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ON THE NUMBER OF PERIODIC SOLUTIONS

OF A GENERALIZED PENDULUM EQUATION

ZBYNĚK KUBÁČEK AND BORIS RUDOLF

����������	�
����
For a generalized pendulum equation we estimate the number of peri-

odic solutions from below using lower and upper solutions and from above using a
complex equation and Jensen’s inequality.

Introduction

We are interested in an estimation from above of the number of periodic solu-
tions of a generalized pendulum equation.

Our paper is motivated by a paper of Ortega [5], where a method of such
estimation in case of classical pendulum equation is developed.

The estimation method of Ortega is based on use of a complex differential equa-
tion, Ljapunov-Schmidt reduction and Jensen’s inequality for counting of zeros of
an analytic complex function on a unit disc.

We use the same method in our case.

We deal with a generalized pendulum equation

(1) x′′ + cx′ + g(x) = f(t) + s ,

where g ∈ C∞(R, R) is a 2π-periodic function such that
∫ π

−π
g(x) dx = 0, f : R →

R is a 1–periodic continuous function such that
∫ 1

0 f(t) dt = 0 and c, s ∈ R.

We are interested in the number of 1-periodic solutions of the equation (1). The
form of the equation (1) implies that if x(t) is a 1-periodic solution then x(t)+2kπ

is also a 1-periodic solution for each k integer. Estimating the number of solutions
we regard such solutions as the same solution.

Assume s ∈ R be such that there is a periodic solution of (1). Integrating the
equation (1) we obtain that

−G ≤ s ≤ G ,

2000 Mathematics Subject Classification: 34B15, 34C25.
Key words and phrases: generalized pendulum, number of solutions, Jensen’s inequality.
Partially supported by the grant VEGA 1/1135/04.
Received July 14, 2003, revised November 2003.
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where G = maxx∈R |g(x)|.
Let S = {s ∈ [−G, G], such that there is a periodic solution of (1)}. We de-

note

(2) s− = inf S, s+ = sup S .

Let s− < s1 < s < s2 < s+ and assume s1, s2 ∈ S. Then there exist 1-periodic
solutions xi of the equations x′′ + cx′ + g(x) = f(t) + si.

Moreover x1 is a strict upper solution of (1) and x2 a strict lower solution of (1).
Periodicity of g implies that x1 + 2kπ is also a strict upper solution. We choose k

such that x2 < x1+2kπ. The existence of a strict lower solution less then an upper
one implies that there is a solution of the equation (1) (see [3], [6]). That means
(s−, s+) ⊂ S and using limitation in integral equation we obtain S = [s−, s+].

Moreover for c = 0 it can be shown that 0 ∈ S. The proof of this assertion we
postpone at the end of the paper in Remark 2.

The estimation from below

It is possible to estimate the number of solutions from below by the method
based on the existence of a lower and upper solutions. (Cf. [3], [6].) The following
two lemmas can be found in [7].

Lemma 1 ([7]). Let |f(t, x, y)| < M and let α, β, α < β be strict lower and upper

solutions of the boundary value problem

x′′ + cx′ = f(t, x, x′) ,

x(0) = x(1), x′(0) = x′(1) .

Then there is a solution x(t) such that α(t) < x(t) < β(t).

Lemma 2 ([7]). Let |f(t, x, y)| < M and let α, β, α � β be strict lower and upper

solutions of the boundary value problem

x′′ + cx′ = f(t, x, x′) ,

x(0) = x(1), x′(0) = x′(1) .

Then there is a solution x(t) and points ta, tb ∈ (0, 1) such that x(ta) < α(ta),
x(tb) > β(tb).

Theorem 1. For each s ∈ (s−, s+) there are at least two periodic solutions of the

equation (1).

Proof. For each s ∈ (s−, s+) there are s1, s2 ∈ (s−, s+), s1 < s < s2. Let xi be
periodic solution of the equation x′′ + cx′ + g(x) = f(t) + si.

Then x1 + 2kπ is a strict upper solution of (1) and x2 a strict lower solution
of (1). We choose k such that x2 < x1 + 2kπ and x2 ≮ x1 + 2(k − 1)π. Then
Lemma 1 implies there is a solution x(t) of (1) such that x2 < x(t) < x1 + 2kπ.

As x2 � x1 +2(k−1)π, Lemma 2 implies there is a solution y(t) such that there
are ta, tb ∈ [0, 1], y(ta) < x2(ta), y(tb) > x1(tb) + 2(k − 1)π.

Clearly x(t) 6= y(t) + 2mπ. �
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The complex equation

Let

(3) g(x) =

∞
∑

n=1

(an sin nx + bn cosnx)

be the Fourier expansion of the periodic function g(x).
We assume that there is a positive constant d ∈ R and a sequence {cn}∞n=1,

cn ≥ 0,
∑

∞

n=1 cn < ∞, such that

(4) |an| + |bn| ≤ cne−nd .

Then the function g(x) can be extended to an analytic complex function

g(z) =

∞
∑

n=1

(an sin nz + bn cosnz)

defined on the set Bd = {z, |Im z| < d}.
Moreover (4) implies that g(x) is a C∞ function.

Example. Let r : (−1, 1) → R be an analytic function, r(x) =
∑

∞

n=0 anxn for
x ∈ (−1, 1). Then the functions

g1 =
1

2

(

r(qeix) + r(qe−ix)
)

=

∞
∑

n=0

anqn cosnx ,

g2 =
1

2i

(

r(qeix) − r(qe−ix)
)

=

∞
∑

n=0

anqn sin nx

satisfy for |q| < 1 the condition (4).

For example for r(x) =
1

1 − x
we get

g1(x) =
1 − q cosx

1− 2q cosx + q2
, g2(x) =

q sin x

1 − 2q cosx + q2
.

We deal with the complex equation

(5) z′′ + cz′ + g(z) = f(t) + s ,

where z : R → C.
Each real valued solution of (5) is a solution of (1). Therefore the number

of periodic solutions of (1) is estimated from above by the number of periodic
solutions of (5).
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An abstract form of the equation (5) is an operator equation

(6) Lz + Nz = f + s ,

where L : D(L) ⊂ Z → Z, Lz = z′′ + cz′ is a linear operator, Z = {z(t), z :
R → C is a continuous 1-periodic function} is a complex Banach space with the
norm ‖z‖ = max

t∈R
|z(t)|, D(L) is a subspace of two times continuously differentiable

functions, N : Z → Z, Nz = g(z) is a nonlinear operator, f ∈ Z is real-valued

(recall that
∫ 1

0
f(t) dt = 0), c and s are real numbers.

The kernel of L is kerL = C. We denote by W the subspace W = {w ∈
Z,

∫ 1

0
w(t) dt = 0}.

Then Z = C ⊕ W and z(t) = z0 + w(t).

We use the Ljapunov-Schmidt reduction. The operator equation (6) is equiva-
lent to the pair

QN(z) = s ,(7)

w = −K(I − Q)N(z0 + w) + F (t)(8)

where K : W → W is a right inverse operator to L|W , Q : Z → C is a projection

on C, Qz =
∫ 1

0
z(t) dt and F = K(I − Q)f .

Lemma 3. Let K̃ = −K(I − Q) : Z → W .

For c = 0 the operator norm ‖K̃‖ =
1

18
√

3
.

For c 6= 0 the operator norm ‖K̃‖ =
∫ 1

0
| 1
2c

− 1
c2 + 1

c(ec−1)e
ct − t

c
| dt.

Proof. The case c = 0 is proved in [5]. Similarly we prove the case c 6= 0.

Let p ∈ Z be such that K̃p = w, i.e. w′′ + cw′ = −(I −Q)p. Denote φ(t) ∈ W ,

φ(t) =
1

2c
− 1

c2
+

1

c(ec − 1)
ect − t

c
.

The function φ(t) is a solution of the boundary value problem

φ′′ − cφ′ = 1 ,

φ(0) = φ(1) ,

φ′(1) − cφ(1) = −(φ′(0) − cφ(0)) =
1

2
.

Then

∫ 1

0

pφ dt =

∫ 1

0

(I − Q)pφ dt = −
∫ 1

0

(w′′ + cw′)φ dt = w(0) .
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Due to periodicity we can assume that ‖w‖ = |w(0)|. Then

‖w‖ ≤
∫ 1

0

|φ| dt ‖p‖ .

That means ‖K̃‖ ≤
∫ 1

0
|φ| dt.

Now we choose pn ∈ Z, ‖pn‖ = 1, pn → sgnφ(t) a.e. t ∈ (0, 1). Computing the
limit in the integral

∫ 1

0

pnφ dt = wn(0)

we obtain that ‖K̃‖ ≥
∫ 1

0 |φ| dt. �

Now we prove that by the auxiliary equation (8) there is defined a contractive
operator Tz0

for a suitable fixed z0.
Let σ, η be positive real constants. We set

Ωη ={w ∈ W, |Im w(t)| < η} ,

Bσ ={z ∈ C, |Im z0| < σ} .

Lemma 4. Assume that (4) is satisfied and

(9) ‖K̃‖
∞
∑

n=1

n(|an| + |bn|) < 1 .

Then there are σ, η positive, σ + η < d, such that for each z0 ∈ Bσ the operator

Tz0
: Ω̄η → Ωη,

Tz0
w = −K̃g(z0 + w) + F

is a contraction.

Proof. At first we prove that Tz0
is a contraction.

For each z0 ∈ Bσ and each w1, w2 ∈ Ω̄η there is

|Tz0
w1 − Tz0

w2| ≤‖K̃‖ |g(z0 + w1) − g(z0 + w2)|
≤‖K̃‖ sup

t∈[0,1]

‖g′
(

z0 + w2 + t(w1 − w2)
)

‖ ‖w1 − w2)‖.

Using the inequalities

| cos z| ≤ cosh |Im z|, | sin z| ≤ cosh |Im z|

we obtain that

|Tz0
w1 − Tz0

w2| ≤ ‖K̃‖
∞
∑

n=1

n(|an| + |bn|) coshn(σ + η)‖w1(t) − w2(t)‖ .
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The condition (4) implies that for σ+η < d the series
∑

∞

n=1 n(|an|+|bn|) cosh n(σ+
η) is convergent and depends continuously on σ + η. Now the assumption (9)
implies that there are σ, η sufficiently small such that

(10) ‖K̃‖
∞
∑

n=1

n(|an| + |bn|) coshn(σ + η) < 1 .

That means Tz0
is a contraction.

Now we prove that Tz0
(Ω̄η) ⊆ Ωη . We use the inequalities

|Im cos z| ≤ sinh |Im z|, |Im sin z| ≤ sinh |Im z|

to estimate

|Im Tz0
(w)| =|Im (−K̃g(z0 + w) + F )| = |K̃(Im g(z0 + w))|

≤‖K̃‖
∞
∑

n=1

(|an| + |bn|) sinh n(σ + η)(11)

≤‖K̃‖
∞
∑

n=1

(|an| + |bn|)n(σ + η) coshn(σ + η) .

Arguing as above we obtain from the condition (4) and assumption (9) that
there are σ, η sufficiently small such that

‖K̃‖
∞
∑

n=1

(|an| + |bn|)n(σ + η) cosh n(σ + η) < η

i.e.
Tz0

(Ω̄η) ⊆ Ωη . �

Remark 1. The same Ljapunov-Schmidt reduction is also possible for differential
equation (1), where the operator equation (6) with operators L, N acting on real
Banach space X = {x(t), x : R → R is a continuous 1-periodic function} with the
supreme norm is equivalent to the pair

QN(x) = s ,(12)

w = −K(I − Q)N(x0 + w) + F (t)(13)

where K, Q and F have the same meaning as in the complex case.
Assuming (9), for each x0 ∈ R the operator Tx0

defined by the equation (13) is
a contraction in the variable w. Then for each x0 ∈ R there is a unique solution
w(x0) of (13) and this solution depends continuously on x0. As g is 2π-periodic,
for x0 and x0 + 2π we get the same solution w. Using these facts, we can prove
the equality S = [s−, s+] stated before Lemma 1 in a different way.
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Let us denote

(14) hr(x0) = QN(x0 + wx0
) =

∫ 1

0

g(x0 + wx0
) dt .

The function hr : R → R is a continuous 2π-periodic function, so its range is a
closed interval S = [s−, s+]. The set S is obviously nonempty and a solution of
(1) exists if and only if s ∈ S.

It is not known if the case S = {s0} is possible (see [4]). If the case S = {s0}
occurs, then for each x0 ∈ [0, 2π) there exists a solution x of (1) of the form

x(t) = x0 + w(x0)(t) .

As w depends continuously on x0, the set M = {x0 + w(x0), x0 ∈ [0, 2π)} is a
continuous and bijective image of the connected set [0, 2π), so M is connected. If
all functions from X that differ only by a multiple of 2π will be identified then M

is a one dimensional continuum.

The function hr depends continuously on f , so its range depends continuously
on f , therefore the numbers s−, s+ are continuous functions of f .

The estimation from above

For σ, η from Lemma 4 we define the operator z0 ∈ Bσ → wz0
∈ Ωη , where wz0

is the fixed point of Tz0
.

Now each solution z(t) = z0 + wz0
of (5) satisfies the bifurcation equation (7)

written in the form

(15) h(z0) =

∫ 1

0

g(z0 + wz0
) dt − s = 0 .

We estimate the number of roots of (15) by use of Jensen’s inequality ([1], [2])
which estimates the number of zeros of a complex analytic function on a disk with
radius ρ centered at origin using maximum value of modulus at unit disc.

In [5] the unit disc is transformed to a horizontal strip Bσ and the following
result is proved.

Lemma 5 ([5]). Let h : Bσ → C be an analytic 2π periodic function. Then for

the number Nh of roots of h on each interval [x, x + 2π) there is

Nh ≤ −1

ln tanh π2

4σ

ln
M

m
,

where

M = sup
z∈Bσ

|h(z)|, m = max
x∈R

|h(x)| .
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Let s ∈ [s−, s+] be fixed and h(z) be given by (15). Then

|h(z0)| ≤
∫ 1

0

|g(z0 + wz0
)| dt + G

≤
∫ 1

0

∞
∑

n=1

|an sinn(z0 + wz0
) + bn cosn(z0 + wz0

)| dt + G

≤G +
∞
∑

n=1

(|an| + |bn|) cosh n(σ + η) ,

where G = maxx∈R |g(x)|.
The assumption (4) implies the convergence of the last sum.
As the range of the function hr(x0) given by (14) is the interval [s−, s+] we

have
m = max{|s − s−|, |s − s+|} .

Finally we estimate the number of periodic solutions of (1) using Lemma 5.
To this aim we have to prove that the function h given by (15) is a differentiable
function defined on Bσ . As h is a composition of maps h1 : z0 7→ z0 + w(z0) =: w,

h2 : w 7→ g(w) =: u, h3 : u 7→
∫ 1

0
u dt, it suffices to prove the differentiability of

each hi. This is obvious for h3, the derivative of h2 is the map

dh2(w)δ = g′(w)δ .

The differentiability of h̃1 : z0 → w(z0) is a consequence of the Implicit Function
Theorem, namely wz0

is the unique solution of the equation

H(z0, w) := w + K(I − Q)g(z0 + w) − F (t) = 0 ,

the operator H has continuous partial derivatives ∂Hz0
and ∂Hwδ = (I + K(I −

Q)g′(z0 +w))δ and the derivative ∂Hw is a homeomorphism as ‖K(I −Q)g′‖ < 1.
So for the function h all assumptions of Lemma 5 are satisfied and we get the

following

Theorem 2. Let us consider the differential equation (1) with s ∈ [s−, s+], s−,

s+ given by (2). Let g(x) ∈ C∞(R, R) be defined by (3) with coefficients an, bn

satisfying (4) and (9).
Then there are σ, η positive such that the number N(f, s) of periodic solutions

of the equation (1) is estimated from above by

N(f, s) ≤ −1

ln tanh π2

4σ

ln
G +

∑

∞

n=1(|an| + |bn|) cosh n(σ + η)

m(s)
,

where G = maxx∈R |g(x)|, m(s) = max{|s − s−|, |s − s+|}.
The existence of positive constants σ, η is assured by Lemma 4, its proof shows

that it is sufficient to choose them satisfying the inequalities

(10) ‖K̃‖
∞
∑

n=1

n(|an| + |bn|) cosh n(σ + η) < 1
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and

(16) ‖K̃‖
∞
∑

n=1

(|an| + |bn|) sinh n(σ + η) ≤ η .

An example

We consider the equation

(17) x′′ +
sin x

1 − 2q cosx + q2
= f(t) + s ,

where q = e−d̃, d̃ > d > 0.
So the function

g(x) =

∞
∑

n=1

ed̃qn sin nx

and the condition (4) is satisfied with cn = ed̃e−n(d̃−d).
The inequalities (10), (16) give the following two conditions on σ, η.

‖K̃‖
∞
∑

n=1

n(|an| + |bn|) coshn(σ + η)

= ‖K̃‖
∞
∑

n=1

n(ed̃e−nd̃) coshn(σ + η)

=
1

18
√

3
ed̃ cosh d̃ cosh(σ + η) − 1

2(cosh d̃ − cosh(σ + η))2
< 1 .(18)

and

‖K̃‖
∞
∑

n=1

(|an| + |bn|) sinh n(σ + η)

≤ ‖K̃‖
∞
∑

n=1

(ed̃e−nd̃) sinh n(σ + η)

=
1

18
√

3
ed̃ sinh(σ + η)

2(cosh d̃ − cosh(σ + η))
< η(19)

The maximum of a real function g(x) is given by a constant

(20) G =
1

1 − q2

and the estimation of |g(z)| is

(21) M1 = max |g(z)| ≤ ed̃ cosh(σ + η) − e−d̃

2(cosh d̃ − cosh(σ + η))
.
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If d̃ = 4 then (18), (19) are satisfied for σ = 2.49 and η = 0.51, (20) implies
G = 1.0004 and (21) gives M1 ≤ 15.92.

Then Theorems 1, 2 imply there are at least two different periodic solutions of
(17) and at most

N(f, s) ≤ 10.19− 3.60 lnm(s)

periodic solutions of (17) for each s ∈ (s−, s+).

Remark 2. For the sake of completeness of the paper, let us recall the proof that
for c = 0 and s = 0 there exists a 1-periodic solution of (1) belonging to C2[0, 1].

The Sobolev space W 1,2[0, 1] is continuously embedded into C[0, 1], so the space

H = {x ∈ W 1,2[0, 1], x(0) = x(1)}

is a Hilbert space with the norm ‖x‖1,2 = ‖x‖2 + ‖x′‖2, where ‖ · ‖2 is a L2 norm.
According to the inequalities

‖x‖2 ≤ |x(0)| + ‖x′‖2, |x(0)| ≤ ‖x‖ ≤ ‖x‖2 + ‖x′‖2

we get
1

2
‖x‖1,2 ≤ |x(0)| + ‖x′‖2 ≤ 2‖x‖1,2 ,

therefore
‖x‖0 = |x(0)| + ‖x′‖2

is an equivalent norm on H .
Let us consider the functional J : H → R,

J(x) =

∫ 1

0

[

1

2
(x′(t))2 − γ(x(t)) + x(t)f(t)

]

dt ,

where γ is a 2π-periodic function, γ ′ = g. Denote by M the closed convex subset
{x ∈ H, −π ≤ x(0) ≤ π} of H . We show that J is weakly coercive on M and
weakly sequentially lower semicontinuous, accordingly J has a minimum on M .
As J(M) = J(H), this minimum is a global one.

The weak coercivity of J on M follows from the inequalities

|J(x)| ≥ 1

2
‖x′‖2

2 − B − A‖x‖2 ≥ 1

2

(

1

2
‖x‖1,2 − π

)2

− A‖x‖1,2 − B ,

where A = ‖f‖, B = ‖γ‖.
Before the proof of the weak sequential lower semicontinuity of J let us remark

that the weak convergence xn ⇀ x in W 1,2[0, 1] implies
(i) the boundedness of {xn}∞n=1 in W 1,2[0, 1] and accordingly in C[0, 1],
(ii) the pointwise convergence xn(t) → x(t) for each t ∈ [0, 1]

and therefore the convergence
∫ 1

0
|xn(t) − x(t)| dt → 0,
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(iii) the weak convergence xn − xn(0) ⇀ x − x(0) in W 1,2[0, 1].
Now the functional

J2(x) =

∫ 1

0

x(t)f(t) − γ(x(t)) dt

is weakly sequentially continuous as

|J2(xn) − J2(x)| ≤ (‖f(t)‖+ ‖γ ′‖)
∫ 1

0

|xn(t) − x(t)| dt .

The first term of J can be expressed as

J1(x) =
1

2

∫ 1

0

(x′(t))2 dt = ‖x − x(0)‖2
0

and the norm is weakly sequentially lower semicontinuous.
Thus it exists an x0 ∈ H such that J(x0) = minx∈H J(x). For this x0 and each

h ∈ H we have

(22) 0 = DJ(x, h) =

∫ 1

0

x′

0(t)h
′(t) − g(x0(t))h(t) + f(t)h(t) dt .

Integrating by parts we get

0 =

∫ 1

0

(

(x′

0(t) +

∫ t

0

g(x0(τ)) dτ −
∫ t

0

f(τ) dτ

)

h′(t) dt

for each h ∈ C∞

0 [0, 1]. As h′ ∈ {C∞

0 [0, 1],
∫ 1

0 h′(t) dt = 0}, we get

x′

0(t) +

∫ t

0

g(x0(τ)) − f(τ) dτ = k1

for a.e. t ∈ [0, 1], and

x0(t) = k2 + k1t −
∫ t

0

(
∫ u

0

g(x0(τ)) − f(τ) dτ

)

du

for each t ∈ [0, 1].
The function of the right hand side of the last equality belongs to C2[0, 1], so

x0 ∈ C2[0, 1], differentiating two times we get

(23) x′′

0 (t) + g(x0(t)) = f(t) .

As x0 ∈ H we have x0(0) = x0(1). Let us now choose h ∈ C1[0, 1] such that
h(0) = h(1) 6= 0.

Integrating (22) by parts we get, with respect to (23),

0 =

∫ 1

0

(−x′′

0 (t) − g(x0(t)) + f(t))h(t) dt + [x′

0(t)h(t)]10 = [x′

0(t)h(t)]10 ,

thus x′(0) = x′(1).
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92, Presses Univ. Montréal, Montréal 1985.
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