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ASYMPTOTIC BEHAVIOUR OF A DIFFERENCE EQUATION

WITH COMPLEX-VALUED COEFFICIENTS

JOSEF KALAS

Abstract. The asymptotic behaviour for solutions of a difference equation
∆zn = f(n, zn), where the complex-valued function f(n, z) is in some mean-
ing close to a holomorphic function h, and of a Riccati difference equation
is studied using a Lyapunov function method. The paper is motivated by
papers on the asymptotic behaviour of the solutions of differential equations
with complex-valued right-hand sides.

1. Introduction

In [3]–[7], the asymptotic behaviour of solutions of a nonlinear differential equa-
tion

z′ = G(t, z)[h(z) + g(t, z)](1)

is studied using Lyapunov function method. h is a holomorphic function defined
in a complex simply connected region Ω containing 0, G is a real function and
g is a complex function, t and z being a real and complex variable, respectively.
It is supposed that the right-hand side of (1) is in a suitable meaning close to
h. A Lyapunov-like function V (z) for the equation (1) is suggested in a following
manner under the assumption that h′(0) 6= 0 and h(z) = 0 ⇐⇒ z = 0 in Ω:

V (z) = |v(z)| ,

where

v(z) = z exp

∫ z

0

r(ζ)dζ , r(z) =



















zh′(0) − h(z)

zh(z)
for z ∈ Ω, z 6= 0 ,

−
h′′(0)

2h′(0)
for z = 0 .
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The functions v, r are holomorphic in Ω. It is shown that there exists a number
λ0, 0 < λ0 ≤ ∞ and a simply connected region K(λ0) ⊆ Ω such that every set

K̂(λ) := {z ∈ K(λ0) : V (z) = λ}

is the geometric image of a certain Jordan curve for 0 < λ < λ0 and

Int K̂(λ) = {z ∈ K(λ0) : V (z) < λ} .

If we define K̂(0) := {0},

K(λ) : =
⋃

0≤µ<λ

K̂(µ) for 0 < λ ≤ λ0 ,

K(λ1, λ2) : =
⋃

λ1<µ<λ2

K̂(µ) for 0 ≤ λ1 < λ2 ≤ λ0 ,

we have

K(λ) = Int K̂(λ) for 0 < λ < λ0 ,

K(λ1, λ2) = K(λ2) \ Cl K(λ1) for 0 < λ1 < λ2 ≤ λ0

and

K(0, λ) = K(λ) \ {0} for 0 < λ ≤ λ0 .

For details see e. g. [4]. Notice that the functions V , v, r and the sets K̂(λ), K(λ),
K(λ1, λ2) are defined only by means of the function h.

It was shown that the trajectories of the equation z′ = h(z) intersect the curves

K̂(λ) for 0 < λ < λ0 from their exterior to their interior or reversely, if Reh′(0) 6= 0
is assumed. Therefore the Lyapunov-like function V is useful for the investigation
of the asymptotic behaviour of the solutions of the equation (1), provided that the
right-hand side of (1) is in a suitable meaning close to the function h. The results
on the asymptotic behaviour of (1) can be applied to Riccati differential equation
and allow to generalize the most of results of earlier papers on the asymptotic
properties of Riccati equations with complex-valued coefficients published in [15]–
[18].

Consider a difference equation

∆zn = f(n, zn) ,(2)

where f(n, z) is defined od N0 × Ω, Ω ⊆ C being a simply connected region
containing 0. Let h be a holomorphic function defined in Ω and satisfying the
conditions h′(0) 6= 0, h(0) = 0 ⇐⇒ z = 0. Define the functions V , v, r and

the sets K̂(λ), K(λ), K(λ1, λ2) as before. If the function f(n, z) is in some sense

close to h(z), it can be expected then the function V and the sets K̂(λ), K(λ),
K(λ1, λ2) might be also suitable for the investigation of the asymptotic behaviour
of the solutions of (2). In the present paper we attempt to give several results on
the asymptotic behaviour of the solutions of (2) and apply some of these results
to a special type of difference equation – Riccati difference equation. The exact
meanig of the closeness of f to h will be given by the assumptions of results. Notice
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that the scalar or matrix Riccati or generalized Riccati difference equation in real
domain is studied in many papers, such as [1]–[2], [11]–[12] and [20], mainly in
the connection with the investigation of the oscillation and asymptotic properties
of linear difference equations of the second order. Observe that the method of
Lyapunov functions for difference equations is described in several monographs,
such as [14] and [13].

2. Results

Theorem 1. Suppose 0 < ν ≤ λ0, f(n, 0) = 0 for n ∈ N0. Assume that there is

a sequence {αn}
∞
n=0 such that αn ≥ 0 for n ∈ N0,

sup
n∈N0

n
∏

k=0

αk = κ < ∞ ,(3)

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ϑ)dϑ
∣

∣

∣
≤ αn(4)

for n ∈ N0, z ∈ K(0, ν). If a solution {zn}
∞
n=0 of the equation (2) satisfies

zn ∈ K(λ0) for n ∈ N0 ,(5)

z0 ∈ Cl K(γ0) ,(6)

where 0 < γ0 max(1, κ) < ν, then

zn ∈ Cl K(γ0κ)

for n ∈ N.

Proof. Let {zn}
∞
n=0 be any solution of (2) satisfying (5), (6). With respect to (4)

we have

∆V (zn) = V (zn+1) − V (zn) = |v(zn+1)| − |v(zn)|

= |zn + f(n, zn)|
∣

∣

∣
exp

∫ zn+f(n,zn)

0

r(ϑ)dϑ
∣

∣

∣
− |zn|

∣

∣

∣
exp

∫ zn

0

r(ϑ)dϑ
∣

∣

∣

= V (zn)
[∣

∣

∣
1 +

f(n, zn)

zn

∣

∣

∣

∣

∣

∣
exp

∫ zn+f(n,zn)

zn

r(ϑ)dϑ
∣

∣

∣
− 1

]

≤ (αn − 1)V (zn) ,

for any n ∈ N0 such that zn ∈ K(0, ν). Hence

V (zn+1) ≤ αnV (zn) .(7)

In view of f(n, 0) = 0 the inequality (7) holds also if zn = 0. Put β = γ0κ. We
shall prove that zn ∈ Cl K(β) for n ∈ N. It holds z0 ∈ K(ν). In view of (7) we
obtain V (z1) ≤ α0V (z0) ≤ α0γ0 ≤ β. This implies z1 ∈ ClK(β). Suppose now for
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the contrary that there is an n1 ∈ N such that zn ∈ ClK(β) for n = 1, 2, . . . , n1,
zn1+1 6∈ Cl K(β). The inequality (7) yields

V (zn1+1) ≤ αn1
V (zn1

) ≤ αn1
αn1−1V (zn1−1) ≤ · · · ≤

(

n1
∏

j=0

αj

)

V (z0) ≤ κγ0 = β ,

which is a contradiction with zn1+1 6∈ Cl K(β).

Remark 1. If V (z) ≥ λ0 for z ∈ Ω\K(λ0), then the condition (5) can be omitted,
because (7) together with (3) imply zn ∈ K(λ0) for n ∈ N.

Theorem 2. Suppose 0 ≤ δ < ν ≤ λ0. Assume there is a sequence {αn}
∞
n=0 such

that αn ≥ 0 for n ∈ N0,

inf
n∈N0

n
∏

k=0

αk = κ > 0 ,(8)

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ϑ)dϑ
∣

∣

∣
≥ αn(9)

for n ∈ N0, z ∈ K(δ, ν). If a solution {zn}
∞
n=0 of (2) satisfies

zn ∈ K(δ, ν) for n ∈ N0 ,(10)

z0 ∈ K̂(γ0) ,(11)

where δ < γ0 < ν, δ < γ0κ < ν, then

zn 6∈ K(γ0κ) for n ∈ N .(12)

Proof. Let {zn} be any solution of (2) satisfying (10), (11). Similarly as before
we have

∆V (zn) = V (zn)
[∣

∣

∣
1 +

f(n, zn)

zn

∣

∣

∣

∣

∣

∣
exp

∫ zn+f(n,zn)

zn

r(ϑ)dϑ
∣

∣

∣
− 1

]

≥ (αn − 1)V (zn)

and subsequently

V (zn+1) ≥ αnV (zn)

for any n ∈ N0 such that zn ∈ K(δ, ν). Put β = γ0κ. Then V (z1) ≥ α0V (z0) ≥
α0γ0 ≥ κγ0 and z1 6∈ K(β). We have to prove that (12) holds. Suppose on the
contrary that (12) is not true. Then there exists an n1 ∈ N such that zn ∈ K(δ, ν)
and zn 6∈ K(β) for n = 1, 2, . . . , n1, and, zn1+1 ∈ K(δ, β). Now

V (zn1+1) ≥ αn1
V (zn1

) ≥ αn1
αn1−1V (zn1−1) ≥ · · · ≥

(

n1
∏

j=0

αj

)

V (z0) ≥ κγ0 = β .

This contradicts to zn1+1 ∈ K(δ, β).
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Theorem 3. Suppose 0 ≤ δ ≤ β < γ0 < ν ≤ λ0, N ∈ N. Assume that there is a

sequence {αn}
∞
n=0 such that 0 ≤ αn ≤ 1 for n ∈ N0,

N
∏

k=0

αk < γ−1
0 β ,(13)

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ϑ)dϑ
∣

∣

∣
≤ αn(14)

for n = 0, 1, . . . , N , z ∈ K(δ, ν). If a solution {zn}
∞
n=0 of (2) satisfies

zn ∈ K(λ0) for n = 0, 1, . . . , N + 1 ,(15)

z0 ∈ K̂(γ0) ,(16)

then there is an n1 ∈ N such that

zn1
∈ K(β), zn ∈ K(δ, ν) \ K(β) for n = 0, 1, . . . , n1 − 1 .

Proof. Clearly z0 ∈ K(δ, ν) \ K(β) holds. Suppose that zk ∈ K(δ, ν), where
k ∈ {0, 1, . . . , N}. Then

∆V (zk) ≤ (αk − 1)V (zk)

and

V (zk+1) ≤ αkV (zk) ≤ αkαk−1V (zk−1) ≤ · · · ≤
(

k
∏

j=0

αj

)

V (z0) ≤ γ0 < ν .

This implies that

zk+1 ∈ K(ν) .(17)

If zk 6∈ K(β) for k = 0, 1, . . . , N + 1 then, in view of previous consideration,
zk ∈ K(δ, ν) \ K(β) for k = 0, 1, . . . , N + 1 and

β ≤ V (zN+1) ≤
(

N
∏

j=0

αj

)

V (z0) < γ−1
0 βγ0 = β ,

which is a contradiction. Therefore there exists an n1 ∈ {1, 2, . . . , N + 1} such
that zn1

∈ K(β) and zn ∈ K(δ, ν) \ K(β) for n = 0, 1, . . . , n1 − 1.

Remark 2. If V (z) ≥ ν for z ∈ Ω\K(λ0), then the condition (15) can be omitted.

Theorem 4. Suppose 0 ≤ δ < γ0 < β ≤ ν ≤ λ0, N ∈ N. Assume that there is a

sequence {αn}
∞
n=0 such that αn ≥ 1 for n ∈ N0,

N
∏

k=0

αk > γ−1
0 β ,(18)

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ϑ)dϑ
∣

∣

∣
≥ αn(19)
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for n = 0, 1, . . . , N , z ∈ K(δ, ν). If a solution {zn}
∞
n=0 of (2) satisfies

zn ∈ K(λ0) for n ∈ N0 ,(20)

z0 ∈ K̂(γ0) ,(21)

then there is an n1 ∈ N such that

zn1
∈ K(β, λ0), zn ∈ K(δ, ν) ∩ Cl K(β) for n = 0, 1, . . . , n1 − 1 .

Proof. It holds that z0 ∈ K(δ, ν) ∩ Cl K(β). Suppose zk ∈ K(δ, ν), where k ∈
{0, 1, . . . , N}. Now

∆V (zk) ≥ (αk − 1)V (zk)

and

V (zk+1) ≥ αkV (zk) ≥ αkαk−1V (zk−1) ≥ · · · ≥
(

k
∏

j=0

αj

)

V (z0) ≥ γ0 > δ .

This together with zk+1 ∈ K(λ0) yields

zk+1 ∈ K(δ, λ0) .(22)

If zk 6∈ K(β, λ0) for k = 0, 1, . . . , N +1 then, in view of the previous consideration,
zk ∈ K(δ, ν) ∩ Cl K(β) for k = 0, 1, . . . , N + 1 and

β ≥ V (zN+1) ≥
(

N
∏

j=0

αj

)

V (z0) > γ−1
0 βγ0 = β ,

a contradiction. Therefore there exists an n1 ∈ {1, 2, . . . , N+1} such that V (zn1
) ∈

K(β, λ0), zn ∈ K(δ, ν) ∩ Cl K(β) for n = 0, 1, . . . , n1 − 1.

Theorem 5. Suppose 0 < ν ≤ λ0, f(n, 0) = 0 for n ∈ N0. Assume that there is

a sequence {αn}
∞
n=0 such that 0 ≤ αn ≤ 1 for n ∈ N0,

lim
n→∞

n
∏

k=0

αk = 0 ,(23)

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ϑ)dϑ
∣

∣

∣
≤ αn(24)

for n ∈ N0, z ∈ K(0, ν). If a solution {zn}
∞
n=0 of (2) satisfies

zn ∈ K(ν) for n ∈ N0 ,

then

lim
n→∞

zn = 0 .

Proof. In view of the condition f(n, 0) = 0 it can be assumed without loss of
generality that zn 6= 0 for n ∈ N0. Put γ0 = V (z0). Similarly as before we have

V (zn+1) ≤
(

n
∏

k=0

αk

)

V (z0) =
(

n
∏

k=0

αk

)

γ0 .
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Using (23) we get limn→∞ V (zn+1) = 0. Since V is positive definite, we have
limn→∞ zn+1 = 0.

Remark 3. If V (z) ≥ ν for z ∈ Ω \ K(ν), then the condition zn ∈ K(ν) for
n ∈ N0 can be replaced by z0 ∈ K(ν).

Theorem 6. Suppose 0 ≤ δ < λ0. Assume there is a sequence {αn}
∞
n=0 such that

αn ≥ 0 for n ∈ N0,

lim inf
n→∞

n
∏

k=0

αk = κ > 1 ,(25)

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ϑ)dϑ
∣

∣

∣
≥ αn(26)

for n ∈ N0, z ∈ K(δ, λ0). If a solution {zn}
∞
n=0 of (2) satisfies

zn ∈ K(δ, λ0) for n ∈ N0 ,

and z0 ∈ K̂(γ0), where γ0κ ≥ λ0 then

lim
n→∞

V (zn) = λ0 .

Proof. Similarly as before we have

V (zn+1) ≥
(

n
∏

k=0

αk

)

V (z0) =
(

n
∏

k=0

αk

)

γ0 ≥
(

n
∏

k=0

αk

)

κ
−1λ0 .

Moreover V (zn) ≤ λ0 in view of zn ∈ K(δ, λ0). With respect to (25) we obtain

lim
n→∞

V (zn) = lim inf
n→∞

V (zn) = λ0 .

3. Applications

Consider a Riccati difference equation

∆zn =
(zn − a)(bn − zn)

zn − qn

,(27)

where a ∈ C, bn, qn ∈ C for n ∈ N0. The equation (27) can be written in the form

zn+1 =
[(a + bn) − qn]zn − abn

zn − qn

.

A substitution w = z − a transfers (27) to

∆wn =
wn(bn − a − wn)

wn + a − qn

.

Writing zn instead of wn in the last equation, we have

∆zn =
zn(bn − a − zn)

zn + a − qn

.(28)
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Notice that the function f(n, z) = z(bn−a−zn)/(z−a−qn) satisfies the condition
f(n, 0) = 0 which is required in Theorem 1 and Theorem 5. This is a reason for
our supposition that a is constant in (27) and not a sequence.

The right-hand side of (28) can be written as

1

|zn + a − qn|2
zn (bn − a − zn)(zn + a − qn) .(29)

If we replace zn by z and suppose that bn is sufficiently close to b ∈ C\{a}, then ne-

glecting the real factor 1/|zn +a−qn|
2 and a nonholomorphic factor (zn + a − qn),

we can try to suppose that the function (29) is close to a holomorphic function

h(z) = z(b − a − z) .(30)

Putting Ω = {z ∈ C : 2 Re[(b̄ − ā)z] < |a − b|2}, we observe h′(z) = b − a − 2z,
h′(0) = b − a 6= 0, r(z) = 1/(b − a − z), λ0 = |a − b|,

v(z) = (a − b)z/(z − b + a) ,

V (z) = |a − b|
|z|

|z − b + a|
.(31)

Then we have K(µ) = {z ∈ C : |a − b||z| < µ|z − b + a|} for 0 < µ ≤ |a − b| and

K(λ0) = K(|a − b|) = Ω. If 0 < µ < |a − b|, then K̂(µ) = {z ∈ C : |a − b||z| =

µ|z − b + a|} and K̂(µ) are circles (see figure).

Im z

Re z

b − a

0
K(µ)

K̂(µ)

Ω = K(λ0)

(b − a)/2

Suppose 0 < ν ≤ |a − b| and put f(n, z) = z(bn − a − z)/(z + a − qn). It holds
that

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ζ)dζ
∣

∣

∣

=
∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣

z + a − b

z + f(n, z) + a − b

∣

∣

∣

=
∣

∣

∣
1 +

bn − a − z

z + a − qn

∣

∣

∣

∣

∣

∣

∣

∣

z + a − b

z + z(bn−a−z)
z+a−qn

+ a − b

∣

∣

∣

∣

∣

.
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Therefore
∣

∣

∣

∣

1 +
f(n, z)

z

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

∫ z+f(n,z)

z

r(ζ)dζ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 +
bn − a − z

z + a − qn

∣

∣

∣

∣

∣

∣

∣

∣

1 +
z(bn − a − z)

(z + a − qn)(z + a − b)

∣

∣

∣

∣

−1

= |bn − qn|

∣

∣

∣

∣

z + a − qn +
z(bn − a − z)

z − b + a

∣

∣

∣

∣

−1

=
|bn − qn||z − b + a|

|(a + bn − b − qn)(z + a) − abn + bqn|

=
|bn − qn|

∣

∣

∣
a + bn − b − qn + (bn−b)(b−a)

z+a−b

∣

∣

∣

for z ∈ K(0, ν). Clearly z ∈ K(0, ν) if and only if 0 < |a − b||z|/|z − b + a| < ν.
Putting w = (a − b)z/(z − b + a), we obtain (a − b)z = (z − b + a)w, z =
(b − a)w/(w − a + b), z − b + a = −(b − a)2/(w − a + b), 0 < |w| < ν. Hence

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ζ)dζ
∣

∣

∣

=
|bn − qn|

∣

∣

∣
bn + a − b − qn + (w−a+b)(bn−b)

a−b

∣

∣

∣

=
|bn − qn||a − b|

|bn − b|
∣

∣

∣

(bn+a−b−qn)(a−b)
bn−b

+ w − a + b
∣

∣

∣

=
|bn − qn||a − b|

|bn − b|
∣

∣

∣

(a−qn)(a−b)
bn−b

+ w
∣

∣

∣

≤
|bn − qn||a − b|

|bn − b|
∣

∣

∣

(a−qn)(a−b)
bn−b

+ ν (qn−a)(a−b)
bn−b

|bn−b|
|qn−a||a−b|

∣

∣

∣

≤
|bn − qn||a − b|

|qn − a||a − b| − ν|bn − b|
,

if we assume |bn − b| < ν−1|a − b||qn − a|. Similarly we obtain the inequality

∣

∣

∣
1 +

f(n, z)

z

∣

∣

∣

∣

∣

∣
exp

∫ z+f(n,z)

z

r(ζ)dζ
∣

∣

∣
≥

|bn − qn||a − b|

|qn − a||a − b| + ν|bn − b|
.

Remark 4. The condition h(z) = 0 ⇐⇒ z = 0 is satisfied on Ω. However this
condition is not true on C. Nevertheles the functions h, v and V are defined not
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only on Ω but even on C. The function v is meromorphic on C with a pole at the
point b−a. It can be easily seen that, on the assumption |bn−b| < ν−1|a−b||qn−a|,

V (zk+1) ≤
|bk − qk||a − b|

|qk − a||a − b| − ν|bk − b|
V (zk)

holds for any solution {zn}
∞
n=0 of (28) and any k ∈ N0 such that zk ∈ K(ν) without

the supposition zk+1 ∈ Ω. Obviously Remarks 1–3 remain true if we replace Ω
by C.

Theorem 7. Let a, b ∈ C, a 6= b, bn, qn ∈ C for n ∈ N0, 0 < ϑ ≤ 1 and

|bn − b| < ϑ−1 |qn − a| for n ∈ N0 .

Suppose there is a sequence {αn}
∞
n=0 such that αn ≥ 0 for n ∈ N0,

sup
n∈N0

n
∏

k=0

αk = κ < ∞

and
|bn − qn|

|qn − a| − ϑ|bn − b|
≤ αn

for n ∈ N0. If a solution {zn}
∞
n=0 of (27) satisfies |z0 − a| ≤ δ0|z0 − b|, where

0 < δ0 max(1, κ) < ϑ, then

|zn − a| ≤ δ0κ|zn − b|

for n ∈ N.

Proof. Put ϑ = ν|a − b|−1, δ0 = γ0|a − b|−1 and define h and V by (30) and
(31), respectively. Applying Theorem 1 to the equation (28) and transferring the
variable z back to that of the equation (27), we obtain the given result. Notice
that V (z) ≥ λ0 for z ∈ C \ K(λ0) and Remark 1 together with Remark 4 can be
used.

Theorem 8. Let a, b ∈ C, a 6= b, bn, qn ∈ C for n ∈ N0, 0 ≤ θ < δ0 < ϑ ≤ 1,
N ∈ N,

|bn − b| < ϑ−1 |qn − a| for n ∈ N0 .

Assume that there is a sequence {αn}
∞
n=0 such that 0 ≤ αn ≤ 1 for n ∈ N0,

N
∏

k=0

αk < δ−1
0 θ

and
|bn − qn|

|qn − a| − ϑ|bn − b|
≤ αn

for n = 0, 1, . . . , N . If a solution {zn}
∞
n=0 of (27) satisfies |z0 − a| = δ0|z0 − b|,

then there is an n1 ∈ N such that

|zn1
− a| < θ|zn1

− b| ,

θ|zn − b| ≤ |zn − a| < ϑ|zn − b| for n = 0, 1, . . . , n1 − 1 .
(32)
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Proof. Since 0 ≤ αn ≤ 1, the assumptions of Theorem 7 are fulfilled with δ = 0,
ϑ = ν|a− b|−1, δ0 = γ0|a− b|−1, θ = β|a− b|−1, κ = 1. Hence |zn − a| ≤ δ0|zn − b|
for n ∈ N. From Theorem 3 and from Remarks 2,4 it follows that there is an
n1 ∈ N such that (32) holds true.

Theorem 9. Let a, b ∈ C, a 6= b, bn, qn ∈ C for n ∈ N0, 0 < ϑ ≤ 1 and

|bn − b| < ϑ−1 |qn − a| for n ∈ N0 .

Assume that there is a sequence {αn}
∞
n=0 such that 0 ≤ αn ≤ 1 for n ∈ N0,

lim
n→∞

n
∏

k=0

αk = 0

and
|bn − qn|

|qn − a| − ϑ|bn − b|
≤ αn

for n ∈ N0. If a solution {zn}
∞
n=0 of (27) satisfies |z0 − a| < ϑ|z0 − b|, then

lim
n→∞

zn = a .(33)

Proof. Since 0 ≤ αn ≤ 1, the assumptions of Theorem 7 are satisfied with κ = 1.
Hence |zn − a| < ϑ|z − b| for n ∈ N. Using Theorem 5 and Remarks 3,4 with
ϑ = ν|a − b|−1, we obtain (33).

Theorem 10. Let a, b ∈ C, a 6= b, bn, qn ∈ C for n ∈ N0, 0 < ϑ ≤ 1 and

|bn − b| < ν−1|qn − a| for n ∈ N0. Assume there is a sequence {αn}
∞
n=0 such that

αn ≥ 0 for n ∈ N0,

inf
n∈N0

n
∏

k=0

αk = κ > 0 ,

and
|bn − qn|

|qn − a| + ϑ|bn − b|
≥ αn

for n ∈ N0. If a solution {zn}
∞
n=0 of (27) satisfies conditions 0 < |zn−a| < ϑ|zn−b|

for n ∈ N0, |z0 − a| = δ0|z0 − b|, where 0 < δ0 max(1, κ) < ϑ, then

|zn − a| ≥ δ0κ|zn − b|

for n ∈ N.

Proof. Putting δ = 0, ϑ = ν|a − b|−1, δ0 = γ0|a − b|−1 and applying Theorem 2,
we obtain the statement of Theorem 10.

Theorem 11. Let a, b ∈ C, a 6= b, bn, qn ∈ C for n ∈ N0, 0 < δ0 < θ < ϑ ≤ 1,
N ∈ N and |bn − b| < ν−1|qn − a| for n ∈ N0. Assume that there is a sequence

{αn}
∞
n=0 such that αn ≥ 1 for n ∈ N0,

N
∏

k=0

αk > δ−1
0 θ
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and
|bn − qn|

|qn − a| + ϑ|bn − b|
≥ αn

for n = 0, 1, . . . , N . If a solution {zn}
∞
n=0 of (27) satisfies conditions |zn − a| <

|zn − b| for n ∈ N0, |z0 − a| = δ0|z0 − b|, then there is an n1 ∈ N such that

θ|zn1
−b| < |zn1

−a| < |zn1
−b|, 0 < |zn−a| ≤ θ|zn−b| for n = 0, 1, . . . , n1−1 .

Proof. The result follows from Theorem 4, if we put δ = 0, ϑ = ν|a − b|−1,
δ0 = γ0|a − b|−1, θ = β|a − b|−1.

Theorem 12. Let a, b ∈ C, a 6= b, bn, qn ∈ C for n ∈ N0 and |bn − b| < |qn − a|
for n ∈ N0. Assume there is a sequence {αn}

∞
n=0 such that αn ≥ 0 for n ∈ N0 and

lim inf
n→∞

n
∏

k=0

αk = κ > 1 ,

|bn − qn|

|qn − a| + |bn − b|
≥ αn

for n ∈ N0. If a solution {zn}
∞
n=0 of (27) satisfies 0 < |zn − a| < |zn − b| for

n ∈ N0 and |z0 − a| = δ0|z0 − b|, where δ0κ ≥ 1, δ0 < 1, then

lim
n→∞

|zn − a|

|zn − b|
= 1 .

Proof. The result follows from Theorem 6, if we put δ = 0, δ0 = γ0|a − b|−1.

Acknowledgement. This work was supported by the plan of investigations
MSM143100001 of the Czech Republic. The author thanks the referee for his
helpful suggestions and remarks.

References

[1] Bohner, M., Došlý, O., Kratz, W., Inequalities and asymptotics for Riccati matrix difference

operators, J. Math. Anal. Appl. 221 (1998), 262–286.

[2] Hooker, J. W., Patula, W. T., Riccati type transformations for second-order linear difference

equations, J. Math. Anal. Appl. 82 (1981), 451–462.

[3] Kalas, J., Asymptotic behaviour of the system of two differential equations, Arch. Math.
(Brno) 11 (1975), 175–186.

[4] Kalas, J., Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a com-

plex-valued function f , Qualitative theory of differential equations, Vol. I, II (Szeged, 1979),
pp. 431–462, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York,
1981.

[5] Kalas, J., On the asymptotic behaviour of the equation dz/dt = f(t, z) with a complex-valued

function f , Arch. Math. (Brno) 17 (1981), 11–22.

[6] Kalas, J., Asymptotic properties of the solutions of the equation ż = f(t, z) with a complex-
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Math. (Brno) 17 (1981), 191–206.

[8] Kalas, J., On certain asymptotic properties of the solutions of the equation ż = f(t, z) with
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