u)[θ(u), θ(v)]d(u)

+ θ(u)[θ(u), θ(v)]d(v) + θ(v)[θ(u), θ(v)]d(u)

+ θ(v)[θ(u), θ(v)]d(v) for all u, v ∈ U .

Now application of (2.8) and (ii) yields that

[θ(u), θ(v)]θ(u)d(v) + [θ(u), θ(v)]θ(v)d(u) = [θ(u), θ(v)]d(uv)

and hence

(2.9) [θ(u), θ(v)]{d(uv) − θ(u)d(v) − θ(v)d(u)} = 0 for all u, v ∈ U .

Combining (2.1) and (2.9) we find that,

(2.10) [θ(u), θ(v)]{d(vu) − θ(u)d(v) − θ(v)d(u)} = 0 for all u, v ∈ U .

Further, combining of (2.9) and (2.10) yields the required result.

(iv) Replace v by 2vu in (2.1), and use the fact that charR 6= 2, to get

(2.11) d(uvu + vu2) = 2(θ(u)d(uv) + θ(v)θ(u)d(u)) for all u, v ∈ U .

Again, replacing v by 2uv in (2.1), we get

(2.12) d(u2v + uvu) = 2(θ(u)d(uv) + θ(u)θ(v)d(u)) for all u, v ∈ U .

Now, combining (2.11) and (2.12), we get

(2.13) d(u2v − vu2) = 2(θ(u)d([u, v]) + [θ(u), θ(v)]d(u)) for all u, v ∈ U .

Replacing u by u2 in (2.1), we have

(2.14) d(u2v + vu2) = 2(θ(u2)d(v) + 2θ(v)θ(u)d(u)) for all u, v ∈ U .

Hence, subtracting (2.13) from (2.14) and using the fact that characteristic of R

is different from two we find that

d(vu2) = θ(u2)d(v)+{3θ(v)θ(u)−θ(u)θ(v)}d(u)−θ(u)d([u, v]) for all u, v ∈ U .

3. Left derivation and commutativity of prime ring

A mapping f : R → R is said to be commuting on R if f(x)x = xf(x) holds
for all x ∈ R. Comparing Jordan left derivation with commuting mapping on a
ring R, it turns out that notion of Jordan left derivation is in a close connection
with the commuting mapping on R. There has been considerable interest for
commuting mappings on prime rings. The fundamental result in this direction is
due to Posner [18] who proved that if a prime ring R admits a non-zero derivation
that is commuting on R, then R is commutative. Using rather weak hypotheses
Bresar and Vukman [12] obtained a result which shows that the existence of a
non-zero Jordan left derivation on a 2-torsion free and 3-torsion free prime ring
R forces R to be commutative. It was also remarked by Bresar and Vukman that
the assumption “R is 3-torsion free” in the hypotheses of the above result may
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be avoided. In this direction we have obtained the following theorem which also
includes the main result of [4].

Theorem 3.1. Let R be a 2-torsion free prime ring and let U be a Lie ideal of

R such that u2 ∈ U for all u ∈ U . Suppose that θ is an automorphism of R. If

d : R → R is an additive mapping satisfying d(u2) = 2θ(u)d(u) for all u ∈ U, then

either d(U) = {0} or U ⊆ Z(R).

Proof. Suppose that U 6⊆ Z(R). By Lemma 2.5(ii) we have

(3.1) {θ(u2)θ(v) − 2θ(u)θ(v)θ(u) + θ(v)θ(u2)}d(u) = 0 for all u, v ∈ U .

Replacing [u, w] for u in (3.1), we get

[θ(u), θ(w)]2θ(v)d([u, w]) − 2[θ(u), θ(w)]θ(v)[θ(u), θ(w)]d([u, w])

+ θ(v)[θ(u), θ(w)]2d([u, w]) = 0

for all u, v, w ∈ U .

Now, application of Lemma 2.5(iii) yields that θ−1([θ(u), θ(w)]2)Uθ−1(d([u, w]) =
{0}. Hence by Lemma 2.1 we find that for each pair u, w ∈ U , either [θ(u), θ(w)]2 =
0 or d([u, w]) = 0. This implies that either [u, w]2 = 0 or d([u, w]) = 0. Note that
the mappings (u, w) 7→ [u, w] and (u, w) 7→ d([u, w]) satisfy the requirements of
the Lemma 2.2. Hence, either [u, w]2 = 0 for all u, w ∈ U or d([u, w]) = 0 for
all u, w ∈ U . If [u, w]2 = 0 for all u, w ∈ U , then for each u ∈ U, (Iu(w))2 = 0
for all w ∈ U , where Iu is the inner derivation such that Iu(w) = [u, w]. Thus
by the application of Lemma 2.3 we find that U is a commutative Lie ideal of R,
and hence by Lemma 2.4, U ⊆ Z(R), a contradiction. Hence, we consider the
remaining case that d([u, w]) = 0 for all u, w ∈ U , i.e., d(uw) = d(wu) for all
u, w ∈ U . Since wu − uw and wu + uw both belong to U , we find that 2wu ∈ U

for all u, w ∈ U . This yields that d((2wu)u) = d(u(2wu)). Since (2.1) is valid in
the present situation, we find that

4d((wu)u) = d((2wu)u + u(2wu))

= 4θ(w)θ(u)d(u) + 2θ(u)d(2wu)

= 4θ(w)θ(u)d(u) + 2θ(u)d(wu + uw)

= 4{θ(w)θ(u)d(u) + θ(u)θ(w)d(u) + θ(u2)d(w)} .

Since R is a 2-torsion free, we obtain

(3.2) d((wu)u) = θ(u2)d(w) + θ(u)θ(w)d(u) + θ(w)θ(u)d(u) for all u, w ∈ U

Since d([u, w]) = 0 for all u, w ∈ U , using Lemma 2.5(iv) and (3.2), we get
2[θ(u), θ(w)]d(u) = 0. This implies that

(3.3) [θ(u), θ(w)]d(u) = 0 for all u, w ∈ U .

Now, replacing w by 2wv in (3.3) and using the fact that charR 6= 2 we get

[θ(u), θ(w)]θ(v)d(u) = 0 i.e., θ−1([θ(u), θ(w)])Uθ−1(d(u) = {0}. Thus by Lemma

2.1, we find that for each u ∈ U, θ−1([θ(u), θ(w)]) = 0 or θ−1(d(u)) = 0. This
implies that [u, w] = 0 or d(u) = 0. Now let U1 = {u ∈ U | [u, w] = 0 for all
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w ∈ U} and U2 = {u ∈ U | d(u) = 0}. Clearly, U1 and U2 are additive subgroups
of U whose union is U . But a group can not be written as a union of two of
its proper subgroups and hence by Brauer’s trick either U = U1 or U = U2. If
U = U1, then [u, w] = 0 for all u, w ∈ U and by using the similar arguments as
above we get U ⊆ Z(R), again a contradiction. Hence we have the remaining
possibility that d(u) = 0 for all u ∈ U i.e., d(U) = {0}. This completes the proof
of the theorem. �

As an application of the above theorem we get the following result, which gen-
eralizes the main theorem of [1].

Theorem 3.2. Let R be a 2-torsion free prime ring and U a Lie ideal of R

such that u2 ∈ U for all u ∈ U . Suppose that θ is an automorphism of R. If

d : R → R is an additive mapping satisfying d(u2) = 2θ(u)d(u) for all u ∈ U , then

d(uv) = θ(u)d(v) + θ(v)d(u) for all u, v ∈ U .

Proof. Suppose that d = 0 on U . Since 2uv ∈ U , uv − vu and uv + vu both
belong to U , we find that 2d(uv) = d(2uv) = 0. This implies that d(uv) = 0 for all
u, v ∈ U . Hence, the result is obvious in the present case. Therefore now assume
that d(U) 6= {0}. Then by the above theorem U ⊆ Z(R). Thus R satisfies the
property d(u2) = d(u)θ(u) + θ(u)d(u) for all u ∈ U and hence by Theorem 3.2
of [3] we find that d(uv) = d(u)θ(v) + θ(u)d(v) for all u, v ∈ U . Further since
θ(U) ⊆ Z(R), we find that d(uv) = θ(u)d(v) + θ(v)d(u) holds for all u, v ∈ U . �

Corollary 3.1. Let R be a 2-torsion free prime ring. If d : R → R is a Jordan

left derivation, then d is a left derivation.

If the underlying ring is arbitrary, then we have the following

Theorem 3.3. Let R be a 2-torsion free ring and U a Lie ideal of R such that

u2 ∈ U for all u ∈ U . Suppose that θ is an endomorphism of R and R has a

commutator which is not a zero divisor. If d : R → R is an additive mapping

satisfying d(u2) = 2θ(u)d(u) for all u ∈ U , then d(uv) = θ(u)d(v) + θ(v)d(u) for

all u, v ∈ U .

Proof. For any u, v ∈ U , define a map f : U × U → R such that f(u, v) =
d(uv)− θ(u)d(v)− θ(v)d(u). Since θ and d both are additive, f is additive in both
the arguments and is zero if d is a left (θ, θ)-derivation. Note that (2.9) is still
valid in the present situation and hence we have

(3.4) [θ(u), θ(v)]f(u, v) = 0 for all u, v ∈ U .

Let a, b be fixed elements of U such that [θ(a), θ(b)]c = 0 implies that c = 0.
Application of (3.4) yields that

(3.5) f(a, b) = 0 .

Replacing u by u + a in (3.4) and using (3.4), we find that

(3.6) [θ(u), θ(v)]f(a, v) + [θ(a), θ(v)f(u, v) = 0 for all u, v ∈ U .
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Replacing v by b in (3.6) and using (3.6), we have

(3.7) f(u, b) = 0 for all u ∈ U .

Further, substituting v + b for v in (3.6) and using (3.5) and (3.7), we get

(3.8) [θ(u), θ(b)]f(a, v) + [θ(a), θ(b)]f(u, v) = 0 for all u, v ∈ U .

Now replacing u by a in (3.8) and using the fact that charR 6= 2, we have

(3.9) f(a, v) = 0 for all v ∈ U .

Combining of (3.8) and (3.9) yields that [θ(a), θ(b)]f(u, v) = 0. This implies that
f(u, v) = 0 for all u, v ∈ U i.e., d is a left (θ, θ)-derivation. �

In the end of this section it is tempting to conjecture as follows

Conjecture 3.1. Let R be a 2-torsion free prime ring and U a Lie ideal of R

such that u2 ∈ U for all u ∈ U . Suppose that θ, φ are automorphisms of R. If

d : R → R is an additive mapping satisfying d(u2) = θ(u)d(u) + φ(u)d(u) for all

u ∈ U , then either d(U) = {0} or U ⊆ Z(R).

4. Left derivation as a homomorphism or as an anti-homomorphism

Let S be a non-empty subset of R and d : R → R a derivation of R. If
d(xy) = d(x)d(y) (resp. d(xy) = d(y)d(x)) holds for all x, y ∈ S, then d is said
to act as a homomorphism (resp. anti-homomorphism) on S. Recently, Bell and
Kappe [8] proved that if K is a non-zero right ideal of a prime ring R and d : R → R

a derivation of R such that d acts as a homomorphism on K, then d = 0 on R.
This result was further extended for (θ, φ)-derivation in [2] as follows:

Theorem 4.1 ([2, Theorem 3.2]). Let R be a prime ring and K a nonzero ideal

of R, and let θ, φ be automorphisms of R. Suppose that d : R → R is a (θ, φ)-
derivation of R.

(i) If d acts as a homomorphism on K, then d = 0 on R.

(ii) If d acts as an anti-homomorphism on K, then d = 0 on R.

In the present section our objective is to extend the above study to the left
derivation of a prime ring R which acts either as a homomorphism or as an anti-
homomorphism of R.

Theorem 4.2. Let R be a prime ring and K a nonzero ideal of R, and let θ, φ be

automorphisms of R. Suppose d : R → R is a left (θ, φ)-derivation of R.

(i) If d acts as an anti-homomorphism on K, then d = 0 on R.

(ii) If d acts as a homomorphism on K, then d = 0 on R.

Proof. (i) Let d act as an anti-homomorphism on K. By our hypothesis, we have

(4.1) d(xy) = θ(x)d(y) + φ(y)d(x) for all x, y ∈ K .
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In (4.1) replacing y by xy, we get

(4.2) d(xy)d(x) = d(x(xy)) = θ(x)d(xy) + φ(xy)d(x) for all x, y ∈ K .

Now multiplying (4.1) in the right by d(x) and using the fact that d is an anti-
homomorphism on K, we get

(4.3) d(xy)d(x) = θ(x)d(xy) + φ(y)d(x)d(x) for all x, y ∈ K .

Combining (4.2) and (4.3), we get

(4.4) φ(x)φ(y)d(x) = φ(y)d(x)d(x) .

In (4.4) replace y by ry, to get

(4.5) φ(x)φ(r)φ(y)d(x) = φ(r)φ(y)d(x)d(x) for all x, y ∈ K and r ∈ R .

Multiplying (4.4) on left by φ(r) and combining with (4.5), we obtain

(4.6) [φ(r), φ(x)]φ(y)d(x) = 0 .

In (4.6) replacing y by sy, we get

[φ(r), φ(x)]φ(s)φ(y)d(x) = 0 for all x, y ∈ K and r, s ∈ R ,

and hence, [r, x]Ryφ−1(d(x)) = {0} for all x, y ∈ K and r ∈ R. Thus for each
x ∈ K, the primeness of R forces that either [r, x] = 0 or φ(y)d(x) = 0. Let K1 =
{x ∈ K | φ(y)d(x) = 0 for all y ∈ K} and K2 = {x ∈ K | [r, x] = 0 for all r ∈ R}.
Then clearly K1 and K2 are additive subgroups of K whose union is K. By
Braur’s trick, we have φ(y)d(x) = 0 for all x, y ∈ K or [r, x] = 0 for all x ∈ K and
r ∈ R. If [r, x] = 0, replace x by sx, to get [r, s]x = 0 for all x ∈ K and r, s ∈ R,

this implies that [r, s]Rx = {0}. The primeness of R forces that either x = 0 or
[r, s] = 0, but K 6= {0}, we have [r, s] = 0 for all r, s ∈ R, i.e., R is commutative.
So, d(xy) = d(x)φ(y) + θ(x)d(y) for all x, y ∈ K i.e., d is a (θ, φ)-derivation which
acts as an anti-homomorphism on K. Hence by Theorem 4.1(ii), we have d = 0
on R. Henceforth, we have remaining possibility that

(4.7) φ(y)d(x) = 0 for all x, y ∈ K .

Replace y by yr in (4.7), to get φ(y)φ(r)d(x) = 0 for all x, y ∈ K and r ∈ R, and
hence yRφ−1(d(x)) = {0}. This implies that φ−1(d(x)) = 0, that is

(4.8) d(x) = 0 for all y ∈ K .

Replace x by sx in (4.8), to get

(4.9) φ(x)d(s) = 0 for all x ∈ K and s ∈ R .

Replacing x by xr in (4.9), we get φ(x)φ(r)d(s) = 0 for all x ∈ K and r, s ∈ R,
and hence xRφ−1(d(s)) = {0}. Since R is prime, and K a nonzero ideal of R, we
find that d = 0 on R.

(ii) If d acts as a homomorphism on K, then we have

(4.10) d(x)d(y) = d(xy) = θ(x)d(y) + φ(y)d(x) for all x, y ∈ K .
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Replacing x by xy in (4.10), we get

d(xy)d(y) = θ(x)θ(y)d(y) + φ(y)d(xy) for all x, y ∈ K .

Now, application of (4.10) yields that θ(x)d(y)d(y) = θ(x)θ(y)d(y). This implies
that

(4.11) θ(x)(d(y) − θ(y))d(y) = 0 for all x, y ∈ K .

Replace x by xr in (4.11), to get θ(x)θ(r)(d(y) − θ(y))d(y) = 0 for all x, y ∈ K

and r ∈ R, and hence, xRθ−1((d(y) − θ(y))d(y)) = {0} for all x, y ∈ K. The
primeness of R forces that either x = 0 or θ−1((d(y) − θ(y))d(y)) = 0. Since

K is a nonzero ideal of R, we have θ−1((d(y) − θ(y))d(y)) = 0, this yields that
(d(y) − θ(y))d(y) = 0 that is d(y2) = θ(y)d(y). Since d is a left (θ, φ)-derivation,
we find that φ(y)d(y) = 0. Linearizing the latter relation, we have

(4.12) φ(y)d(x) + φ(x)d(y) = 0 for all x, y ∈ K .

Replace x by yx in (4.12), to get

(4.13) φ(y)φ(x)d(y) = 0 for all x, y ∈ K .

Substituting sx for x in (4.13), we get φ(y)φ(s)φ(x)d(y) = 0 for all x, y ∈ K and
s ∈ R, and hence yRxφ−1(d(y)) = {0}. Thus for each y ∈ K; the primeness
of R forces that either y = 0 or xφ−1(d(y)) = 0. But y = 0 also implies that
xφ−1(d(y)) = 0, that is

(4.14) φ(x)d(y) = 0 for all x, y ∈ K .

Now using similar techniques as used to get (i) from (4.7) we get the required
result.
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