THE SYMMETRY OF UNIT IDEAL STABLE RANGE CONDITIONS

HUANYIN CHEN AND MIAOSEN CHEN

ABSTRACT. In this paper, we prove that unit ideal-stable range condition is right and left symmetric.

Let *I* be an ideal of a ring *R*. Following the first author(see [1]), (a_{11}, a_{12}) is an (*I*)-unimodular row in case there exists some invertible matrix $\mathbf{A} = (a_{ij})_{2\times 2} \in$ $GL_2(R, I)$. We say that *R* satisfies unit *I*-stable range provided that for any (*I*)unimodular row (a_{11}, a_{12}) , there exist $u, v \in GL_1(R, I)$ such that $a_{11}u + a_{12}v =$ 1. The condition above is very useful in the study of algebraic *K*-theory and it is more stronger than (ideal)-stable range condition. It is well known that $K_1(R, I) \cong GL_1(R, I)/V(R, I)$ provided that *R* satisfies unit *I*-stable range, where $V(R, I) = \{(1+ab)(1+ba)^{-1} \mid 1+ab \in U(R), (1+ab)(1+ba)^{-1} \equiv 1 \pmod{I}\}$ (see [2, Theorem 1.2]). In [3], K_2 group was studied for commutative rings satisfying unit ideal-stable range and it was shown that $K_2(R, I)$ is generated by $\langle a, b, c \rangle_*$ provided that *R* is a commutative ring satisfying unit *I*-stable range. We refer the reader to [4-10], the papers related to stable range conditions.

In this paper, we investigate representations of general linear groups for ideals of a ring and show that unit ideal-stable range condition is right and left symmetric.

Throughout, all rings are associative with identity. $M_n(R)$ denotes the ring of $n \times n$ matrices over R and $GL_n(R, I)$ denotes the set $\{\mathbf{A} \in GL_n(R) \mid \mathbf{A} \equiv \mathbf{I}_n(mod \ M_n(I))\}$, where $GL_n(R)$ is the n dimensional general linear group of R and $\mathbf{I}_n = \text{diag}(1, \ldots, 1)_{n \times n}$. Write $\mathbf{B}_{12}(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ and $\mathbf{B}_{21}(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$. We

always use [u, v] to denote the matrix diag (u, v).

Theorem 1. Let I be an ideal of a ring R. Then the following properties are equivalent:

- (1) R satisfies unit I-stable range.
- (2) For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{21}(*)B_{12}(*)B_{21}(-w)$.

¹⁹⁹¹ Mathematics Subject Classification: 16U99, 16E50.

Key words and phrases: unit ideal-stable range, symmetry.

Received June 23, 2003, revised February 2004.

 $\begin{array}{l} \mathbf{Proof.} \quad (1) \Rightarrow (2) \ \text{Pick } \mathbf{A} = (a_{ij})_{2\times 2} \in GL_2(R, I). \ \text{Then we have } u_1, v_1 \in GL_1(R, I) \ \text{such that } a_{11}u_1 + a_{12}v_1 = 1. \ \text{ So } a_{11} + a_{12}v_1u_1^{-1} = u_1^{-1}; \ \text{hence,} \\ \mathbf{AB}_{21}(v_1u_1^{-1}) = \begin{pmatrix} u_1^{-1} & a_{12} \\ a_{21} + a_{22}v_1u_1^{-1} & a_{22} \end{pmatrix}. \ \text{Let } v = a_{22} - (a_{21} + a_{22}v_1u_1^{-1})u_1a_{12}. \\ \text{Then } \mathbf{AB}_{21}(v_1u_1^{-1}) = \mathbf{B}_{21}((a_{21} + a_{22}v_1u_1^{-1})u_1) \begin{pmatrix} u_1^{-1} & a_{12} \\ 0 & v \end{pmatrix}. \ \text{It follows from} \\ \mathbf{A}, \mathbf{B}_{21}(v_1u_1^{-1}), \mathbf{B}_{21}((a_{21} + a_{22}v_1u_1^{-1})u_1) \in GL_2(R) \ \text{that } \begin{pmatrix} u_1^{-1} & a_{12} \\ 0 & v \end{pmatrix} \in GL_2(R). \\ \text{In addition, } \begin{pmatrix} u_1^{-1} & a_{12} \\ 0 & v \end{pmatrix} = \begin{pmatrix} u_1^{-1} & 0 \\ 0 & v \end{pmatrix} \begin{pmatrix} 1 & u_1a_{12} \\ 0 & 1 \end{pmatrix} \ \text{and } \begin{pmatrix} 1 & u_1a_{12} \\ 0 & 1 \end{pmatrix} \in GL_2(R). \\ \text{This infers that } [u_1^{-1}, v] \in GL_2(R), \ \text{and so } v \in U(R). \ \text{Set } u = u_1^{-1}, \ \text{and} \\ w = v_1u_1^{-1}. \ \text{Then } \mathbf{A} = [u, v]\mathbf{B}_{21}(*)\mathbf{B}_{12}(*)\mathbf{B}_{21}(-w). \ \text{Clearly, } u, w \in GL_1(R, I). \\ \text{From } a_{22} \in 1 + I \ \text{and } a_{12} \in I, \ \text{we have } v \in GL_1(R, I), \ \text{as required.} \end{array}$

(2) \Rightarrow (1) For any (*I*)-unimodular row (a_{11}, a_{12}) , we get $\mathbf{A} = (a_{ij})_{2\times 2} \in GL_2(R, I)$. So there exist $u, v, w \in GL_1(R, I)$ such that $\mathbf{A} = [u, v]\mathbf{B}_{21}(*)\mathbf{B}_{12}(*)$ $\mathbf{B}_{21}(-w)$. Hence $\mathbf{AB}_{21}(w) = [u, v]\mathbf{B}_{21}(*)\mathbf{B}_{12}(*)$, and then $a_{11} + a_{12}w = u$. That is, $a_{11}u^{-1} + a_{12}wu^{-1} = 1$. As $u^{-1}, wu^{-1} \in GL_1(R, I)$, we are done.

Let \mathbb{Z} be the integer domain, $4\mathbb{Z}$ the principal ideal of \mathbb{Z} . Then $1 \in GL_1(\mathbb{Z}, 4\mathbb{Z})$, while $-1 \notin GL_1(\mathbb{Z}, 4\mathbb{Z})$. But we observe the following fact.

Corollary 2. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) R satisfies unit I-stable range.
- (2) For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{21}(w)B_{12}(*)B_{21}(*)$.

Proof. (1) \Rightarrow (2) Given any $\mathbf{A} = (a_{ij})_{2\times 2} \in GL_2(R, I)$, then $\mathbf{A}^{-1} \in GL_2(R, I)$. By Theorem 1, we have $u, v, w \in GL_1(R, I)$ such that $\mathbf{A}^{-1} = [u, v]\mathbf{B}_{21}(*)\mathbf{B}_{12}(*)$ $\mathbf{B}_{21}(-w)$. Thus $\mathbf{A} = \mathbf{B}_{21}(w)\mathbf{B}_{12}(*)\mathbf{B}_{21}(*)[u^{-1}, v^{-1}] = [u^{-1}, v^{-1}]\mathbf{B}_{21}(vwu^{-1})$ $\mathbf{B}_{12}(*)\mathbf{B}_{21}(*)$. Clearly, $u^{-1}, v^{-1}, vwu^{-1} \in GL_1(R, I)$, as required.

(2) \Rightarrow (1) Given any $\mathbf{A} = (a_{ij})_{2\times 2} \in GL_2(R, I)$, we have $u, v, w \in GL_1(R, I)$ such that $\mathbf{A}^{-1} = [u, v]\mathbf{B}_{21}(w)\mathbf{B}_{12}(*)$ $\mathbf{B}_{21}(*)$, and so $\mathbf{A} = \mathbf{B}_{21}(*)\mathbf{B}_{12}(*)\mathbf{B}_{21}(-w)$ $[u^{-1}, v^{-1}] = [u^{-1}, v^{-1}]\mathbf{B}_{21}(*)\mathbf{B}_{12}(*)\mathbf{B}_{21}(-vwu^{-1})$. It follows by Theorem 1 that R satisfies unit I-stable range. \Box

Theorem 3. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) R satisfies unit I-stable range.
- (2) For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{12}(*)B_{21}(*)B_{12}(-w)$.
- (3) For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = [u, v]B_{12}(w)B_{21}(*)B_{12}(*)$.

Proof. (1) \Rightarrow (2) Observe that if $\mathbf{A} \in GL_2(R, I)$, then the matrix $P^{-1}AP$ belongs to $GL_2(R, I)$, where $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Thus the formula in Theorem 1 can be replaced

182

$$\mathbf{A} = (\mathbf{P}[u, v]\mathbf{P}^{-1})(\mathbf{P}\mathbf{B}_{21}(*)\mathbf{P}^{-1})(\mathbf{P}\mathbf{B}_{12}(*)\mathbf{P}^{-1})(\mathbf{P}\mathbf{B}_{21}(-w)\mathbf{P}^{-1}).$$

That is, $\mathbf{A} = [v, u] \mathbf{B}_{12}(*) \mathbf{B}_{21}(*) \mathbf{B}_{12}(-w)$, as required.

(2)
$$\Rightarrow$$
 (1) For any (*I*)-unimodular (a_{11}, a_{12}) row, $\begin{pmatrix} * & * \\ a_{12} & a_{11} \end{pmatrix} \in GL_2(R, I)$. So we have $u, v, w \in GL_1(R, I)$ such that $\begin{pmatrix} * & * \\ a_{12} & a_{11} \end{pmatrix} = [u, v] \mathbf{B}_{12}(*) \mathbf{B}_{21}(*) \mathbf{B}_{12}(-w)$.
Thus $a_{11} + a_{12}w = v$; hence, $a_{11}v^{-1} + a_{12}wv^{-1} = 1$. Obviously, $v^{-1}, wv^{-1} \in GL_1(R, I)$, as required.

(2) \Leftrightarrow (3) is obtained by applying (1) \Leftrightarrow (2) to the inverse matrix of an invertible matrix **A**.

Let I be an ideal of a ring R. We use R^{op} to denote the opposite ring of R and use I^{op} to denote the corresponding ideal of I in R^{op} .

Corollary 4. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) R satisfies unit I-stable range.
- (2) R^{op} satisfies unit I^{op} -stable range.

Proof. (2) \Rightarrow (1) Construct a map $\varphi : M_2(R^{\text{op}}) \to M_2(R)^{\text{op}}$ by $\varphi((a_{ij}^{\text{op}})_{2\times 2}) = ((a_{ij})_{2\times 2}^T)^{\text{op}}$. It is easy to check that φ is a ring isomorphism.

Given any $\mathbf{A} \in GL_2(R, I)$, $\varphi^{-1} (P^{\text{op}}(\mathbf{A}^{-1})^{\text{op}}(P^{-1})^{\text{op}}) \in GL_2(R^{\text{op}}, I^{\text{op}})$, where P = [1, -1]. By Theorem 1, there exist $u^{\text{op}}, v^{\text{op}}, w^{\text{op}} \in GL_1(R^{\text{op}}, I^{\text{op}})$ such that $\varphi^{-1} (P^{\text{op}}(\mathbf{A}^{-1})^{\text{op}}(P^{-1})^{\text{op}}) = [u^{\text{op}}, v^{\text{op}}]\mathbf{B}_{21}(*^{\text{op}}) \mathbf{B}_{12}(*^{\text{op}})\mathbf{B}_{21}(-w^{\text{op}})$, whence $P^{-1}\mathbf{A}^{-1}P = \mathbf{B}_{12}(-w)\mathbf{B}_{21}(*)\mathbf{B}_{12}(*)[u, v]$. This means that $P^{-1}\mathbf{A}P = [u^{-1}, v^{-1}]\mathbf{B}_{12}(*)\mathbf{B}_{21}(*)\mathbf{B}_{12}(w)P^{-1})$. So $A = (P[u^{-1}, v^{-1}]P^{-1})(P\mathbf{B}_{12}(*)P^{-1})(P\mathbf{B}_{21}(*)P^{-1})$ $(P\mathbf{B}_{12}(w)P^{-1})$. Hence $A = [u^{-1}, v^{-1}]\mathbf{B}_{12}(*)\mathbf{B}_{21}(*)B_{12}(-w)$. Clearly, $u^{-1}, v^{-1}, uwv^{-1} \in GL_1(R, I)$. According to Theorem 3, R satisfies unit I-stable range.

 $(1) \Rightarrow (2)$ is symmetric.

Theorem 5. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) R satisfies unit I-stable range.
- (2) For any (I)-unimodular (a_{11}, a_{12}) row, there exist $u, v \in GL_1(R, I)$ such that $a_{11}u a_{12}v = 1$.
- (3) For any $A \in GL_2(R, I)$, there exist $u, v, w \in GL_1(R, I)$ such that $A = u, v]B_{21}(*)B_{12}(*)B_{21}(w)$.

Proof. (1) \Leftrightarrow (2) Observe that $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in GL_2(R, I)$ if and only if $\begin{pmatrix} a_{11} & -a_{12} \\ -a_{21} & a_{22} \end{pmatrix} \in GL_2(R, I)$. Thus $(a_{11}, -a_{12})$ is an (I)-unimodular row if and

only if so is (a_{11}, a_{12}) , as required.

$$(2) \Leftrightarrow (3)$$
 is similar to Theorem 1.

Let I be an ideal of a ring R. As a consequence of Theorem 5, we prove that R satisfies unit I-stable range if and only if for any $\mathbf{A} \in GL_2(R, I)$, there exist

 $u, v, w \in GL_1(R, I)$ such that $\mathbf{A} = [u, v] \mathbf{B}_{12}(*) \mathbf{B}_{21}(*) \mathbf{B}_{12}(w)$. We say that $\binom{a_{11}}{a_{21}}$ is an (I)-unimodular column in case there exists $A = (a_{ij})_{2\times 2} \in GL_2(R, I)$. By the symmetry, we can derive the following.

Corollary 6. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) R satisfies unit I-stable range.
- (2) For any (I)-unimodular column $\binom{a_{11}}{a_{21}}$, there exist $u, v \in GL_1(R, I)$ such that $ua_{11} + va_{21} = 1$.
- (3) For any (I)-unimodular column $\binom{a_{11}}{a_{21}}$, there exist $u, v \in GL_1(R, I)$ such that $ua_{11} - va_{21} = 1$.

Suppose that R satisfies unit I-stable range. We claim that every element in I is an difference of two elements in $GL_1(R, I)$. For any $a \in I$, we have $\binom{a}{1+a^2} = \mathbf{B}_{21}(a)\mathbf{B}_{12}(a) \in GL_2(R,I).$ This means that (1,a) is an (I)unimodular. So we have some $u, v \in GL_1(R, I)$ such that u + av = 1. Hence $a = v^{-1} - uv^{-1}$, as asserted.

Let I be an ideal of a ring R. Define $QM_2(R) = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + c = b + c = b \end{cases}$ $d, a, b, c, d \in R$ and $QM_2(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + c = b + d, a, b, c, d \in I \right\}$. Define $Q^T M_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a+b=c+d, a, b, c, d \in R \right\} \text{ and } Q^T M_2(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$ $|a+b=c+d, a, b, c, d \in I$. As an application of the symmetry of unit ideal-stable range condition, we derive the following.

Theorem 7. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) R satisfies unit I-stable range.
- (2) QM₂(R) satisfies unit QM₂(I)-stable range.
 (3) QM₂^T(R) satisfies unit QM₂^T(I)-stable range.

Proof. (1) \Rightarrow (2) Let $TM_2(R)$ denote the ring of all 2×2 lower triangular matrices over R, and let $TM_2(I)$ denote the ideal of all 2×2 lower triangular matrices over I. If $(\mathbf{A}_{11}, \mathbf{A}_{12})$, where $\mathbf{A}_{11} = \begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix}$ and $\mathbf{A}_{12} = \begin{pmatrix} b_{11} & 0 \\ b_{21} & b_{22} \end{pmatrix}$, is a unimodular row, then (a_{11}, b_{11}) and (a_{22}, b_{22}) are unimodular rows, and so $a_{11}u_1 + b_{11}v_1 = 1$ and $a_{22}u_2 + b_{22}v_2 = 1$ for some $u_1, u_2, v_1, v_2 \in GL_1(R, I)$. Then there are matrices $\mathbf{U} = \begin{pmatrix} u_1 & 0 \\ ** & u_2 \end{pmatrix}, \mathbf{V} = \begin{pmatrix} v_1 & 0 \\ ** & v_2 \end{pmatrix} \text{ such that } \mathbf{A}_{11}\mathbf{U} + \mathbf{A}_{12}\mathbf{V} = \mathbf{I}. \text{ Now we construct a}$ $\operatorname{map} \psi: QM_2(R) \to TM_2(R) \text{ given by } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \to \begin{pmatrix} a+c & 0 \\ c & d-c \end{pmatrix} \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in$ $QM_2(R)$. For any $\begin{pmatrix} x & 0 \\ z & y \end{pmatrix} \in TM_2(R)$, we have $\psi\left(\begin{pmatrix} x-z & x-y-z \\ z & y+z \end{pmatrix}\right) =$

 $\begin{pmatrix} x & 0 \\ z & y \end{pmatrix}$. Thus it is easy to verify that ψ is a ring isomorphism. Also we get that $\psi \mid_{QM_2(I)}$ is an isomorphism from $QM_2(I)$ to $TM_2(I)$. Therefore $QM_2(R)$ satisfies unit $QM_2(I)$ -stable range.

(2) \Rightarrow (1) As $QM_2(R)$ satisfies unit $QM_2(I)$ -stable range, we deduce that $TM_2(R)$ satisfies unit $TM_2(I)$ -stable range. Given any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(R, I)$, then

$$\begin{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \in GL_2(TM_n(R), TM_n(I)).$$

Thus we have $\begin{pmatrix} u & 0 \\ ** & v \end{pmatrix} \in GL_1(TM_2(R), TM_2(I))$ such that $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} u & 0 \\ ** & v \end{pmatrix} \in GL_1(TM_2(R), TM_2(I))$. Therefore $a + bu \in GL_1(R, I)$ and $u \in GL_1(R, I)$, as desired.

(1) \Leftrightarrow (3) Clearly, we have an anti-isomorphism $\psi : Q^T M_2(R) \to Q M_2(R^{\text{op}})$ given by $\psi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{pmatrix} a^{\text{op}} & c^{\text{op}} \\ b^{\text{op}} & d^{\text{op}} \end{pmatrix}$ for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Q^T M_2(R)$. Hence $Q^T M_2(R) \cong \left(Q M_2(R^{\text{op}}) \right)^{\text{op}}$. Likewise, we have $Q^T M_2(I) \cong \left(Q M_2(I^{\text{op}}) \right)^{\text{op}}$. Thus we complete the proof by Corollary 4.

It follows by Theorem 7 that R satisfies unit 1-stable range if and only if so does $QM_2(R)$ if and only if so does $QM_2^T(R)$.

Acknowledgements. It is a pleasure to thank the referee for excellent suggestions and corrections which led to the new versions of Theorem 3, Theorem 5 and Theorem 7 and helped us to improve considerably the first version of the paper.

References

- [1] Chen, H., Extensions of unit 1-stable range, Comm. Algebra 32 (2004), 3071–3085.
- [2] Menal, P. and Moncasi, J., K₁ of von Neumann regular rings, J. Pure Appl. Algebra 33 (1984), 295–312.
- [3] You, H., $K_2(R, I)$ of unit 1-stable ring, Chin. Sci. Bull. **35** (1990), 1590–1595.
- [4] Chen, H., Rings with stable range conditions, Comm. Algebra 26 (1998), 3653-3668.
- [5] Chen, H., Exchange rings with artinian primitive factors, Algebra Represent. Theory 2 (1999), 201–207.
- [6] Chen, H., Exchange rings satisfying unit 1-stable range, Kyushu J. Math. 54 (2000), 1-6.
- [7] Chen, H. and Li, F., Exchange rings satisfying ideal-stable range one, Sci. China Ser. A 44 (2001), 580–586.

H. CHEN AND M. CHEN

- [8] Chen, H., Morita contexts with generalized stable conditions, Comm. Algebra 30 (2002), 2699–2713.
- [9] Yu, H. P., Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), 105–109.
- [10] Chen, H. and Chen, M., On unit 1-stable range, J. Appl. Algebra & Discrete Structures 1 (2003), 189–196.

DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY JINHUA, ZHEJIANG 321004 PEOPLE'S REPUBLIC OF CHINA *E-mail*: chyzxl@sparc2.hunnu.edu.cn miaosen@mail.jhptt.zj.cn

186