ON THE EXISTENCE OF SOLUTIONS OF SOME SECOND ORDER NONLINEAR DIFFERENCE EQUATIONS

MAŁGORZATA MIGDA, EWA SCHMEIDEL, MAもGORZATA ZBĄSZYNIAK

Abstract. We consider a second order nonlinear difference equation

$$
\begin{equation*}
\Delta^{2} y_{n}=a_{n} y_{n+1}+f\left(n, y_{n}, y_{n+1}\right), \quad n \in N \tag{E}
\end{equation*}
$$

The necessary conditions under which there exists a solution of equation (E) which can be written in the form

$$
y_{n+1}=\alpha_{n} u_{n}+\beta_{n} v_{n}, \quad \text { are given. }
$$

Here u and v are two linearly independent solutions of equation

$$
\Delta^{2} y_{n}=a_{n+1} y_{n+1}, \quad\left(\lim _{n \rightarrow \infty} \alpha_{n}=\alpha<\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \beta_{n}=\beta<\infty\right)
$$

A special case of equation (E) is also considered.

1. Introduction

Consider the difference equation

$$
\begin{equation*}
\Delta^{2} y_{n}=a_{n} y_{n+1}+f\left(n, y_{n}, y_{n+1}\right), \quad n \in N \tag{E}
\end{equation*}
$$

where N denotes the set of positive integers. By N_{0} we define the set $\left\{n_{0}, n_{0}+\right.$ $1, \ldots\}$ where $n_{0} \in N$, by R the set of real numbers and by R_{+}the set of real nonnegative numbers. By a solution of equation (E) we mean a sequence (y_{n}) which satisfies equation (E) for sufficiently large n. The necessary conditions under which there exists a solution of equation (E) which can be written in the following form

$$
\begin{equation*}
y_{n+1}=\alpha_{n} u_{n}+\beta_{n} v_{n} \tag{1}
\end{equation*}
$$

are given. Here u and v are two linearly independent solutions of equation

$$
\Delta^{2} y_{n}=a_{n+1} y_{n+1}
$$

where

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\alpha<\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \beta_{n}=\beta<\infty
$$

[^0]In the last few years there has been an increasing interest in the study of asymptotic behavior of solutions of difference equations, in particular second order difference equations (see, for example [2]-[3], [6]-[13]).

The equation (E) was considered by Migda, Schmeidel and Zbązyyniak in [9], too. This equation was considered under assumption

$$
\begin{equation*}
\int_{\epsilon}^{\infty} \frac{d s}{F(s)}=\infty \tag{2}
\end{equation*}
$$

In [9], the authors proved that each solution of equation (E) can be written in the form (1). In presented paper, we will show that under assumption

$$
\begin{equation*}
\int_{0}^{\epsilon} \frac{d s}{F(s)}=\infty \tag{3}
\end{equation*}
$$

where ϵ is a positive constant, there exists a solution of equation (E), which can be written in the form (1). It is clear that there exist functions F which satisfy condition (3) and for which condition (2) is not fulfil, for example $F(x)=x^{2}$.

To prove the main result we start with the following Lemmas:
Lemma 1. Assume that $F: R \rightarrow R$ is continuous, nondecreasing function, such that $F(x) \neq 0$ for $x \neq 0$ and condition (3) holds. Moreover, let the function $B: N \times R_{+}^{2} \rightarrow R_{+}$be continuous on R_{+}^{2} for each $n \in N$ and such that

$$
B\left(n, z_{1}, z_{2}\right) \leq B\left(n, y_{1}, y_{2}\right) \quad \text { for } \quad 0 \leq z_{k} \leq y_{k}, \quad k=1,2
$$

and

$$
B\left(n, a_{n} z_{1}, a_{n} z_{2}\right) \leq F\left(a_{n}\right) B\left(n, z_{1}, z_{2}\right) \quad \text { for } \quad a: N \rightarrow R_{+} .
$$

Let $\left(\mu_{n}\right)$ and $\left(\rho_{n}\right)$ are positive sequences which satisfy the following inequality

$$
\mu_{n} \leq \mu_{n_{0}}+c \sum_{j=n_{0}}^{n-1} \rho_{j} B\left(j, \rho_{j-1} \mu_{j-1}, \rho_{j} \mu_{j}\right)
$$

for $n \geq n_{0}, n_{0} \in N$ and some positive constant c, and the series

$$
\begin{equation*}
\sum_{j=n_{0}}^{\infty} \rho_{j} B\left(j, \rho_{j-1}, \rho_{j}\right) \tag{4}
\end{equation*}
$$

is convergent. Then there exists a sequence $\left(\mu_{n}\right)$ such that $\mu_{n} \leq M$ for some $M>0$, for all $n \in N_{0}$.
Proof. Let positive sequences $\left(\mu_{n}\right)$ and $\left(\rho_{n}\right)$ satisfy the inequality

$$
\mu_{n} \leq \mu_{n_{0}}+c \sum_{j=n_{0}}^{n-1} \rho_{j} B\left(j, \rho_{j-1} \mu_{j-1}, \rho_{j} \mu_{j}\right) .
$$

We denote $b_{n}=\mu_{n_{0}}+c \sum_{j=n_{0}}^{n-1} \rho_{j} B\left(j, \rho_{j-1} \mu_{j-1}, \rho_{j} \mu_{j}\right)$. Since

$$
\begin{equation*}
\mu_{i} \leq b_{i}, \quad i \geq n_{0} \tag{5}
\end{equation*}
$$

and

$$
\Delta b_{i}=b_{i+1}-b_{i}=c \rho_{i} B\left(i, \rho_{i-1} \mu_{i-1}, \rho_{i} \mu_{i}\right) \geq 0
$$

we see that the sequence $\left(b_{i}\right)$ is nondecreasing. Therefore, by (5) we have

$$
\Delta b_{i} \leq c \rho_{i} B\left(i, \rho_{i-1} b_{i-1}, \rho_{i} b_{i}\right) \leq c \rho_{i} B\left(i, \rho_{i-1} b_{i}, \rho_{i} b_{i}\right) \leq c \rho_{i} F\left(b_{i}\right) B\left(i, \rho_{i-1}, \rho_{i}\right)
$$

where $F\left(b_{i}\right) \geq 0$. This imply,

$$
\begin{equation*}
\frac{\Delta b_{i}}{F\left(b_{i}\right)} \leq c \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right) \tag{6}
\end{equation*}
$$

Since the function F is nondecreasing, it follows that the function $\frac{1}{F}$ is nonincreasing. This yields

$$
\begin{equation*}
\frac{\Delta b_{i}}{F\left(b_{i}\right)} \geq \int_{b_{i}}^{b_{i+1}} \frac{d s}{F(s)} \tag{7}
\end{equation*}
$$

From (6) and (7) we have

$$
\int_{b_{i}}^{b_{i+1}} \frac{d s}{F(s)} \leq c \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right), \quad i \geq n_{0}
$$

By summation from $i=n_{0}$ to $i=n-1$ one yields

$$
\begin{equation*}
\int_{b_{n_{0}}}^{b_{n}} \frac{d s}{F(s)} \leq c \sum_{i=n_{0}}^{n-1} \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right) \tag{8}
\end{equation*}
$$

Denoting

$$
\begin{equation*}
\int_{\epsilon}^{x} \frac{d s}{F(s)}=G(x), \quad \text { where } \epsilon \text { is a positive constant } \tag{9}
\end{equation*}
$$

we obtain that

$$
\int_{b_{n_{0}}}^{b_{n}} \frac{d s}{F(s)}=G\left(b_{n}\right)-G\left(b_{n_{0}}\right)
$$

From this and (8) we see

$$
\begin{equation*}
G\left(b_{n}\right) \leq G\left(b_{n_{0}}\right)+c \sum_{i=n_{0}}^{n-1} \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right) . \tag{10}
\end{equation*}
$$

From (9) and properties of function F, function G is increasing. We have two possibilities:
(i) $\lim _{x \rightarrow \infty} G(x)=\infty$. Then $G\left(b_{n_{0}}\right)+c \sum_{i=n_{0}}^{n-1} \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right)$ belongs to the domain of function G^{-1}, for every $n \in N$.
(ii) $\lim _{x \rightarrow \infty} G(x)=g<\infty$. From (3) we can take $b_{n_{0}}$ such that

$$
G\left(b_{n_{0}}\right)+c \sum_{i=n_{0}}^{\infty} \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right)<g .
$$

Then there exists a sequence $\left(\mu_{n}\right)$ such that $G\left(b_{n_{0}}\right)+c \sum_{i=n_{0}}^{\infty} \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right)$ belongs to domain of function G^{-1} in this case, too.
Hence G^{-1} exists and is increasing.
We conclude from (10), that

$$
b_{n} \leq G^{-1}\left\{G\left(b_{n_{0}}\right)+c \sum_{i=n_{0}}^{n-1} \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right)\right\}
$$

and finally from (5) and (4), that

$$
\mu_{n} \leq G^{-1}\left\{G\left(b_{n_{0}}\right)+c \sum_{i=n_{0}}^{\infty} \rho_{i} B\left(i, \rho_{i-1}, \rho_{i}\right)\right\} \leq M
$$

where $n \in N_{0}$.
Lemma 2. The equation

$$
\begin{equation*}
\Delta^{2} z_{n}=a_{n+1} z_{n+1}, \quad n \in N \tag{EL}
\end{equation*}
$$

where $a: N \rightarrow R$, has linearly independent solutions $u, v: N \rightarrow R$ such that

$$
\left|\begin{array}{cc}
u_{n} & v_{n} \tag{11}\\
\Delta u_{n} & \Delta v_{n}
\end{array}\right|=-1 \quad \text { for all } \quad n \in N .
$$

Theorem 1. Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are linearly independent solutions of equation (EL). Assume that

$$
\begin{equation*}
\left|f\left(n, x_{1}, x_{2}\right)\right| \leq B\left(n,\left|x_{1}\right|,\left|x_{2}\right|\right) \tag{12}
\end{equation*}
$$

for all $x_{1}, x_{2} \in R$, and any fixed $n \in N$, where $f: N \times R^{2} \rightarrow R$ and function B fulfil conditions of Lemma 1. Let us denote

$$
\begin{equation*}
U_{j}=\max \left\{\left|u_{j-1}\right|,\left|v_{j-1}\right|,\left|u_{j}\right|,\left|v_{j}\right|,\left|u_{j+1}\right|,\left|v_{j+1}\right|\right\} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=2}^{\infty} U_{j} B\left(j, U_{j-1}, U_{j}\right)=K<\infty \tag{If}
\end{equation*}
$$

for some positive constant K, then there exists a solution $\left(y_{n}\right)$ of equation (E), which can be written in the form

$$
\begin{equation*}
y_{n+1}=\alpha_{n} u_{n}+\beta_{n} v_{n} \tag{15}
\end{equation*}
$$

where $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$ and $\lim _{n \rightarrow \infty} \beta_{n}=\beta,(\alpha, \beta$-constants $)$.

Proof. First we prove the theorem for two linearly independent solutions (u_{n}) and $\left(v_{n}\right)$ of equation (EL) which fulfil the condition (11). Assume that $\left(y_{n}\right)$ is an arbitrary solution of equation (E). Let us denote

$$
\begin{align*}
& A_{n}=v_{n} \Delta y_{n}-y_{n+1} \Delta v_{n-1} \tag{16}\\
& B_{n}=-u_{n} \Delta y_{n}+y_{n+1} \Delta u_{n-1} . \tag{17}
\end{align*}
$$

From (11) we get

$$
\begin{equation*}
y_{n+1}=u_{n} A_{n}+v_{n} B_{n} . \tag{18}
\end{equation*}
$$

Applying the difference operator Δ to (16) and (17) we obtain

$$
\begin{aligned}
& \Delta A_{n}=v_{n} \Delta^{2} y_{n}-y_{n+1} \Delta^{2} v_{n-1} \\
& \Delta B_{n}=-u_{n} \Delta^{2} y_{n}+y_{n+1} \Delta^{2} u_{n-1}
\end{aligned}
$$

Using (EL) and (E) we have

$$
\begin{aligned}
& \Delta A_{n}=v_{n} f\left(n, y_{n}, y_{n+1}\right) \\
& \Delta B_{n}=-u_{n} f\left(n, y_{n}, y_{n+1}\right)
\end{aligned}
$$

From (18) we obtain

$$
\begin{aligned}
\Delta A_{j} & =v_{j} f\left(j, u_{j-1} A_{j-1}+v_{j-1} B_{j-1}, u_{j} A_{j}+v_{j} B_{j}\right) \\
\Delta B_{j} & =-u_{j} f\left(j, u_{j-1} A_{j-1}+v_{j-1} B_{j-1}, u_{j} A_{j}+v_{j} B_{j}\right), \quad j>1
\end{aligned}
$$

By summation we get

$$
\begin{align*}
& A_{n}=A_{2}+\sum_{j=2}^{n-1} v_{j} f\left(j, u_{j-1} A_{j-1}+v_{j-1} B_{j-1}, u_{j} A_{j}+v_{j} B_{j}\right) \\
& B_{n}=B_{2}-\sum_{j=2}^{n-1} u_{j} f\left(j, u_{j-1} A_{j-1}+v_{j-1} B_{j-1}, u_{j} A_{j}+v_{j} B_{j}\right) \tag{19}
\end{align*}
$$

Then

$$
\begin{aligned}
& \left|A_{n}\right| \leq\left|A_{2}\right|+\sum_{j=2}^{n-1}\left|v_{j}\right|\left|f\left(j, u_{j-1} A_{j-1}+v_{j-1} B_{j-1}, u_{j} A_{j}+v_{j} B_{j}\right)\right| \\
& \left|B_{n}\right| \leq\left|B_{2}\right|+\sum_{j=2}^{n-1}\left|u_{j}\right|\left|f\left(j, u_{j-1} A_{j-1}+v_{j-1} B_{j-1}, u_{j} A_{j}+v_{j} B_{j}\right)\right|
\end{aligned}
$$

Therefore, we have
$\left|A_{n}\right|+\left|B_{n}\right| \leq\left|A_{2}\right|+\left|B_{2}\right|$

$$
\begin{equation*}
+\sum_{j=2}^{n-1}\left(\left|v_{j}\right|+\left|u_{j}\right|\right)\left|f\left(j, u_{j-1} A_{j-1}+v_{j-1} B_{j-1}, u_{j} A_{j}+v_{j} B_{j}\right)\right| \tag{20}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
h_{n}=\left|A_{n}\right|+\left|B_{n}\right|, \quad n \in N \tag{21}
\end{equation*}
$$

By the definition of U_{j} we see that

$$
\left|v_{j-1}\right| \leq U_{j}, \quad\left|u_{j-1}\right| \leq U_{j}, \quad\left|v_{j}\right| \leq U_{j}, \quad\left|u_{j}\right| \leq U_{j}, \quad\left|v_{j+1}\right| \leq U_{j}, \quad\left|u_{j+1}\right| \leq U_{j}
$$

It is clear that

$$
\left|A_{j} u_{j}+B_{j} v_{j}\right| \leq\left|A_{j}\right|\left|u_{j}\right|+\left|B_{j}\right|\left|v_{j}\right| \leq U_{j}\left(\left|A_{j}\right|+\left|B_{j}\right|\right) \leq U_{j} h_{j} .
$$

Hence, by (12) we get

$$
\left|f\left(j, A_{j-1} u_{j-1}+B_{j-1} v_{j-1}, A_{j} u_{j}+B_{j} v_{j}\right)\right| \leq B\left(j, U_{j-1} h_{j-1}, U_{j} h_{j}\right)
$$

Therefore, (20) and (21) yields

$$
h_{n} \leq h_{2}+2 \sum_{j=2}^{n-1} U_{j} B\left(j, U_{j-1} h_{j-1}, U_{j} h_{j}\right) .
$$

By Lemma 1, there exists a sequence $\left(h_{n}\right)$ and a constant $M>0$ such that $h_{n} \leq M$. Properties of function B and (12) give the following inequalities

$$
\begin{aligned}
\mid v_{j} f\left(j, A_{j-1} u_{j-1}\right. & \left.+B_{j-1} v_{j-1}, A_{j} u_{j}+B_{j} v_{j}\right) \mid \\
& \leq U_{j} B\left(j,\left|A_{j-1} u_{j-1}+B_{j-1} v_{j-1}\right|,\left|A_{j} u_{j}+B_{j} v_{j}\right|\right) \\
& \leq U_{j} B\left(j, U_{j-1} h_{j-1}, U_{j} h_{j}\right) \leq U_{j} B\left(j, U_{j-1} M, U_{j} M\right) \\
& \leq F(M) U_{j} B\left(j, U_{j-1}, U_{j}\right)
\end{aligned}
$$

This means by (14) that the series

$$
\sum_{j=2}^{\infty} v_{j} f\left(j, A_{j-1} u_{j-1}+B_{j-1} v_{j-1}, A_{j} u_{j}+B_{j} v_{j}\right)
$$

is absolutely convergent. By (19) finite limit $\lim _{n \rightarrow \infty} A_{n}=\alpha$ exists. Analogously $\lim _{n \rightarrow \infty} B_{n}=\beta<\infty$ exists. Hence (18) holds, and there exist finite limits of sequences $\left(A_{n}\right)$ and $\left(B_{n}\right)$.

Now, we will prove this theorem for any two linearly independent solutions (\tilde{u}_{n}) and $\left(\tilde{v}_{n}\right)$ of equation (EL). Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be two linearly independent solutions of equation (EL) fulfilling condition (11). Then for some constants c_{1}, c_{2}, c_{3} and c_{4} we have

$$
u_{n}=c_{1} \tilde{u}_{n}+c_{2} \tilde{v}_{n}, \quad v_{n}=c_{3} \tilde{u}_{n}+c_{4} \tilde{v}_{n} .
$$

Now,

$$
\tilde{U}_{j}=\max \left\{\left|\tilde{u}_{j-1}\right|,\left|\tilde{v}_{j-1}\right|,\left|\tilde{u}_{j}\right|,\left|\tilde{v}_{j}\right|,\left|\tilde{u}_{j+1}\right|,\left|\tilde{v}_{j+1}\right|\right\} .
$$

We will show that the condition (14) holds. Let $\tilde{c}=\max \left\{\left|c_{1}\right|,\left|c_{2}\right|,\left|c_{3}\right|,\left|c_{4}\right|\right\}$. Hence

$$
U_{j} \leq \tilde{c} \max \left\{\left|\tilde{u}_{j-1}\right|+\left|\tilde{v}_{j-1}\right|,\left|\tilde{u}_{j}\right|+\left|\tilde{v}_{j}\right|,\left|\tilde{u}_{j+1}\right|+\left|\tilde{v}_{j+1}\right|\right\} \leq 2 \tilde{c} \tilde{U}_{j} .
$$

Therefore, we obtain inequalities

$$
U_{j} B\left(j, U_{j-1}, U_{j}\right) \leq 2 \tilde{c} \tilde{U}_{j} B\left(j, 2 \tilde{c} \tilde{U}_{j-1}, 2 \tilde{c} \tilde{U}_{j}\right) \leq 2 \tilde{c} \tilde{U}_{j} F(2 \tilde{c}) B\left(j, \tilde{U}_{j-1}, \tilde{U}_{j}\right)
$$

and

$$
\sum_{j=1}^{\infty} U_{j} B\left(j, U_{j-1}, U_{j}\right)<\infty
$$

We see that assumptions of the Theorem 1 hold for solutions $\left(u_{n}\right)$ and $\left(v_{n}\right)$, also. Then a solution of equation (E) can be written in the form

$$
\begin{aligned}
y_{n+1} & =A_{n}\left(c_{1} \tilde{u}_{n}+c_{2} \tilde{v}_{n}\right)+B_{n}\left(c_{3} \tilde{u}_{n}+c_{4} \tilde{v}_{n}\right) \\
& =\left(c_{1} A_{n}+c_{3} B_{n}\right) \tilde{u}_{n}+\left(c_{2} A_{n}+c_{4} B_{n}\right) \tilde{v}_{n} \\
& =\alpha_{n} \tilde{u}_{n}+\beta \tilde{v}_{n},
\end{aligned}
$$

where $\alpha_{n}=c_{1} A_{n}+c_{3} B_{n}, \beta_{n}=c_{2} A_{n}+c_{4} B_{n}$, and $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha, \lim _{n \rightarrow \infty} \beta_{n}=\beta(\alpha$, β-constants). This completes the proof of this Theorem.

Example 1. Consider the difference equation

$$
\begin{equation*}
\Delta^{2} y_{n}=\frac{y_{n} y_{n+1}}{\left(n^{2}+3 n+2\right) 2^{n+2}+6 n+10+2^{1-n}} \tag{22}
\end{equation*}
$$

All conditions of Theorem 1 are satisfied with $B\left(n, x_{1}, x_{2}\right)=\frac{x_{1} x_{2}}{n^{2} 2^{n}}$ and $F(k)=k^{2}$. Hence the equation (22) has a solution (y_{n}) which can be written in the form (15). In fact, $y_{n}=n+\left(1+\frac{1}{2^{n}}\right) 1$ is such a solution, where $\alpha_{n}=1$ and $\beta_{n}=1+\frac{1}{2^{n}}$.

Note, that Theorem 1 is applicable to the equation (22), but Theorem 1 from [9] is not, because

$$
\int_{\epsilon}^{\infty} \frac{d s}{F(s)}=\int_{\epsilon}^{\infty} \frac{d s}{s^{2}}=\frac{1}{\epsilon}
$$

is convergent. So, condition (1) from [9] is not satisfied.
Theorem 2. Assume that functions F and B fulfil conditions of Lemma 1 and function F fulfil condition (12) of Theorem 1. If

$$
\begin{equation*}
\sum_{j=1}^{\infty} j B(j, j, j)=k<\infty \tag{23}
\end{equation*}
$$

then there exists a solution $\left(y_{n}\right)$ of equation

$$
\begin{equation*}
\Delta^{2} y_{n}=f\left(n, y_{n}, y_{n+1}\right), \quad n \in N \tag{24}
\end{equation*}
$$

which can be written in the form

$$
\begin{equation*}
y_{n+1}=a n+b+\phi(n), \text { where } \lim _{n \rightarrow \infty} \phi(n)=0 . \tag{25}
\end{equation*}
$$

Proof. Equation $\Delta^{2} z_{n}=0$ has two linearly independent solution $u_{n}=n$ and $v_{n}=1$. These solutions satisfy conditions (11) of Theorem 1 . We will prove that condition (14) is also satisfied. From (13), $U_{j}=j+1$. From properties of function B we obtain

$$
\begin{aligned}
U_{j} B\left(j, U_{j-1}, U_{j}\right) & =(j+1) B(j, j, j+1) \leq(j+j) B(j, j+j, j+j) \\
& =(2 j) B(j, 2 j, 2 j) \leq 2 F(2) j B(j, j, j)
\end{aligned}
$$

Then, form (23)

$$
\sum_{j=1}^{\infty} U_{j} B\left(j, U_{j-1}, U_{j}\right) \leq 2 F(2) k=K<\infty
$$

Since assumptions of Theorem 1 hold then we get the thesis of this Theorem. So, from (18)

$$
\begin{equation*}
y_{n+1}=A_{n} n+B_{n} \tag{26}
\end{equation*}
$$

where A_{n} and B_{n} are defined by (16) and (17), and finite limits of sequences $\left(A_{n}\right)$, $\left(B_{n}\right)$ exist. Let

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{n}=a, \quad \lim _{n \rightarrow \infty} B_{n}=b \tag{27}
\end{equation*}
$$

From (19) we get

$$
A_{n}=A_{2}+\sum_{j=2}^{n-1} f\left(j,(j-1) A_{j-1}+B_{j-1}, j A_{j}+B_{j}\right)
$$

Hence, from (27) we obtain

$$
a=A_{2}+\sum_{j=2}^{\infty} f\left(j,(j-1) A_{j-1}+B_{j-1}, j A_{j}+B_{j}\right)
$$

Using properties of functions f and B we have

$$
\begin{aligned}
\left|A_{n}-a\right| & =\sum_{j=n}^{\infty} f\left(j,(j-1) A_{j-1}+B_{j-1}, j A_{j}+B_{j}\right) \\
& \leq \sum_{j=n}^{\infty} B\left(j,(j-1)\left|A_{j-1}\right|+\left|B_{j-1}\right|, j\left|A_{j}\right|+\left|B_{j}\right|\right) \\
& \leq \sum_{j=n}^{\infty} B\left(j,(j-1)\left(\left|A_{j-1}\right|+\left|B_{j-1}\right|\right), j\left(\left|A_{j}\right|+\left|B_{j}\right|\right)\right)
\end{aligned}
$$

Therefore

$$
n\left|A_{n}-a\right| \leq \sum_{j=n}^{\infty} j B\left(j,(j-1)\left(\left|A_{j-1}\right|+\left|B_{j-1}\right|\right), j\left(\left|A_{j}\right|+\left|B_{j}\right|\right)\right)
$$

From (27) there exists a constant c such that

$$
\left|A_{n}\right|+\left|B_{n}\right| \leq c \quad \text { for } \quad n \in N
$$

Then

$$
n\left|A_{n}-a\right| \leq \sum_{j=n}^{\infty} j B(j, j c, j c) \leq F(c) \sum_{j=n}^{\infty} j B(j, j, j)
$$

and by (23) we have

$$
\lim _{n \rightarrow \infty} F(c) \sum_{j=n}^{\infty} j B(j, j, j)=0
$$

what gives

$$
\lim _{n \rightarrow \infty} n\left|A_{n}-a\right|=0
$$

Analogously we obtain $\lim _{n \rightarrow \infty}\left|B_{n}-b\right|=0$. The solution (26) of equation (24) can be written in the form

$$
y_{n+1}=a n+b+\left(A_{n}-a\right) n+\left(B_{n}-b\right) .
$$

Then

$$
y_{n+1}=a n+b+\phi(n)
$$

where

$$
\phi(n)=\left(A_{n}-a\right) n+\left(B_{n}-b\right),
$$

and $\lim _{n \rightarrow \infty} \phi(n)=0$. The proof is complete.
Example 2. Consider the difference equation

$$
\begin{equation*}
\Delta^{2} y_{n}=\frac{y_{n}+y_{n+1}}{2^{n+3} n+3 \cdot 2^{n+2}+6} \tag{28}
\end{equation*}
$$

All conditions of Theorem 2 are satisfied with $B\left(n, x_{1}, x_{2}\right)=\frac{1}{2^{n}}\left(x_{1}+x_{2}\right)$ and $F(k)=k$. Hence equation (28) has a solution $\left(y_{n}\right)$ which can be written in (25). In fact $y_{n}=n+1+\frac{1}{2^{n}}$ is such a solution.

References

[1] Agarwal, R. P., Difference equations and inequalities. Theory, methods and applications, Marcel Dekker, Inc., New York 1992.
[2] Cheng, S. S., Li, H. J., Patula, W. T., Bounded and zero convergent solutions of second order difference equations, J. Math. Anal. Appl. 141 (1989), 463-483.
[3] Drozdowicz, A., On the asymptotic behavior of solutions of the second order difference equations, Glas. Mat. 22 (1987), 327-333.
[4] Elaydi, S. N., An introduction to difference equation, Springer-Verlag, New York 1996.
[5] Kelly, W. G., Peterson, A. C., Difference equations, Academic Press, Inc., Boston-San Diego 1991.
[6] Medina, R., Pinto, M., Asymptotic behavior of solutions of second order nonlinear difference equations, Nonlinear Anal. 19 (1992), 187-195.
[7] Migda, J., Migda, M., Asymptotic properties of the solutions of second order difference equation, Arch. Math. (Brno) 34 (1998), 467-476.
[8] Migda, M., Asymptotic behavior of solutions of nonlinear delay difference equations, Fasc. Math. 31 (2001), 57-62.
[9] Migda, M., Schmeidel, E., Zbąszyniak, M., Some properties of solutions of second order nonlinear difference equations, Funct. Differ. Equ. 11 (2004), 147-152.
[10] Popenda, J., Werbowski, J., On the asymptotic behavior of the solutions of difference equations of second order, Ann. Polon. Math. 22 (1980), 135-142.
[11] Schmeidel, E., Asymptotic behaviour of solutions of the second order difference equations, Demonstratio Math. 25 (1993), 811-819.
[12] Thandapani, E., Arul, R., Graef, J. R., Spikes, P. W., Asymptotic behavior of solutions of second order difference equations with summable coefficients, Bull. Inst. Math. Acad. Sinica 27 (1999), 1-22.
[13] Thandapani, E., Manuel, M. M. S., Graef, J. R., Spikes, P. W., Monotone properties of certain classes of solutions of second order difference equations, Advances in difference equations II, Comput. Math. Appl. 36 (1998), 291-297.

Institute of Mathematics, Poznań University of Technology
Piotrowo 3a, 60-965 Poznań, Poland
E-mail: mmigda@math.put.poznan.pl eschmeid@math.put.poznan.pl mmielesz@math.put.poznan.pl

[^0]: 2000 Mathematics Subject Classification: 39A10.
 Key words and phrases: nonlinear difference equation, nonoscillatory solution, second order. Received December 12, 2003, revised November 2004.

